JPH0476625B2 - - Google Patents

Info

Publication number
JPH0476625B2
JPH0476625B2 JP11816287A JP11816287A JPH0476625B2 JP H0476625 B2 JPH0476625 B2 JP H0476625B2 JP 11816287 A JP11816287 A JP 11816287A JP 11816287 A JP11816287 A JP 11816287A JP H0476625 B2 JPH0476625 B2 JP H0476625B2
Authority
JP
Japan
Prior art keywords
reflected light
dimensional
sample
area sensor
distribution state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11816287A
Other languages
Japanese (ja)
Other versions
JPS63284453A (en
Inventor
Tomoo Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MURAKAMI SHIKISAI GIJUTSU KENKYUSHO KK
Original Assignee
MURAKAMI SHIKISAI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MURAKAMI SHIKISAI GIJUTSU KENKYUSHO KK filed Critical MURAKAMI SHIKISAI GIJUTSU KENKYUSHO KK
Priority to JP11816287A priority Critical patent/JPS63284453A/en
Publication of JPS63284453A publication Critical patent/JPS63284453A/en
Publication of JPH0476625B2 publication Critical patent/JPH0476625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、試料からの反射光又は透過光の三次
元分布状態を計測する三次元測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-dimensional photometry device that measures the three-dimensional distribution state of reflected light or transmitted light from a sample.

[従来の技術] 従来、試料からの反射光又は透過光の三次元分
布状態を計測する装置としては、例えば第8図に
示す変角光度計が知られている。
[Prior Art] Conventionally, a variable angle photometer shown in FIG. 8, for example, is known as a device for measuring the three-dimensional distribution state of reflected light or transmitted light from a sample.

変角光度計は、試料台1に載置した試料2に光
源3から平行光線(直径2〜25mm)を投射し、入
射点Oを中心として回転する受光器4によつて試
料2からの反射光又は透過光を連続的に捕らえ、
試料2を傾けて同様に入射面と角度の異なる多数
の面の反射光又は透過光を連続的に捕らえて試料
からの反射光又は透過光の三次元分布状態を計測
するものである。
The variable angle photometer projects parallel light beams (2 to 25 mm in diameter) from a light source 3 onto a sample 2 placed on a sample stage 1, and detects the reflection from the sample 2 by a light receiver 4 rotating around an incident point O. Continuously captures light or transmitted light,
The sample 2 is tilted and reflected light or transmitted light from a number of surfaces having different angles from the incident surface is continuously captured to measure the three-dimensional distribution state of the reflected light or transmitted light from the sample.

[発明が解決しようとする問題点] しかしながら、上記従来の装置によれば、受光
器4の機械的走査及び試料2の傾斜により入射面
及びこれと角度の異なる多数の面の反射光又は透
過光を捕らえなければならず、計測に長時間を要
する問題がある。
[Problems to be Solved by the Invention] However, according to the above-mentioned conventional apparatus, due to the mechanical scanning of the light receiver 4 and the tilting of the sample 2, reflected light or transmitted light from the incident plane and a number of planes having different angles from the incident plane There is a problem in that it requires a long time to measure.

そこで、本発明は、短時間の計測を可能とする
三次元測光装置を提しようとするものである。
Therefore, the present invention aims to provide a three-dimensional photometry device that enables short-time measurement.

[問題点を解決するための手段] 前記問題点を解決するため、本発明は、試料か
らの反射光又は透過光が投射されるスクリーン
と、スクリーンを通つた反射光又は透過光の分布
状態を撮影する二次元エリアセンサと、二次元エ
リアセンサによつて撮影された像のスクリーンに
よる位置誤差及び二次元エリアセンサによる視準
誤差を、標準板からの反射光又は透過光の既知の
三次元分布状態と二次元エリアセンサによつて撮
影される分布状態との差異に基づいて補正し、試
料からの反射光又は透過光の三次元分布状態を演
算する演算器と、演算器の演算結果を記録する記
録器とを備えたものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a screen on which reflected light or transmitted light from a sample is projected, and a distribution state of the reflected light or transmitted light passing through the screen. The two-dimensional area sensor to be photographed, the position error due to the screen of the image photographed by the two-dimensional area sensor, and the collimation error due to the two-dimensional area sensor are determined by the known three-dimensional distribution of reflected light or transmitted light from the standard plate. A computing unit that calculates the three-dimensional distribution state of reflected light or transmitted light from the sample by correcting it based on the difference between the state and the distribution state photographed by the two-dimensional area sensor, and records the calculation results of the computing unit. It is equipped with a recorder for recording.

[作用] 上記手段によれば、試料からの反射光又は透過
光の三次元分布状態の計測が、二次元エリアセン
サによる電気的走査で行われる。
[Operation] According to the above means, the three-dimensional distribution state of reflected light or transmitted light from the sample is measured by electrical scanning using the two-dimensional area sensor.

[実施例] 以下、本発明の一実施例を第1図〜第7図と共
に説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 7.

第1図は試料からの反射光の三次元分布状態を
計測する三次元測光装置の概略構成図である。
FIG. 1 is a schematic diagram of a three-dimensional photometry device that measures the three-dimensional distribution of reflected light from a sample.

図中10はケーシング11内の試料台12に載
置された試料で、試料10には、光源13から光
束可変(直径2〜25mm)の平行光線が投射され
る。試料台12は、試料10に対する平行光線の
投射方向を変えるため垂直軸を中心として回転可
能に設けられ、又、光源13は、試料10に対す
る平行光線の入射角を変えるため入射点Oを中心
として回転可能に設けられている。
In the figure, reference numeral 10 denotes a sample placed on a sample stage 12 inside a casing 11, and a parallel beam of variable luminous flux (diameter 2 to 25 mm) is projected onto the sample 10 from a light source 13. The sample stage 12 is rotatable about a vertical axis in order to change the direction of parallel light rays projected onto the sample 10, and the light source 13 is rotatable around the incident point O in order to change the incident angle of the parallel light rays onto the sample 10. It is rotatably provided.

14は試料10からの反射光が投射されるスク
リーンで、スクリーン14の背後には、このスク
リーン14を通つた反射光の分布状態を撮影する
二次元エリアセンサ15が配置されている。そし
て、二次元エリアセンサ15の信号は演算器(図
示せず)に入力され、演算器において、二次元エ
リアセンサ15によつて撮影された像のスクリー
ン14による位置誤差及び二次元エリアセンサ1
5による視準誤差が補正されて試料10からの反
射光の三次元分布状態が演算され、演算結果が記
録器(図示せず)によつて記録される。
Reference numeral 14 denotes a screen onto which the reflected light from the sample 10 is projected, and a two-dimensional area sensor 15 is arranged behind the screen 14 to photograph the distribution state of the reflected light passing through the screen 14. Then, the signal from the two-dimensional area sensor 15 is input to a computing unit (not shown), and the computing unit calculates the position error due to the screen 14 of the image photographed by the two-dimensional area sensor 15 and the two-dimensional area sensor 1
5 is corrected, the three-dimensional distribution state of the reflected light from the sample 10 is calculated, and the calculation result is recorded by a recorder (not shown).

ここで、スクリーン14による位置誤差及び二
次元エリアセンサ15による視準誤差の補正は次
のように行われる。
Here, the position error caused by the screen 14 and the collimation error caused by the two-dimensional area sensor 15 are corrected as follows.

すなわち、第2図に示すように、光源Lから発
せられ、試料Sによつて反射された反射光を、入
射点Oを中心とする球面A上で計測するならば、
何等の誤差を生じないのであるが、実際は平面B
上に投射するため、第3図に示すように、球面A
上の位置と平面B上の位置とのずれ、つまりスク
リーン14による位置誤差が発生する。
That is, as shown in FIG. 2, if the reflected light emitted from the light source L and reflected by the sample S is measured on the spherical surface A centered on the incident point O, then
Although it does not cause any error, in reality plane B
In order to project upward, the spherical surface A is used as shown in Figure 3.
A deviation between the upper position and the position on the plane B, that is, a positional error due to the screen 14 occurs.

又、第2図に示すスクリーンBを通つた反射光
は、光の入射角によつて入射方向を主軸として拡
散するため、二次元エリアセンサCから視準した
分布状態と球面A上から視準した分布状態とのず
れ、つまり二次元エリアセンサ15による視準誤
差が発生する。この視準誤差の中には、スクリー
ン14の材質の相違によるものも含まれる。すな
わち、スクリーン14を通過する光の拡散分布状
態は、完全散乱光束の場合、第4図aに示すよう
に、透過光束が反射光束より小さいのが普通であ
るが、実際には第4図bに示すように、透過光束
が反射光束に比して比較的大きい場合が多いから
である。
In addition, since the reflected light passing through the screen B shown in FIG. A deviation from the distribution state, that is, a collimation error caused by the two-dimensional area sensor 15 occurs. This collimation error includes one due to a difference in the material of the screen 14. That is, when the light passing through the screen 14 is completely scattered, the transmitted light flux is normally smaller than the reflected light flux, as shown in Figure 4a, but in reality, it is as shown in Figure 4b. This is because the transmitted light flux is often relatively larger than the reflected light flux, as shown in FIG.

上記二次元エリアセンサ15によつて撮影され
た像のスクリーン14による位置誤差及び二次元
エリアセンサ15による視準誤差は、例えば圧縮
したMgO粉末板、BaSO4板等の標準板からの反
射光の既知の三次元分布状態と、試料10と同様
に二次元エリアセンサ15によつて撮影される分
布状態との差異に基づいて補正される。
The position error due to the screen 14 of the image photographed by the two-dimensional area sensor 15 and the collimation error due to the two-dimensional area sensor 15 are caused by the reflected light from a standard plate such as a compressed MgO powder plate or a BaSO 4 plate. Correction is made based on the difference between the known three-dimensional distribution state and the distribution state photographed by the two-dimensional area sensor 15 similarly to the sample 10.

反射光の標準板として用いられる圧縮した
MgO粉末の粗面からの反射光は、第5図に示す
ように、理想的な拡散反射分布状態を示し、微小
粗面daからの反射光束dlrと観測方向の粗面に垂
直な方向からの傾きθ、観測の立体角dwとの間
に、dlr/da=B・cosb・dw(Bは粗面の明るさ
を示す比例係数)なる比例関係(これを
Lambert)の余弦則という。)が成り立つ。
A compressed material used as a standard plate for reflected light.
As shown in Figure 5, the reflected light from the rough surface of the MgO powder exhibits an ideal diffuse reflection distribution state, with the reflected light flux dlr from the micro-rough surface da and the direction perpendicular to the rough surface in the observation direction. There is a proportional relationship between the inclination θ and the solid angle of observation dw: dlr/da = B・cosb・dw (B is the proportionality coefficient indicating the brightness of the rough surface) (this can be expressed as
Lambert's cosine law. ) holds true.

又、反射光の光度分布の標準板として用いられ
る圧縮したMgO粉末面は、第6図に示すような
反射光度分布状態を示す。
Further, the compressed MgO powder surface used as a standard plate for the luminous intensity distribution of reflected light exhibits a reflected luminous intensity distribution state as shown in FIG.

更に、反射光の輝度分布の標準板として用いら
れる圧縮したMgO粉末は、第7図に示すような
輝度分布状態を示す。
Furthermore, compressed MgO powder used as a standard plate for the luminance distribution of reflected light exhibits a luminance distribution state as shown in FIG.

したがつて、反射光の光度分布、輝度分布ある
いは相対反射率(正反射の所を100%とする)分
布等が既知の標準板を用いることにより、試料か
らの反射光の三次元の光度分布状態や輝度分布状
態等をリアルタイムで計測することができる。
Therefore, by using a standard plate with known luminous intensity distribution, brightness distribution, or relative reflectance (specular reflection is set to 100%) distribution of reflected light, it is possible to determine the three-dimensional luminous intensity distribution of reflected light from a sample. The state and brightness distribution state can be measured in real time.

なお、上記実施例においては、試料からの反射
光の三次元分布状態を計測する場合について述べ
たが、これに限定されるものではなく、試料の背
後にスクリーン及び二次元エリアセンサを配置し
て透過光の三次元分布状態を同様に計測すること
が可能である。
In addition, in the above embodiment, a case was described in which the three-dimensional distribution state of the reflected light from the sample was measured, but the present invention is not limited to this, and a screen and a two-dimensional area sensor may be placed behind the sample. It is also possible to measure the three-dimensional distribution of transmitted light.

[発明の効果] 以上のように本発明によれば、試料からの反射
光又は透過光の三次元分布状態の計測が、二次元
エリアセンサによる電気的走査で行われるので、
従来の装置に比して計測時間を大幅に短縮するこ
とができる。
[Effects of the Invention] As described above, according to the present invention, the three-dimensional distribution state of reflected light or transmitted light from a sample is measured by electrical scanning using a two-dimensional area sensor.
Measurement time can be significantly reduced compared to conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の一実施例を示すもの
で、第1図は反射光用三次元測光装置の概略構成
図、第2図はスクリーンによる位置誤差及び二次
元エリアセンサによる視準誤差の説明図、第3図
は位置誤差の説明図、第4図a,bはそれぞれス
クリーンを通過する光の完全散乱の場合、実際の
場合の説明図、第5図、第6図及び第7図はそれ
ぞれ圧縮したMgO粉末の拡散反射分布図、反射
光度分布図及び輝度分布図、第8図は従来の装置
の概略構成図である。 10……試料、12……試料台、13……光
源、14……スクリーン、15……二次元エリア
センサ。
Figures 1 to 7 show one embodiment of the present invention. Figure 1 is a schematic diagram of a three-dimensional photometer for reflected light, and Figure 2 shows the positional error due to the screen and the observation by the two-dimensional area sensor. Fig. 3 is an explanatory diagram of the quasi-error, Fig. 3 is an explanatory diagram of the position error, Figs. FIG. 7 is a diffuse reflection distribution diagram, a reflection luminous intensity distribution diagram, and a brightness distribution diagram of compressed MgO powder, respectively, and FIG. 8 is a schematic configuration diagram of a conventional apparatus. 10...Sample, 12...Sample stand, 13...Light source, 14...Screen, 15...Two-dimensional area sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 試料からの反射光又は透過光が投射されるス
クリーンと、スクリーンを通つた反射光又は透過
光の分布状態を撮影する二次元エリアセンサと、
二次元エリアセンサによつて撮影された像のスク
リーンによる位置誤差及び二次元エリアセンサに
よる視準誤差を、標準板からの反射光又は透過光
の既知の三次元分布状態と二次元エリアセンサに
よつて撮影される分布状態との差異に基づいて補
正し、試料からの反射光又は透過光の三次元分布
状態を演算する演算器と、演算器の演算結果を記
録する記録器とを備えたことを特徴とする三次元
測光装置。
1. A screen on which the reflected light or transmitted light from the sample is projected, and a two-dimensional area sensor that photographs the distribution state of the reflected light or transmitted light passing through the screen.
The position error due to the screen of the image taken by the two-dimensional area sensor and the collimation error due to the two-dimensional area sensor are calculated using the known three-dimensional distribution state of the reflected light or transmitted light from the standard plate and the two-dimensional area sensor. The apparatus is equipped with an arithmetic unit that corrects the three-dimensional distribution state of reflected light or transmitted light from the sample based on the difference from the distribution state photographed by the sample, and a recorder that records the calculation results of the arithmetic unit. A three-dimensional photometric device featuring:
JP11816287A 1987-05-15 1987-05-15 Three-dimensional light measuring instrument Granted JPS63284453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11816287A JPS63284453A (en) 1987-05-15 1987-05-15 Three-dimensional light measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816287A JPS63284453A (en) 1987-05-15 1987-05-15 Three-dimensional light measuring instrument

Publications (2)

Publication Number Publication Date
JPS63284453A JPS63284453A (en) 1988-11-21
JPH0476625B2 true JPH0476625B2 (en) 1992-12-04

Family

ID=14729638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816287A Granted JPS63284453A (en) 1987-05-15 1987-05-15 Three-dimensional light measuring instrument

Country Status (1)

Country Link
JP (1) JPS63284453A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532537B2 (en) * 2008-01-10 2014-06-25 株式会社島津製作所 Scattering characteristic evaluation equipment

Also Published As

Publication number Publication date
JPS63284453A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
JP3855756B2 (en) 3D color shape detection device and 3D scanner
JP2963890B2 (en) Wafer optical shape measuring instrument
TW201229453A (en) Shape measuring apparatus and shape measuring method
JPH08500460A (en) Method and apparatus for determining the three-dimensional position of a movable object such as a sensor or tool carried by a robot
US7941913B2 (en) Component placement unit as well as a component placement device comprising such a component placement unit
KR20220128453A (en) Structured light projection for specular surfaces
JPH0798216A (en) Method and device for inspecting appearance of semiconductor device
US5057681A (en) Long range triangulating coordinate finder
US10955236B2 (en) Three-dimensional measuring system
JPH05306915A (en) Method and instrument for measuring shape
JPH0476625B2 (en)
JPS60142204A (en) Dimension measuring method of object
JPS60211303A (en) Correcting device for optical axis direction of visual device
JPH03255910A (en) Three-dimensional position measurement system
JP2996063B2 (en) Automatic inspection system for painted surface clarity
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
JPH0735515A (en) Device for measuring diameter of object
JPH0411422Y2 (en)
JPS63196806A (en) Inclination measuring device
JPS6217606A (en) Underwater measuring device
JP3042693B2 (en) Method and apparatus for measuring perspective distortion and method and apparatus for measuring surface three-dimensional shape
JPH06103166B2 (en) Actual size measurement method in visual device
JP2921508B2 (en) 3D coordinate measuring device
JP2003294429A (en) Measuring instrument for polishing angle of optical connector and measuring method using the same
JPH0313851A (en) Sensitivity correcting method for image sensor element