JPH0476724B2 - - Google Patents

Info

Publication number
JPH0476724B2
JPH0476724B2 JP59212220A JP21222084A JPH0476724B2 JP H0476724 B2 JPH0476724 B2 JP H0476724B2 JP 59212220 A JP59212220 A JP 59212220A JP 21222084 A JP21222084 A JP 21222084A JP H0476724 B2 JPH0476724 B2 JP H0476724B2
Authority
JP
Japan
Prior art keywords
desorption
heated
minutes
flow rate
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212220A
Other languages
Japanese (ja)
Other versions
JPS6190720A (en
Inventor
Teruo Kobata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59212220A priority Critical patent/JPS6190720A/en
Publication of JPS6190720A publication Critical patent/JPS6190720A/en
Publication of JPH0476724B2 publication Critical patent/JPH0476724B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は粉末あるいは粒状活性炭、繊維状活性
炭等の吸着剤に吸着させた有機溶剤等の吸着物を
加熱気流によつて脱着する方法に関するものであ
る。 (従来の技術) 粉末あるいは粒状活性炭、繊維状活性炭等を利
用した吸着装置は古くから多くの分野で用いられ
ており、特に近年省資源の目的から有機溶剤の回
収、利用に活性されている。こうした吸着装置は
吸着槽を2槽以上配し、吸着と脱着とを交互にく
り返すのを基本としており、着脱には水蒸気、加
熱空気、加熱窒素の様な加熱気流が用いられるの
が普通である。一方吸着装置のランニングコスト
の多くの部分は脱着用の加熱気流に支配されるの
でいかにして加熱気流を少なく使用し効率のよい
脱着をおこなうかが吸着装置設計及び運転のポイ
ントとなる。 従来より実施されている吸着装置における吸脱
着方法を第1図にて説明する。即ち、吸着除去す
べき物質を含んだ空気はフアン6で吸引され、吸
着槽1,1a,1bへ送り込まれる。たとえば吸
着槽1aで吸着する場合にはバルブ2a,3aが
開き、バルブ2b,3bは閉となる。吸着槽1a
で吸着が進行している間に吸着槽1bはたとえば
水蒸気8で脱着される。水蒸気はバルブ4bが開
くことによつて導入され吸着剤を加熱し吸着物を
脱着したのちバルブ5bを通つてコンデンサー7
へ流れ冷却、凝縮される。この場合水蒸気の流量
は配管やバルブ、場合によつては適当な絞りによ
つて決まる抵抗で規定される一定流量で流され、
脱着時間中その流量は変化しないのが通常であ
る。 (発明が解決しようとする問題点) この様に従来の技術では脱着を行なう際加熱気
流は脱着時間中常に一定量流していたが次の点で
効率のよい手段とはいえなかつた。即ち、脱着工
程を詳しくみれば以下の様である。吸着剤は加熱
気流によつて表面から熱せられる。吸着剤の温度
が上昇するにつれて吸着剤の細孔にとらえられて
いた吸着物の蒸気圧が上昇する。ついには吸着物
は吸着力に打ち勝つエネルギーを得て細孔から離
脱するがこの時の流れは拡散律速であり組孔外の
分圧が低ければ低いほど脱着は速く進む。こうし
てみてくると脱着に使われる加熱気流の役割には
大きく2つある。1つは吸着剤を熱し吸着物の蒸
気圧を上げて細孔から離脱し易くすることであ
り、他の1つは細孔から離脱した吸着物分子を拡
散させ系外へ運び出すことである。従つて吸着剤
が十分熱せられない状態ではいかに脱着用の流体
が十分に流されても脱着の効率は高められないこ
とになる。従来の如く加熱気流の役割を考慮する
ことなく一定量の加熱気流を単に流す場合はこう
した理由で脱着の効率が悪かつた。 本発明者らはかかる加熱気流の役割を十分に考
慮に入れた脱着方法について鋭意検討した結果、
脱着用気流を一定流量に保たず経時的にその流量
を変化させることによりより効率のよい脱着が行
ない得、以て脱着用気流使用量が大幅に低減する
ことを見い出し、本発明に到達した。 (問題点を解決するための手段) 本発明は上記の問題点を解決するため活性炭素
物質を主成分とする吸着剤に加熱不活性ガス気流
または加熱水蒸気を吹きかけて吸着物を脱着する
に際し、該加熱不活性ガス気流または加熱水蒸気
の量を、t1(分)まではt1(分)からt2(分)までに
流す加熱気流の流量の1/2以下の平均流量で流し、
t1(分)からt2(分)までの間に流す加熱気流の量
を使用吸着剤量の25〜50%とすることを特徴とす
る吸着装置における脱着方法。 ここで t1:吸着剤が98℃に加熱されるまでの
時間(分) t2:脱着に要する時間(分)技術的手
段を採用するものである。 本発明の脱着方法を実施するためには前述の第
1図の吸脱着システムをそのまま利用できるが、
重要な点は加熱気流8を経時的に変化させること
にある。その変化の態様は前述の加熱気流の役割
がそのまま果せる手段なら格別制限を設けるもの
でないが、次の様な方法の採用が好適である。 即ち、脱着に要する時間をt2(分)とし、t1
(分)までは(t2>t1)t1からt2までに流す加熱気
流の流量の半分以下の平均流量で加熱気流を流
す。t1は吸着剤温度が98℃になつた時あらかじめ
テストしタイマーでセツトしてもよいし、温度を
検知して切換えてもよい。又t1(分)からt2(分)
までの間に流す加熱気流の量は使用吸着剤量の25
〜50%から選択する。吸着している溶剤の種類に
よつて適宜この範囲から選べばよい。 本発明の脱着方法に使用する加熱気流は水蒸
気、加熱空気、加熱窒素等が挙げられる。又吸着
剤としては粉末活性炭、粒状活性炭、繊維状活性
炭等を使用することができる。 (実施例) 以下本発明の実施例を記載するが、本発明はか
かる実施例によつて何等制限をうけるものではな
い。 実施例 1 直径52.9mmの容器に8.26gの活性炭素繊維を充
填し、メチルエチルケトン(MEK)1200ppmを
含むN2を流して飽和吸着させた後150℃のN2
逆に流して脱着した。脱着されてくるMEKの濃
度を測定して脱着率を求めたのが第2図である。
第2図中破線Aは終始4/分という一定流量で
加熱窒素を流して脱着した場合(比較例)であ
り、実線Bは12.5分まで2/分、それ以降4
/分にした場合の脱着率を示したものである。
25分後にはほゞ同じ脱着率に達しており、それ以
降はむしろ初期に流量を少なくした場合の方が脱
着率がよくなる傾向が見られた。 実施例 2 活性炭素繊維を用いた吸着装置においてトリク
ロルエチレン1700ppm、15m2/分を処理した。水
蒸気流量を変化させない通常の脱着方法と、脱着
時間の前半を通常流量の半分にし、後半は通常流
量に戻すという本発明方法とを行つて比端した。
第1表に吸着装置出口濃度と水蒸気使用量を記載
する。
(Field of Industrial Application) The present invention relates to a method for desorbing adsorbed matter such as an organic solvent adsorbed onto an adsorbent such as powdered or granular activated carbon or fibrous activated carbon using a heated air stream. (Prior Art) Adsorption devices using powdered or granular activated carbon, fibrous activated carbon, etc. have been used in many fields for a long time, and in recent years have been particularly active in the recovery and use of organic solvents for the purpose of resource conservation. These adsorption devices are basically equipped with two or more adsorption tanks and alternately repeat adsorption and desorption, and usually use heated airflow such as water vapor, heated air, or heated nitrogen for the adsorption and desorption. be. On the other hand, since a large part of the running cost of an adsorption device is dominated by the heated airflow for desorption, the key point in the design and operation of the adsorption device is how to use as little heated airflow as possible to achieve efficient desorption. A conventional adsorption/desorption method in an adsorption device will be explained with reference to FIG. That is, air containing substances to be adsorbed and removed is sucked by the fan 6 and sent to the adsorption tanks 1, 1a, and 1b. For example, when adsorbing in the adsorption tank 1a, valves 2a and 3a are opened and valves 2b and 3b are closed. Adsorption tank 1a
While the adsorption is progressing, the adsorption tank 1b is desorbed with water vapor 8, for example. Water vapor is introduced by opening the valve 4b, heats the adsorbent, desorbs the adsorbate, and then passes through the valve 5b to the condenser 7.
It flows into the air, where it is cooled and condensed. In this case, the flow rate of water vapor is a constant flow rate determined by the resistance determined by piping, valves, and in some cases appropriate throttles.
The flow rate usually does not change during the desorption time. (Problems to be Solved by the Invention) As described above, in the conventional technology, when performing desorption, a constant amount of heated air flow is always flowed during the desorption time, but this cannot be said to be an efficient means due to the following points. That is, if we look at the desorption process in detail, it is as follows. The adsorbent is heated from the surface by a heated air stream. As the temperature of the adsorbent increases, the vapor pressure of the adsorbate trapped in the pores of the adsorbent increases. Eventually, the adsorbate gains energy to overcome the adsorption force and leaves the pore, but the flow at this time is diffusion-controlled, and the lower the partial pressure outside the pore, the faster the desorption proceeds. Looking at it this way, there are two main roles for the heated airflow used for desorption. One is to heat the adsorbent to increase the vapor pressure of the adsorbate to make it easier to leave the pores, and the other is to diffuse the adsorbate molecules that have left the pores and carry them out of the system. Therefore, if the adsorbent is not sufficiently heated, the efficiency of desorption cannot be improved no matter how much desorption fluid is flowed. For these reasons, desorption efficiency was poor when a fixed amount of heated airflow was simply flowed without considering the role of the heated airflow, as in the past. As a result of intensive study by the present inventors on a desorption method that fully takes into account the role of such heated airflow,
We have discovered that by changing the flow rate of the airflow for desorption over time rather than keeping it at a constant flow rate, more efficient desorption can be performed, thereby significantly reducing the amount of airflow used for desorption, and have arrived at the present invention. . (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides the following steps: Flowing the heated inert gas stream or heated steam at an average flow rate of 1/2 or less of the flow rate of the heated air stream from t 1 (minutes) to t 2 (minutes) until t 1 (minutes),
A desorption method in an adsorption apparatus, characterized in that the amount of heated airflow flowing between t 1 (minutes) and t 2 (minutes) is 25 to 50% of the amount of adsorbent used. Here, t 1 : Time (minutes) until the adsorbent is heated to 98° C. t 2 : Time required for desorption (minutes) Technical means are employed. In order to carry out the desorption method of the present invention, the adsorption and desorption system shown in FIG. 1 described above can be used as is.
The important point is to vary the heated air flow 8 over time. There are no particular restrictions on the mode of change as long as the above-described role of the heated airflow can be fulfilled as is, but the following method is preferred. That is, let the time required for attachment and detachment be t 2 (minutes), and t 1
Until (t 2 > t 1 ), the heated air flow is flowed at an average flow rate that is less than half of the flow rate of the heated air flow flowed from t 1 to t 2 until (t 2 > t 1 ). t1 may be tested in advance and set by a timer when the adsorbent temperature reaches 98°C, or may be switched by detecting the temperature. Also, from t 1 (minutes) to t 2 (minutes)
The amount of heated air flow during this period is 25 times the amount of adsorbent used.
Choose from ~50%. It may be selected from this range as appropriate depending on the type of solvent being adsorbed. Examples of the heated air stream used in the desorption method of the present invention include water vapor, heated air, heated nitrogen, and the like. Further, as the adsorbent, powdered activated carbon, granular activated carbon, fibrous activated carbon, etc. can be used. (Examples) Examples of the present invention will be described below, but the present invention is not limited in any way by these Examples. Example 1 A container with a diameter of 52.9 mm was filled with 8.26 g of activated carbon fibers, and N 2 containing 1200 ppm of methyl ethyl ketone (MEK) was flowed for saturation adsorption, and then N 2 at 150° C. was flowed in the opposite direction for desorption. Figure 2 shows the desorption rate determined by measuring the concentration of MEK being desorbed.
The broken line A in Figure 2 shows the case of desorption by flowing heated nitrogen at a constant flow rate of 4/min from beginning to end (comparative example), and the solid line B shows the case of desorption by flowing heated nitrogen at a constant flow rate of 4/min until 12.5 minutes and 4/min thereafter.
The figure shows the desorption rate when converted to /min.
After 25 minutes, almost the same desorption rate was reached, and after that, there was a tendency for the desorption rate to be better when the flow rate was initially lowered. Example 2 1700 ppm of trichlorethylene was processed at 15 m 2 /min in an adsorption device using activated carbon fibers. A comparison was made between a normal desorption method in which the flow rate of water vapor is not changed and the method of the present invention in which the flow rate is reduced to half of the normal flow rate during the first half of the desorption time and returned to the normal flow rate during the second half.
Table 1 shows the concentration at the outlet of the adsorption device and the amount of water vapor used.

【表】 本発明方法によれば水蒸気流量を25%節減する
ことができた。 (発明の効果) この様に脱着用加熱気流の流量を経時的に変化
させることによりきわめて効率のよい脱着をおこ
なうことが可能となつた。
[Table] According to the method of the present invention, the water vapor flow rate could be reduced by 25%. (Effects of the Invention) By changing the flow rate of the heated air flow for desorption over time in this way, it has become possible to perform desorption with extremely high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸着装置を用いた吸脱着システムのフ
ローシートであり、第2図は本発明、比較例にお
ける脱着率曲線を示す。
FIG. 1 is a flow sheet of an adsorption/desorption system using an adsorption device, and FIG. 2 shows desorption rate curves in the present invention and a comparative example.

Claims (1)

【特許請求の範囲】 1 活性炭素物質を主成分とする吸着剤に加熱不
活性ガス気流または加熱水蒸気を吹きかけて吸着
物を脱着するに際し、該加熱不活性ガス気流また
は加熱水蒸気の量を、t1(分)まではt1(分)から
t2(分)までに流す加熱気流の流量の1/2以下の平
均流量で流し、t1(分)からt2(分)までの間に流
す加熱気流の量を吸着剤使用量の25〜50%とする
ことを特徴とする吸着装置における脱着方法。 ここでt1:吸着剤が98℃に加熱されるまでの時
間(分) t2:脱着に要する時間(分)。
[Scope of Claims] 1. When desorbing adsorbed substances by spraying a heated inert gas stream or heated steam onto an adsorbent containing an activated carbon material as a main component, the amount of the heated inert gas stream or heated steam is set to t. From t 1 (minute) to 1 (minute)
Flow at an average flow rate of 1/2 or less of the flow rate of the heated air flow flowing up to t 2 (minutes), and set the amount of heated air flow flowing between t 1 (minutes) and t 2 (minutes) to 25% of the amount of adsorbent used. ~50% desorption method in an adsorption device. Here, t 1 : Time (minutes) until the adsorbent is heated to 98°C. t 2 : Time required for desorption (minutes).
JP59212220A 1984-10-09 1984-10-09 Desorbing method in adsorption apparatus Granted JPS6190720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212220A JPS6190720A (en) 1984-10-09 1984-10-09 Desorbing method in adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212220A JPS6190720A (en) 1984-10-09 1984-10-09 Desorbing method in adsorption apparatus

Publications (2)

Publication Number Publication Date
JPS6190720A JPS6190720A (en) 1986-05-08
JPH0476724B2 true JPH0476724B2 (en) 1992-12-04

Family

ID=16618930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212220A Granted JPS6190720A (en) 1984-10-09 1984-10-09 Desorbing method in adsorption apparatus

Country Status (1)

Country Link
JP (1) JPS6190720A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612799B1 (en) * 1987-03-27 1989-07-13 Ameg France PROCESS AND EQUIPMENT FOR TREATING AND RECOVERING SOLVENT VAPORS BY RECYCLING ON ACTIVE CARBON
US7682424B2 (en) * 2008-01-31 2010-03-23 Conocophillips Company Contaminant removal from a gas stream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139972A (en) * 1974-09-30 1976-04-03 Hitachi Ltd JUGAIGASU JOKYO SOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139972A (en) * 1974-09-30 1976-04-03 Hitachi Ltd JUGAIGASU JOKYO SOCHI

Also Published As

Publication number Publication date
JPS6190720A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
FI88880C (en) ANORDINATION OF THE PROCESSING OF OILS
JPS6099192A (en) Improved process and apparatus for removing hydrocarbon frommixture of air and hydrocarbon vapor
CN106178821B (en) Carbon dioxide adsorption and recovery system and method
US5658369A (en) Recovery of substances from exhaust streams
US4453952A (en) Oxygen absorbent and process for the separation of oxygen and nitrogen using the same
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
JPH09308814A (en) System and method for recovery of organic solvent
CN108114574A (en) A kind of processing method and processing device of refinery VOCs exhaust gas
JPH0476724B2 (en)
US4421672A (en) Method of cyclic desorption of adsorption media loaded with adsorbates
JPH0634897B2 (en) Adsorption and desorption method with activated carbon
JP2017000991A (en) Concentrator and organic solvent recovery system
EP0018183A1 (en) Process for the purification of natural gas
JPS62132523A (en) Method and device for adsorbing and removing gaseous halogenohydrocarbon
GB2020566A (en) Treatment of gas streams to remove condensible vapours
JPH035845B2 (en)
JPH0584417A (en) Method and equipment for recovering solvent
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JPH02157012A (en) Desorption and recovery by heating of material adsorbed in adsorbent
JP2572294B2 (en) Solvent recovery processing method
JP3364118B2 (en) Gas treatment method and apparatus using inorganic adsorbent
JP3620650B2 (en) Gas processing apparatus and processing method
JPH0410368B2 (en)
JPS602088B2 (en) Solvent recovery method from exhaust gas
JPS562821A (en) Water making apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees