JPH0477323B2 - - Google Patents

Info

Publication number
JPH0477323B2
JPH0477323B2 JP59112085A JP11208584A JPH0477323B2 JP H0477323 B2 JPH0477323 B2 JP H0477323B2 JP 59112085 A JP59112085 A JP 59112085A JP 11208584 A JP11208584 A JP 11208584A JP H0477323 B2 JPH0477323 B2 JP H0477323B2
Authority
JP
Japan
Prior art keywords
drive
shaft
displacement
piezoelectric
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59112085A
Other languages
Japanese (ja)
Other versions
JPS60256814A (en
Inventor
Kazuma Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP59112085A priority Critical patent/JPS60256814A/en
Publication of JPS60256814A publication Critical patent/JPS60256814A/en
Publication of JPH0477323B2 publication Critical patent/JPH0477323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Control Of Position Or Direction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は微小変位駆動装置に係り、特に精密
位置決めテーブルやロボツト等と組合せ得る微小
変位駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a minute displacement drive device, and more particularly to a minute displacement drive device that can be combined with a precision positioning table, a robot, or the like.

〔発明の技術的背景〕[Technical background of the invention]

微小位置決めなど微小な変位を正確に実行する
ことは、例えば半導体ウエハ乃至はペレツト上で
の作業において要求され、近年その精度は増々高
いものが要求されるに至つている。
Accurate execution of minute displacements such as minute positioning is required, for example, when working on semiconductor wafers or pellets, and in recent years, higher and higher precision has been required.

この種の位置決めテーブルは、例えば2台の駆
動装置でx−y二軸のそれぞれを駆動し、x−y
座標上の任意の点への位置決めを達成する様にし
ている。
This type of positioning table uses two drive devices to drive each of the x-y axes, and
It is designed to achieve positioning at any point on the coordinates.

しかし、従来の位置決めテーブルは、例えばネ
ジ加工した軸をサーボモータやステツプモータな
どで指示角度だけ回転させて、所望の移動を行う
ものである。
However, conventional positioning tables perform desired movements by rotating a threaded shaft by a specified angle using a servo motor, a step motor, or the like.

この場合、送り量が5ミクロン以下の微小領域
に近づいてくると、モータによる機械的機構によ
つて変位を行つているため、精度が悪くなる欠点
があつた。
In this case, when the feed amount approaches a minute region of 5 microns or less, the displacement is performed by a mechanical mechanism using a motor, which has the disadvantage that accuracy deteriorates.

また、主軸の最小回転角は、ネジの切り方で計
算上は小さくできても、変位量が2〜5ミクロン
程度となるといわゆるバツクラツシユが大きく影
響し、更に精度を劣化させていた。
Further, even if the minimum rotation angle of the main shaft can be calculated to be small depending on the way the thread is cut, when the displacement amount is about 2 to 5 microns, so-called backlash has a large effect, further deteriorating the accuracy.

〔発明の目的〕[Purpose of the invention]

この発明は、以上の従来技術の欠点を除去しよ
うとして成されたものであり、微小変位を精度良
く達成することのできる微小変位駆動装置を提供
することを目的とする。
The present invention has been made in an attempt to eliminate the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a micro-displacement drive device that can accurately achieve micro-displacement.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、この発明によれば、
圧電素子の圧縮、伸長、屈曲を利用し得る圧電駆
動手段を具え、前記圧縮、伸長、屈曲に従つて変
位させるべき対象を駆動する駆動シヤフトを一定
方向に所望変位させる様にする。
To achieve this objective, according to the invention:
A piezoelectric drive means capable of utilizing compression, expansion, and bending of a piezoelectric element is provided, and a drive shaft for driving an object to be displaced is displaced in a desired direction in accordance with the compression, expansion, and bending.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面に従つてこの発明の実施例を説
明する。尚、各図において同一の符号は同様の対
象を示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the same reference numerals in each figure indicate similar objects.

第1図〜第3図はこの発明の一実施例を示し、
第1図において、変位させるべき対象(図示せ
ず)を駆動するシヤフト4が、台板7上の支持手
段5−5(例えば、スライドベアリング)によつ
てA1−A2方向に移動可能に支持されている。
1 to 3 show an embodiment of this invention,
In FIG. 1, a shaft 4 that drives an object to be displaced (not shown) is supported movably in the A1-A2 direction by support means 5-5 (for example, a slide bearing) on a base plate 7. ing.

このシヤフト4には、台板7上の支持手段6−
6によつて支持された圧電駆動手段Eの一部が当
接している。
This shaft 4 is provided with support means 6- on a base plate 7.
A part of the piezoelectric drive means E supported by 6 is in abutment.

この圧電駆動手段Eは、互いに直行して結合さ
れたクランプ用駆動要素1と、ドライブ用の駆動
要素2とから成る。
This piezoelectric drive means E consists of a clamp drive element 1 and a drive drive element 2 which are coupled orthogonally to each other.

クランプ用駆動要素1は、弾性板1aに圧電素
子のシート1bを貼付して成り、印加電圧の極性
を変えることにより、要素1の屈曲方向をY1,
Y2のいずれかに変えることができる。
The clamp driving element 1 is made up of a piezoelectric element sheet 1b attached to an elastic plate 1a, and by changing the polarity of the applied voltage, the bending direction of the element 1 can be changed to Y1,
Can be changed to either Y2.

ドライブ用駆動要素2は、第2図にその詳細を
示す様であり、基板2aの両側に圧電素子のシー
ト2b,2cを貼合せたバイモルフ構造とし、こ
れを並列に接続してシヤフト4のスラスト方向に
屈曲し得る様になつている。
The driving element 2 for the drive is shown in detail in FIG. 2, and has a bimorph structure in which sheets 2b and 2c of piezoelectric elements are pasted on both sides of a substrate 2a, and these are connected in parallel to drive the thrust of the shaft 4. It is designed so that it can be bent in any direction.

要素2の一端2dにはシヤフト4と当接させる
ための例えば硬質ゴム製のグリツプ3を取付けて
あり、他端2eは接着剤3′等で駆動要素1の略
中央に固着する。
A grip 3 made of, for example, hard rubber is attached to one end 2d of the element 2 for contacting the shaft 4, and the other end 2e is fixed approximately at the center of the drive element 1 with an adhesive 3' or the like.

ここで、第1図の状態では駆動手段Eには何ら
駆動電圧は印加されておらず、グリツプ3はシヤ
フト4にわずかに当接し又はわずかに離れてい
る。
Here, in the state shown in FIG. 1, no driving voltage is applied to the driving means E, and the grip 3 is slightly in contact with or slightly away from the shaft 4.

次に、この実施例の動作を第3図に従つて説明
する。
Next, the operation of this embodiment will be explained with reference to FIG.

先づ、クランプ用駆動要素1に電圧32a(第
3図a)を印加し、グリツプ3がシヤフト4から
離れる方向Y2に要素1を駆動する。
First, a voltage 32a (FIG. 3a) is applied to the clamp driving element 1 to drive the element 1 in the direction Y2 in which the grip 3 moves away from the shaft 4.

次に、この状態のままでドライブ用駆動要素2
に電圧32b(第3図b)を印加し左方向X2に屈
曲する様にする。
Next, in this state, drive driving element 2
A voltage 32b (FIG. 3b) is applied to it so that it bends in the left direction X2.

この後、クランプ用駆動要素1の電圧極性を逆
方向とし、電圧33aによつて要素2を左方向
X2に振つたままの状態を保ちつつグリツプ3を
シヤフト4に当接させる。
After this, the voltage polarity of the clamp driving element 1 is reversed, and the element 2 is moved to the left by the voltage 33a.
While keeping it swinging to X2, bring grip 3 into contact with shaft 4.

ここで、ドライブ用駆動要素2の電圧極性も前
述とは逆とし、電圧33bによつて要素2を右方
向X1へ屈曲させる。
Here, the voltage polarity of the drive driving element 2 is also reversed to that described above, and the element 2 is bent in the right direction X1 by the voltage 33b.

この様に、第3図a,bの信号32a−33a
及び32b−33bを一周期とする信号を繰返し
印加することにより、シヤフト4を右方向A1へ
所望量変位させることができる。第3図は信号の
全サイクルの途中を示すものであり、信号31
a,31bは信号33a,33bと同様の状態を
成すものである。
In this way, the signals 32a-33a in FIGS. 3a and 3b
By repeatedly applying a signal whose period is 32b-33b, the shaft 4 can be displaced by a desired amount in the right direction A1. FIG. 3 shows the middle of a complete cycle of the signal, and the signal 31
The signals a and 31b are in the same state as the signals 33a and 33b.

尚、第3図aの信号に対して、同図bの極性を
図示とは逆にすれば、シヤフト4は左方向A2へ
変位させることができるのはもちろんのことであ
る。
It goes without saying that if the polarity of the signal shown in FIG. 3b is reversed from that shown in FIG. 3 with respect to the signal shown in FIG. 3a, the shaft 4 can be displaced in the left direction A2.

また、変位速度は、第3図の電圧値ならびに一
周期の所要時間とを調節することにより任意のも
のとすることができる。
Further, the displacement speed can be made arbitrary by adjusting the voltage value and the time required for one cycle shown in FIG.

ここで、圧電素子に印加する電圧と屈曲による
変位との関係は線形的な部分を選定することがで
き、またこの変位は微小なものであるため、この
実施例によれば、微小で正確な変位が可能とな
る。
Here, the relationship between the voltage applied to the piezoelectric element and the displacement due to bending can be selected to be linear, and since this displacement is minute, according to this embodiment, it is possible to displacement is possible.

尚、圧電駆動手段Eをシヤフト4に関して互い
に対向する様に少くとも一対設け、双方を同相で
駆動する様にすることにより、より大きい負荷に
対して精度良く変位を実行することができる。
Incidentally, by providing at least a pair of piezoelectric driving means E so as to face each other with respect to the shaft 4 and driving both of them in the same phase, it is possible to accurately perform displacement for a larger load.

また、シヤフト4に関して互いに対向する1組
の圧電駆動手段を複数組設け、互いに位相をずら
せて駆動することにより、各手段の配列に従つて
順送りが可能であり、変位速度を上げることがで
きる。
Further, by providing a plurality of pairs of piezoelectric drive means facing each other on the shaft 4 and driving them out of phase with each other, sequential feeding is possible according to the arrangement of each means, and the displacement speed can be increased.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、以上の様な構成とすること
により、圧電素子の特性を生かして、微小な変位
を精度良く達成することができ、しかも小型で消
費電力の少い微小変位駆動装置を提供することが
できる。
According to the present invention, by having the above-described configuration, it is possible to accurately achieve minute displacements by taking advantage of the characteristics of the piezoelectric element, and to provide a minute displacement drive device that is small and consumes little power. can do.

また、ロボツトアーム等と組合せることによ
り、高精度な自動装置を製造できることが期待さ
れる。
It is also expected that by combining it with a robot arm or the like, it will be possible to manufacture highly accurate automatic equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の平面図、第2図は
第1図の要部を示す斜視図、第3図は第1図の装
置の駆動信号波形図である。 1,2……駆動要素、3……グリツプ、4……
駆動シヤフト、5,6……支持手段、7……台
板。
FIG. 1 is a plan view of an embodiment of the invention, FIG. 2 is a perspective view showing the main parts of FIG. 1, and FIG. 3 is a drive signal waveform diagram of the device shown in FIG. 1. 1, 2... Drive element, 3... Grip, 4...
Drive shaft, 5, 6... Support means, 7... Base plate.

Claims (1)

【特許請求の範囲】[Claims] 1 一軸方向に移動可能に支持された駆動シヤフ
トと、この移動シヤフトの長さ方向と直角な方向
に屈曲動作する圧電素子でなるクランプ用駆動要
素と、このクランプ用駆動要素に直交結合され先
端に前記駆動シヤフトに当接するグリツプを有し
て前記駆動シヤフトの長さ方向に屈曲動作する圧
電バイモルフでなるドライブ用駆動要素とを備え
てなる微小変位駆動装置。
1 A drive shaft supported movably in a uniaxial direction, a clamp drive element made of a piezoelectric element that bends in a direction perpendicular to the length direction of the moving shaft, and a clamp drive element that is orthogonally coupled to the clamp drive element and has a distal end. A micro-displacement drive device comprising: a drive element made of a piezoelectric bimorph that has a grip that contacts the drive shaft and bends in the longitudinal direction of the drive shaft.
JP59112085A 1984-05-31 1984-05-31 Minute displacement driver Granted JPS60256814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112085A JPS60256814A (en) 1984-05-31 1984-05-31 Minute displacement driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112085A JPS60256814A (en) 1984-05-31 1984-05-31 Minute displacement driver

Publications (2)

Publication Number Publication Date
JPS60256814A JPS60256814A (en) 1985-12-18
JPH0477323B2 true JPH0477323B2 (en) 1992-12-08

Family

ID=14577710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112085A Granted JPS60256814A (en) 1984-05-31 1984-05-31 Minute displacement driver

Country Status (1)

Country Link
JP (1) JPS60256814A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510486B2 (en) * 1984-06-29 1996-06-26 キヤノン株式会社 Piezoelectric device
JPS62216677A (en) * 1986-03-18 1987-09-24 神鋼電機株式会社 Oval vibrator
JPS63294271A (en) * 1987-05-22 1988-11-30 Nec Corp Ultrasonic wave motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814379A (en) * 1981-07-20 1983-01-27 Toshiba Corp Deflection arm device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958811U (en) * 1982-10-04 1984-04-17 ソニー株式会社 Micro movement positioning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814379A (en) * 1981-07-20 1983-01-27 Toshiba Corp Deflection arm device

Also Published As

Publication number Publication date
JPS60256814A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
JP2798829B2 (en) Two-dimensional motion mechanism
JP2006049879A (en) Ultraprecision position-control system
WO2002005267A3 (en) Reversible piezoelectric positioning device and a disk drive using same
JPH10277985A (en) Positioning device
JPH0477323B2 (en)
JP2003075572A (en) Fine adjustment device for displacement and fine adjustment method of displacement
CN109889090B (en) Ultra-precise three-axis rotation piezoelectric attitude adjusting mechanism and excitation method thereof
JPH05131389A (en) Object handling device
JPH0381119B2 (en)
JP2004140946A (en) Actuator
CN112953297B (en) Rotary inertia piezoelectric motor structure
JPS6057577A (en) Positioning mechanism of magnetic head
JP2003046159A (en) Actuator
CN109889084B (en) Piezoelectric-driven feeding posture adjusting device and excitation method thereof
JPS6156836A (en) Precise positioning table
CN109951104B (en) Five-degree-of-freedom piezoelectric positioning and posture adjusting mechanism and excitation method thereof
JPH01238759A (en) Precisely fine movement base with six degrees of freedom
CN211981776U (en) Sheet type rotating motor driven by double piezoelectric bodies in parallel and inertia and scanning probe microscope
JPS58190079A (en) Mechanism of fine movement
JP2000152670A (en) Piezoelectric-crystal element and actuator using the same
JPH01267492A (en) Two-dimensional piezoelectric micro-movement device
JPH02206376A (en) Electrostatic type multidimensional actuator
JP2773781B2 (en) Precision fine movement stage device
JP2523978B2 (en) Positioning table
JPS63235888A (en) Xy theta table