JPH04772A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPH04772A
JPH04772A JP2082554A JP8255490A JPH04772A JP H04772 A JPH04772 A JP H04772A JP 2082554 A JP2082554 A JP 2082554A JP 8255490 A JP8255490 A JP 8255490A JP H04772 A JPH04772 A JP H04772A
Authority
JP
Japan
Prior art keywords
electrode
organic compound
compound layer
electroluminescent device
electrode element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082554A
Other languages
Japanese (ja)
Inventor
Fumio Kawamura
史生 河村
Teruyuki Onuma
大沼 照行
Hirota Sakon
洋太 左近
Masabumi Ota
正文 太田
Toshihiko Takahashi
俊彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2082554A priority Critical patent/JPH04772A/en
Publication of JPH04772A publication Critical patent/JPH04772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/841Applying alternating current [AC] during manufacturing or treatment

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make drividing by AC power possible and increase durability of light emission performance by a method wherein two kinds of electrode elements are laminated in a light transmitting electrode, a work function of an electrically conductive substance contained in each electrode element is different, and the electrode elements are arranged periodically so as to face each other via an organic compound layer in a pair of facing electrodes. CONSTITUTION:An electroluminescent device comrises an electrode element 5 formed of light transmitting base 1,2, light transmitting electrodes 3, 4, and a first conductive substance, an electrode element 6 formed of a second conductive substance having a work function different from that of the first conductive substance, an organic compound layer 7, and a power supply 8. Any shape can be taken for the electrode element 5, for example, stripe or mosaic shape, if they can be arranged in a periodic manner. The electrode elements 6 should preferably be arranged in such a way that they are alternately arranged periodically together with the electrode elements 5 on each interface with the organic compound layer 7, and that they are arranged facing the electrode elements 5 with the organic compound layer 7 provided therebetween.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光性物質からなる発光層を有し、電界を印加
することにより電界印加エネルギーを直接光エネルギー
に変換でき、従来の白熱灯、蛍光灯あるいは発光ダイオ
ード等とは異なり大面積の面状発光体の実現を可能にす
る電界発光素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a light-emitting layer made of a light-emitting substance, and by applying an electric field, the applied energy of the electric field can be directly converted into light energy. The present invention relates to an electroluminescent device that, unlike fluorescent lamps or light emitting diodes, enables the realization of large-area planar light emitters.

〔従来の技術〕[Conventional technology]

電界発光素子はその発光励起機構の違いから(1)交流
電界で発光層内での電子や正孔の局所的な移動により発
光層を励起し発光させる真性電界発光素子と、(2)直
流電界で電極から電子と正孔を注入し、これらを発光層
内で再結合させて発光体の励起、発光させるキャリア注
入型電界発光素子の二つに分けられる。(1)の真性電
界発光型の発光素子は一般にZnSにCuまたはCuと
肚等を添加した無機化合物を発光体とするものであるが
、駆動に200■以上の高い交流電界を必要とすること
、輝度や発光寿命も不十分であること等多くの問題点を
有する。
There are two types of electroluminescent devices: (1) intrinsic electroluminescent devices, which excite the emissive layer to emit light by local movement of electrons and holes within the emissive layer using an alternating current electric field, and (2) a direct current electric field. There are two types of electroluminescent devices: carrier-injection type electroluminescent devices, which inject electrons and holes from an electrode and recombine them in a light-emitting layer to excite a light-emitting substance and cause it to emit light. (1) Intrinsic electroluminescence type light-emitting elements generally use an inorganic compound such as ZnS with Cu or Cu and a substance added thereto as a light emitting body, but require a high alternating current electric field of 200 μm or more for driving. However, there are many problems such as insufficient brightness and luminous lifetime.

(2)のキャリア注入型電界発光素子としては、例えば
特開昭59−194393号、米国特許4,720,4
32号あるいはJapanese Journal o
f Applied Physics(第27巻、71
3ページ、 1988年発行)に記載されている技術な
どが公知である。これらの技術においては薄膜状有機化
合物発光層と電子または/および正孔輸送層とを陽極と
陰極の間に挾持した構成を特徴としており、100v以
下の直流駆動電界で高輝度の発光をする。
Examples of the carrier injection type electroluminescent device (2) include JP-A No. 59-194393 and U.S. Pat. No. 4,720,4.
No. 32 or Japanese Journal o
f Applied Physics (Vol. 27, 71
3 pages, published in 1988) are publicly known. These technologies are characterized by a structure in which a thin organic compound light emitting layer and an electron and/or hole transport layer are sandwiched between an anode and a cathode, and emit light with high brightness in a DC driving electric field of 100 V or less.

しかしながら、キャリア注入型電界発光素子は上記の公
知技術を含め、発光輝度1発光効率、発光状態の寿命、
発光波長の選択性など多くの問題を抱えているのが実情
であり、これまで実用化された例は知られていない。特
にキャリア注入型電界発光素子は直流駆動であるため、
注入された電荷キャリアが有機化合物層中および有機化
合物層と電極界面で捕獲されて局在化し、発光輝度、発
光効率および発光状態の寿命などの特性に影響を与え、
素子の性態を低下させるという問題点があった。
However, carrier injection type electroluminescent devices, including the above-mentioned known technology, have a luminous intensity of 1 luminous efficiency, a lifetime of luminescent state,
The reality is that there are many problems such as the selectivity of the emission wavelength, and so far there are no known examples of this being put to practical use. In particular, carrier injection type electroluminescent devices are driven by direct current, so
The injected charge carriers are captured and localized in the organic compound layer and at the interface between the organic compound layer and the electrode, affecting properties such as luminance brightness, luminous efficiency, and lifetime of the luminescent state.
There was a problem that the properties of the element were deteriorated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の実情に鑑みてなされたものであり、その
第1の目的は新規な電極構成のキャリア注入型電界発光
素子を提供することであり、別の目的は交流駆動が可能
なキャリア注入型電界発光素子を提供することである。
The present invention has been made in view of the above circumstances, and its first purpose is to provide a carrier injection type electroluminescent device with a novel electrode configuration, and another purpose is to provide a carrier injection type electroluminescent device that can be driven by AC. An object of the present invention is to provide a type electroluminescent device.

また、本発明の第3の目的は発光性能が長時間にわたっ
て持続する耐久性に優れたキャリア注入型電界電光素子
を提供することである。
A third object of the present invention is to provide a carrier injection type electroluminescent device with excellent durability and long-lasting luminous performance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記課題を解決するための新規な電界発光
素子について鋭意検討した結果、一対の透光性電極およ
びこれらの間に挾持された有機化合物層よりなる電界発
光素子において、各々の電極が有機化合物層の各々の層
上に周期的に配列して設けられた第一の導電性物質より
なる電極要素A、および電極要素Aを含む該層上に設け
られた第一の導電性物質と仕事関数の異なる第二の導電
性物質よりなる電極要素Bで構成されており、さらに対
向する一対の電極において各々の電極成分が有機物を介
して互いに対向して配置されていることを特徴とする電
界発光素子が上記課題に対して有効であることを見出し
1本発明を完成するに到った・ すなわち1本発明によれば、有機化合物層を一対の透光
性電極を挾持した電界発光素子において、該透光性電極
が2種の電極要素を積層したもので、かつ、各電極要素
に含有される導電性物質の仕事関数が異なり、さらに対
向する一対の電極において、各々の電極要素が有機化合
物層を介して互いに対向して周期的に配置されているこ
とを特徴とする電界発光素子が提供される。
The present inventors have conducted extensive studies on a novel electroluminescent device to solve the above problems, and have found that in an electroluminescent device consisting of a pair of translucent electrodes and an organic compound layer sandwiched between them, each electrode an electrode element A made of a first conductive material provided in a periodic arrangement on each layer of an organic compound layer, and a first conductive material provided on the layer containing the electrode element A; and an electrode element B made of a second conductive substance having a different work function, and further characterized in that in a pair of opposing electrodes, each electrode component is arranged to face each other with an organic substance in between. They discovered that an electroluminescent device is effective for solving the above problems and completed the present invention.In other words, according to the present invention, an electroluminescent device in which an organic compound layer is sandwiched between a pair of transparent electrodes In the element, the light-transmitting electrode is a stack of two types of electrode elements, and the work functions of conductive substances contained in each electrode element are different, and further, in a pair of opposing electrodes, each electrode element has a different work function. Provided is an electroluminescent device characterized in that the organic compound layers are periodically arranged opposite to each other with an organic compound layer interposed therebetween.

以下、本発明に係る電界発光素子を詳細に説明する。Hereinafter, the electroluminescent device according to the present invention will be explained in detail.

第1図は本発明の電界発光素子の構成を示す模式断面図
である。第1図に示す電界発光素子において、1,2は
透光性基体、3,4は透光性電極、5は周期的に配列さ
れた第一の導電性物質よりなる電極要素A、6は第一の
導電性物質を仕事関数の異なる第二の導電性物質よりな
る電極要素B、7は有機化合物層、8は電源である。
FIG. 1 is a schematic cross-sectional view showing the structure of the electroluminescent device of the present invention. In the electroluminescent device shown in FIG. 1, 1 and 2 are transparent substrates, 3 and 4 are transparent electrodes, 5 is an electrode element A made of a periodically arranged first conductive material, and 6 is a transparent substrate. Electrode element B is made of a first conductive material and a second conductive material having a different work function, 7 is an organic compound layer, and 8 is a power source.

本発明の電界発光素子において、電極は前記したように
仕事関数の異なる二種類の導電性物質で形成される。
In the electroluminescent device of the present invention, the electrodes are formed of two types of conductive materials having different work functions, as described above.

この内大きな仕事関数を有する導電性物質としては金、
ベリリウム、コバルト、クロム、インジウム、モリブデ
ン、ニッケル、パラジウム、白金、ロジウム、タングス
テン、酸化スズ、酸化インジウム、酸化インジウム−酸
化スズ(ITO)、酸化亜鉛、硫化カドミウム、酸化カ
ドミウム−酸化スズ、ヨウ化網、ポリ(3−メチルチオ
フェン)、ポリピロールなどを挙げることができる。
Gold, gold, and other conductive materials with large work functions include gold;
Beryllium, cobalt, chromium, indium, molybdenum, nickel, palladium, platinum, rhodium, tungsten, tin oxide, indium oxide, indium oxide-tin oxide (ITO), zinc oxide, cadmium sulfide, cadmium oxide-tin oxide, iodide network , poly(3-methylthiophene), polypyrrole, and the like.

また小さな仕事関数を有する導電性物質としては銀、ア
ルミニウム、ビスマス、ガリウム、インジウム、リチウ
ム、マグネシウム、マンガン、ニオブ、鉛、ストロンチ
ウム、亜鉛などを挙げることができる。
Examples of conductive substances having a small work function include silver, aluminum, bismuth, gallium, indium, lithium, magnesium, manganese, niobium, lead, strontium, and zinc.

仕事関数の小さな物質を用いて電極要素Aを設ける場合
には、電極要素Bとしては仕事関数の大きな物質を用い
ることが望ましく、また電極要素Aとして仕事関数の大
きな物質を用いた場合には電極要素Bとして仕事関数の
小さな物質を用いることが望ましい。
When providing electrode element A using a substance with a small work function, it is desirable to use a substance with a large work function as electrode element B, and when using a substance with a large work function as electrode element A, it is desirable to use a substance with a large work function as electrode element B. It is desirable to use a material with a small work function as element B.

本発明において、このように電極を2種の電極要素を周
期的に配置し、かつ各電極要素に含有される導電性物質
の仕事関数が異なるようにした場合、交流駆動が可能と
なり、また発光性能の耐久性が改良される等の作用効果
を奏する理由は現時点では明らかでないが、以下の理由
によるものと推定される。仕事関数の異なる電極要素A
およびBが有機化合物層を介して対向して周期的に配置
されているため交流駆動が可能となる。また印加される
交流電場の作用で有機化合物層中および有機化合物層と
電極界面に捕らえられて局在化した電荷キャリアが解放
される。
In the present invention, when two types of electrode elements are arranged periodically and the work functions of the conductive substances contained in each electrode element are different, alternating current driving becomes possible, and light emission becomes possible. Although the reason for the effects such as improved performance durability is not clear at present, it is presumed to be due to the following reasons. Electrode elements A with different work functions
and B are periodically arranged facing each other with an organic compound layer interposed therebetween, making AC driving possible. In addition, localized charge carriers trapped in the organic compound layer and at the interface between the organic compound layer and the electrode are released by the action of the applied alternating current electric field.

また電極要素Aの形状としては、ストライプ状、モザイ
ク状など周期的に配列可能な形状であれば任意でよい。
Further, the shape of the electrode elements A may be any shape as long as it can be arranged periodically, such as a stripe shape or a mosaic shape.

電極要素Bの形状は有機化合物層の各々の界面で電極要
素Aと共に周期的に交互に配列され、かつ有機化合物層
を介して電極要素Aと対向して配列されるようにするの
が適当である。
It is appropriate that the shape of the electrode elements B is such that they are arranged periodically and alternately with the electrode elements A at each interface of the organic compound layer, and are arranged opposite to the electrode elements A with the organic compound layer interposed therebetween. be.

電極を形成する方法としては真空蒸着法、スパッタ法、
電解重合法、スクリーン印刷法など従来公知の技術を用
いることができる。
Methods for forming electrodes include vacuum evaporation, sputtering,
Conventionally known techniques such as electrolytic polymerization and screen printing can be used.

また、本発明に係る電極は有機化合物層から生ずる発光
に対し透明であることが必要である。可視光に対する透
明性を確保するための手段としては種々の方法が採用で
きるが、電極に用いる導電性物質の種類を選択する方法
あるいは形成される電極の膜厚を規制する方法等が挙げ
られる。
Further, the electrode according to the present invention needs to be transparent to light emitted from the organic compound layer. Various methods can be employed to ensure transparency to visible light, including a method of selecting the type of conductive material used for the electrode or a method of regulating the film thickness of the formed electrode.

本発明の電界発光素子の有機化合物層には電荷輸送性お
よび発光性を示す有機化合物を使用することができる。
For the organic compound layer of the electroluminescent device of the present invention, an organic compound exhibiting charge transporting properties and luminescent properties can be used.

本発明に適用可能な化合物の具体例を以下に示す。Specific examples of compounds applicable to the present invention are shown below.

化鉤鬼     構造式 本発明の電界発光素子における有機化合物層は例えば上
記例示化合物を構成成分とする層を透光性電極上にコー
ティングすることにより形成される。コーティング方法
としては真空蒸着法のような乾式法、スピン塗工法、浸
漬塗工法のような湿式法など従来公知の成膜技術を適用
することができる。有機化合物層の厚さは約300人〜
約5,000人の範囲が好ましい。
Structural Formula The organic compound layer in the electroluminescent device of the present invention is formed, for example, by coating a layer containing the above-mentioned exemplified compounds on a transparent electrode. As a coating method, conventionally known film forming techniques such as a dry method such as a vacuum evaporation method, a wet method such as a spin coating method, and a dip coating method can be applied. The thickness of the organic compound layer is approximately 300 ~
A range of about 5,000 people is preferred.

湿式成膜法を用いて有機化合物層を設ける場合には、前
記の例示化合物を適当な溶媒に分散あるいは溶解させて
得た塗液を透光性電極上にコーティングすればよい。使
用できる溶媒としては水、メタノール、エタノール、イ
ソプロパツールなどのアルコール類、アセトン、2−ブ
タノン、シクロヘキサノンなどのケトン類、N、N−ジ
メチルホルムアミド、N、N−ジメチルアセトアミドな
どのアミド類、ジメチルスルホキシドなどのスルホキシ
ド類、テトラヒドロフラン、ジオキサン、エチレングリ
コールモノメチルエーテルなどの工・−チル類、酢酸メ
チル、酢酸エチルなどのエステル類、クロロホルム、塩
化メチレン、ジクロロエタン、1 、1. 、2トリク
ロロエタンなどの脂肪族ハロゲン化炭化水素、あるいは
ベンゼン、トルエン、キシレン、リグロイン、モノクロ
ルベンゼン、ジクロルベンゼンなどの芳香族類を挙げる
ことができる。また塗液に皮膜形成性の結着剤を加える
こともできる。
When an organic compound layer is provided using a wet film forming method, a coating liquid obtained by dispersing or dissolving the above-mentioned exemplified compounds in a suitable solvent may be coated on the transparent electrode. Usable solvents include water, alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, 2-butanone, and cyclohexanone, amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and dimethyl. Sulfoxides such as sulfoxide, ethyl compounds such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, chloroform, methylene chloride, dichloroethane, 1, 1. , aliphatic halogenated hydrocarbons such as 2-trichloroethane, or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene and the like. It is also possible to add a film-forming binder to the coating solution.

このような結着剤としては、ポリビニルブチラール、ポ
リカーボネート、ボリアリレート、ポリスルホン、ポリ
エーテルスルホン、ポリエステル、フェノキシ樹脂、ポ
リ酢酸ビニル、アクリル樹脂、ポリアクリルアミド樹脂
、ポリアミド、ポリビニルピリジン、スチレン樹脂、塩
化ビニル樹脂、エポキシ樹脂、ウレタン樹脂、セルロー
ス系樹脂、カゼイン、ゼラチン、ポリビニルアルコール
、ポリビニルピロリドンなどを挙げることができる。
Such binders include polyvinyl butyral, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, styrene resin, vinyl chloride resin. , epoxy resin, urethane resin, cellulose resin, casein, gelatin, polyvinyl alcohol, polyvinylpyrrolidone, and the like.

〔実施例〕〔Example〕

次に実施例により本発明を詳述するが、本発明はこれに
限定されるものではない。
EXAMPLES Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 50mm X 50m1+のパイレックスガラスを中性
洗剤、蒸留水および熱エタノールで超音波洗浄し、クリ
ーンブース内で乾燥させた。このパイレックスガラスに
金を真空蒸着し、膜厚400人の電極要素Bを設け、更
にアルミニウムを同法により蒸着(膜厚1゜000人)
し、幅1mm、間隔1mmで周期的に配列されたストラ
イプ状の電極要素Aを設け、透光性電極3とした。この
ようにして作製した電極上に例示化合物Eト12を真空
蒸着し、膜厚600人の有機化合物層を設けた。次に有
機化合物層にマスクを設け、透光性電極3の電極要素B
に対向する位置にアルミニウムを真空蒸着しく膜厚1 
、000人)、最後にマスクを取除いて金を膜厚400
人となるよう真空蒸着して透光性電極4とし、本発明の
電界発光素子を作製した。このようにして作製した電界
発光素子に周波数50Hzの交流電圧を印加した。印加
電圧の増加と共に発光が始まり、線動電流30mA/c
m2で輝度40cd/m2を有する鮮明な緑色の発光が
長時間にわたって確認された。
Example 1 A 50 mm x 50 m1+ Pyrex glass was ultrasonically cleaned with a neutral detergent, distilled water, and hot ethanol, and dried in a clean booth. Gold was vacuum-deposited on this Pyrex glass to provide electrode element B with a thickness of 400 mm, and aluminum was further deposited using the same method (film thickness of 1.000 mm).
Then, striped electrode elements A having a width of 1 mm and periodically arranged at intervals of 1 mm were provided to form a translucent electrode 3. Exemplary compound E-12 was vacuum-deposited on the electrode thus prepared to form an organic compound layer with a thickness of 600 ml. Next, a mask is provided on the organic compound layer, and the electrode element B of the translucent electrode 3 is
Aluminum is vacuum-deposited in a position opposite to the film thickness 1.
, 000 people), and finally the mask was removed and the gold layer was coated with a thickness of 400 mm.
The light-transmitting electrode 4 was vacuum-deposited to form a transparent electrode 4, and an electroluminescent device of the present invention was produced. An alternating current voltage with a frequency of 50 Hz was applied to the electroluminescent device thus produced. Light emission begins as the applied voltage increases, and the linear current increases to 30 mA/c.
Clear green light emission with a brightness of 40 cd/m2 was observed over a long period of time.

実施例2〜7 表−1に示した電極材料および有機化合物を用いて実施
例1と同様の構造を有する素子を作製した。
Examples 2 to 7 Elements having the same structure as in Example 1 were fabricated using the electrode materials and organic compounds shown in Table 1.

電極の作製はいずれも抵抗加熱法による真空蒸着法によ
り行なった。
All electrodes were manufactured by vacuum evaporation using resistance heating.

次にこれらの試料に周波数50Hzの交流電圧を印加し
た。いずれの試料も印加電圧の増加と共に発光が始まり
、長時間にわたる発光が確認できた。
Next, an alternating voltage with a frequency of 50 Hz was applied to these samples. All samples began to emit light as the applied voltage increased, and light emission for a long period of time was confirmed.

各試料の耗動条件および発光の挙動を表−1に示す。Table 1 shows the wear conditions and luminescence behavior of each sample.

実施例8 実施例1において、有機化合物層を下記の湿式成膜法で
設けた以外は実施例2と同様の手順で本発明の素子を作
製した。
Example 8 An element of the present invention was produced in the same manner as in Example 2 except that the organic compound layer was provided by the wet film forming method described below.

く湿式成膜法による有機化合物層の作成〉例示化合物E
M−121部とポリメタクリル酸メチル(BR80三菱
レーヨン(株)製)1部とを98部のモノクロルベンゼ
ンに溶解して得た塗液を用いて、スピン塗工法により(
回転数2.OOOrpm)透光性電極上に膜厚1,00
0人の有機化合物層を設けた。
Creation of organic compound layer by wet film formation method> Exemplary compound E
(
Rotation speed 2. OOOrpm) film thickness 1,000 on transparent electrode
0 organic compound layers were provided.

このようにして得られた素子について、実施例1と同様
の手順で発光特性を調べた。その結果、駆動電流60m
A/cm”で輝度50cd/m”の鮮明な発光が長時間
にわたって確認できた。
The light emitting characteristics of the thus obtained device were examined in the same manner as in Example 1. As a result, the drive current is 60m
Clear light emission with a brightness of 50 cd/m'' at A/cm'' could be observed for a long time.

〔効  果〕〔effect〕

本発明の電界発光素子は前記したように電極を特定な構
成としたことから、交流による能動が可能であると共に
発光性能が長期間にわたって持続する耐久性に優れたも
のである。
Since the electroluminescent device of the present invention has electrodes having a specific configuration as described above, it can be activated by alternating current and has excellent durability with long-lasting luminescent performance.

【図面の簡単な説明】[Brief explanation of drawings]

1.2・・・透光性基体 5・・・電極要素A 7・・・有機化合物層 3.4・・透光性電極 6・・・電極要素B 8・・・電 源 特許出願人 株式会社 リ  コ 1.2...Transparent substrate 5... Electrode element A 7...Organic compound layer 3.4...Transparent electrode 6... Electrode element B 8...Electric power source Patent applicant Rico Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)有機化合物層を一対の透光性電極を挾持した電界
発光素子において、該透光性電極が2種の電極要素を積
層したもので、かつ、各電極要素に含有される導電性物
質の仕事関数が異なり、さらに対向する一対の電極にお
いて、各々の電極要素が有機化合物層を介して互いに対
向して周期的に配置されていることを特徴とする電界発
光素子。
(1) In an electroluminescent device in which an organic compound layer is sandwiched between a pair of transparent electrodes, the transparent electrode is a stack of two types of electrode elements, and each electrode element contains a conductive substance. 1. An electroluminescent device having different work functions, and further comprising a pair of opposing electrodes in which each electrode element is periodically arranged opposite to each other with an organic compound layer interposed therebetween.
JP2082554A 1990-03-29 1990-03-29 Electroluminescent element Pending JPH04772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082554A JPH04772A (en) 1990-03-29 1990-03-29 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082554A JPH04772A (en) 1990-03-29 1990-03-29 Electroluminescent element

Publications (1)

Publication Number Publication Date
JPH04772A true JPH04772A (en) 1992-01-06

Family

ID=13777718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082554A Pending JPH04772A (en) 1990-03-29 1990-03-29 Electroluminescent element

Country Status (1)

Country Link
JP (1) JPH04772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110570A (en) * 1999-07-30 2001-04-20 Sony Corp Organic field light emitting element
EP1315208A2 (en) * 2001-11-22 2003-05-28 Sel Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2010504606A (en) * 2006-09-22 2010-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
US8884322B2 (en) 2006-09-22 2014-11-11 Osram Opto Semiconductor Gmbh Light-emitting device
WO2017056814A1 (en) * 2015-09-30 2017-04-06 コニカミノルタ株式会社 Transparent organic electroluminescence element and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110570A (en) * 1999-07-30 2001-04-20 Sony Corp Organic field light emitting element
EP1315208A2 (en) * 2001-11-22 2003-05-28 Sel Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
EP1315208A3 (en) * 2001-11-22 2007-02-28 Sel Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7282734B2 (en) 2001-11-22 2007-10-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having stripe form electrodes and auxiliary electrodes
KR100958282B1 (en) * 2001-11-22 2010-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device and manufacturing method thereof
US7759686B2 (en) 2001-11-22 2010-07-20 Semiconductor Energy Laboratory Co., Ltd Light emitting device
US8044393B2 (en) 2001-11-22 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US8471273B2 (en) 2001-11-22 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2010504606A (en) * 2006-09-22 2010-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
US8338843B2 (en) 2006-09-22 2012-12-25 Osram Opto Semiconductors Gmbh Light-emitting device
US8884322B2 (en) 2006-09-22 2014-11-11 Osram Opto Semiconductor Gmbh Light-emitting device
WO2017056814A1 (en) * 2015-09-30 2017-04-06 コニカミノルタ株式会社 Transparent organic electroluminescence element and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4356429A (en) Organic electroluminescent cell
JP2851185B2 (en) Electroluminescent device with organic electroluminescent medium
JP3571977B2 (en) Organic light emitting device
EP0731625B1 (en) Organic electroluminescent devices with high thermal stability
JP2000058266A (en) Electron injected layer giving modified interface between organic light emitting structure and cathode buffer layer
JPH0525473A (en) Organic electroluminescent element
JPH059471A (en) Organic electroluminescent element
JPH04772A (en) Electroluminescent element
JPH03141588A (en) Electroluminescent device
JPH05109485A (en) Electroluminescence element
US6078138A (en) Organic thin film electroluminescence display unit
JPH10321373A (en) Electroluminescent element
JPH03163188A (en) Electroluminescent element
JP2837171B2 (en) Transparent conductive film
JP3302064B2 (en) EL device
JPH0468076A (en) Electroluminescent element
JPH02253593A (en) Luminous element
JPH03205479A (en) Electroluminescent element
JPH03205788A (en) Electroluminescence element
JPH02251428A (en) Transparent conductive film
JPH0521165A (en) Electric field light emitting element
JPH03168294A (en) Electric field luminescent element
JP2844135B2 (en) Driving method of organic light emitting device
JP2001076879A (en) Organic electroluminescent element
JPH04175394A (en) Electroluminescent element