JPH0476527B2 - - Google Patents

Info

Publication number
JPH0476527B2
JPH0476527B2 JP60119055A JP11905585A JPH0476527B2 JP H0476527 B2 JPH0476527 B2 JP H0476527B2 JP 60119055 A JP60119055 A JP 60119055A JP 11905585 A JP11905585 A JP 11905585A JP H0476527 B2 JPH0476527 B2 JP H0476527B2
Authority
JP
Japan
Prior art keywords
overtone
vibration
vibration energy
frequency
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60119055A
Other languages
Japanese (ja)
Other versions
JPS61277214A (en
Inventor
Koichi Hirama
Juichi Shoji
Yoshiaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP60119055A priority Critical patent/JPS61277214A/en
Priority to KR1019860700886A priority patent/KR920005610B1/en
Priority to EP86902487A priority patent/EP0220320B1/en
Priority to DE3650562T priority patent/DE3650562T2/en
Priority to EP95108355A priority patent/EP0680142A1/en
Priority to PCT/JP1986/000181 priority patent/WO1986006228A1/en
Publication of JPS61277214A publication Critical patent/JPS61277214A/en
Priority to US07/191,628 priority patent/US4870313A/en
Publication of JPH0476527B2 publication Critical patent/JPH0476527B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧電共振子、殊に格別の発振回路を必
要とせずして所望のオーバートーン周波数にて発
振を可能とするオーバートーン発振用圧電共振子
の電極構造に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a piezoelectric resonator, particularly a piezoelectric resonator for overtone oscillation that enables oscillation at a desired overtone frequency without the need for a special oscillation circuit. Regarding the electrode structure of a resonator.

(従来の技術) 近年、通信機をはじめとする各種電子機器に於
いては高周波化と超小型化の要求が一素厳しくな
つているがこれに応える為には従来から一般に行
なわれている水晶振動子の如き圧電共振子のオー
バートーン振動の利用の他弾性表面波(SAW)
共振子が広範囲に使用されるようになつてきた。
(Prior art) In recent years, demands for higher frequencies and ultra-miniaturization have become increasingly strict in various electronic devices such as communication devices. In addition to the use of overtone vibrations of piezoelectric resonators such as vibrators, surface acoustic waves (SAW)
Resonators have become widely used.

しかしながら前者は一般に希望するオーバート
ーン周波数に同調するLC同調回路を介して所望
の出力を抽出するか或は発振回路の一部にLC同
調回路を挿入して該回路の負抵抗が所望のオーバ
ートーン周波数領域に於いてのみ充分大きくなる
よう設計するものであつていずれもコイル要し発
振回路のIC化を進める上で極めて不都合である
という欠陥があつた。
However, the former method generally involves extracting the desired output through an LC tuning circuit that tunes to the desired overtone frequency, or inserting an LC tuning circuit into a part of the oscillation circuit so that the negative resistance of the circuit can match the desired overtone frequency. They were designed to be sufficiently large only in the frequency domain, and both required coils, which was extremely inconvenient for the development of integrated circuits for oscillation circuits.

一方、SAW共振子の発振周波数は周知の如く
圧電基体の材質とその表面に形成するインタデイ
ジタル・トランスジユーサ(IDT)電極のピツチ
によつて一義的に決定するので共振子自体の小型
化が可能であると共に上述した如き回路上の問題
もないが周波数−温度特性の点でATカツト水晶
振動子よりはるかに劣るという欠陥があつた。
On the other hand, as is well known, the oscillation frequency of a SAW resonator is uniquely determined by the material of the piezoelectric substrate and the pitch of the interdigital transducer (IDT) electrodes formed on its surface, so it is important to miniaturize the resonator itself. Although it is possible and does not have the above-mentioned circuit problems, it has the drawback of being far inferior to AT-cut crystal resonators in terms of frequency-temperature characteristics.

上述の如き従来の圧電共振子の欠陥を除去する
為本願発明者は既に出願した特許願(特願昭60−
77065)に於いて圧電基体中央部の電極で所望の
オーバートーン次数以上の振動エネルギを閉じ込
める一方、基本波振動を含むより低次のオーバー
トーン振動の振動エネルギを漏洩せしめ、当該漏
洩した振動エネルギを圧電基板外周適所にて音響
的損失を介して熱に変換し消費せしめることによ
つて格別の発振回路を用いることなく前記所望の
オーバートーン振動にて発振せしめるオーバート
ーン発振用圧電共振子を提案している。
In order to eliminate the defects of conventional piezoelectric resonators as mentioned above, the inventor of this application has filed a patent application (Japanese Patent Application No.
77065), the electrode at the center of the piezoelectric substrate confines the vibration energy of a desired overtone order or higher, while allowing the vibration energy of lower overtone vibrations, including the fundamental wave vibration, to leak. We propose a piezoelectric resonator for overtone oscillation, which oscillates at the desired overtone vibration without using a special oscillation circuit by converting it into heat through acoustic loss and consuming it at a suitable location on the outer circumference of a piezoelectric substrate. ing.

しかしながら、上述した共振子を使用する場
合、あらゆる発振回路に適応させる為には発振回
路側の負荷抵抗の絶対値が低周波側程大であるこ
とを考慮すると前記低次オーバートーン振動の振
動エネルギを充分に吸収させる必要があるから共
振子圧電基体外周部に単に振動エネルギ吸収部を
設けるのみでは満足すべき結果が得られない場合
があるという問題があつた。
However, when using the above-mentioned resonator, in order to adapt it to any oscillation circuit, considering that the absolute value of the load resistance on the oscillation circuit side is larger on the lower frequency side, the vibration energy of the low-order overtone vibration is Since it is necessary to sufficiently absorb vibration energy, there has been a problem in that simply providing a vibration energy absorbing section on the outer periphery of the resonator piezoelectric substrate may not provide satisfactory results.

(発明と目的) 本発明はオーバートーン発振用圧電共振子に於
ける上述した如き問題点を解決し本質的に発振回
路の特性に対する依存性のないオーバートーン発
振用圧電共振子を提供することを目的とする。
(Invention and Object) The present invention aims to solve the above-mentioned problems in the piezoelectric resonator for overtone oscillation and to provide a piezoelectric resonator for overtone oscillation that is essentially independent of the characteristics of the oscillation circuit. purpose.

(発明の概要) 上述の目的を達成する為本発明に係る共振子に
於いては基本的に前記圧電基体外周近傍に設ける
エネルギ吸収部両面電極間に適当な値の抵抗、殊
に(2πfnCo)-1〔但しCoは該部の電極間容量、fn
は吸収すべきオーバートーン周波数に相当する抵
抗を接続するものである。
(Summary of the Invention) In order to achieve the above-mentioned object, the resonator according to the present invention basically requires a resistance of an appropriate value, especially (2πfnCo), between the double-sided electrodes of the energy absorbing portion provided near the outer periphery of the piezoelectric substrate. -1 [However, Co is the interelectrode capacitance of the part, fn
connects a resistor corresponding to the overtone frequency to be absorbed.

(発明の実施例) 以下、本発明を図面に示した実施例に基づいて
詳細に説明する。
(Embodiments of the Invention) Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

本発明の理解を容易にする為実施例を説明する
に先立つて本発明を適用すべきオーバートーン発
振用共振子につき第2図を用いて簡単に説明す
る。
In order to facilitate understanding of the present invention, before describing embodiments, a resonator for overtone oscillation to which the present invention is applied will be briefly explained using FIG. 2.

第2図aに於いて厚さHの圧電基板1中央部両
面に直径2aなる電極2,2′を付着し該部の遮
断周波数をf1低下せしめその周辺の遮断周波数f2
なる部分との間にf2−f1なる遮断周波数差を設け
該電極2,2′付着部を振動エネルギ閉じ込め部、
非電極部3,3′を不要振動の振動エネルギ伝搬
部としその外周適所に遮断周波数f3(但しf1≒f3
f2)なる振動エネルギ吸収部4,4′を設ける。
In FIG. 2a, electrodes 2 and 2' having a diameter of 2a are attached to both sides of the central part of the piezoelectric substrate 1 having a thickness of H, and the cutoff frequency of this part is lowered by f1, and the cutoff frequency of the surrounding area is reduced by f2.
A cut-off frequency difference of f 2 - f 1 is provided between the electrodes 2 and 2' attachment part as a vibration energy trapping part,
The non-electrode parts 3 and 3' are used as vibration energy propagation parts of unnecessary vibrations, and the cutoff frequency f 3 (however, f 1 ≒ f 3 <
f 2 ) vibration energy absorbing portions 4, 4' are provided.

ここでこの共振子を例えば5次オーバートーン
発振用振動子とする場合を考えるに、基本波(1
次)及び3次オーバートーン振動の振動エネルギ
閉じ込め率を小に、7次オーバートーンのそれを
大となる如くすれば振動エネルギの閉じ込められ
た5次以上のオーバートーン振動についての等価
抵抗はオーバートーン次数が高い程大きく、共振
子のQは小さい。一方、基本波及び3次オーバー
トーン振動のエネルギは圧電基板1の外周に向つ
て漏洩し前記エネルギ吸収部4を介して変換され
るのでこれらの振動についてのインピーダンスは
極めて高くなり結局5次オーバートーン発振用共
振子を得るものである。
Now, if we consider the case where this resonator is used as a resonator for fifth-order overtone oscillation, for example, the fundamental wave (1
If the vibration energy confinement rate of the 3rd overtone vibration is made small and that of the 7th overtone is made large, the equivalent resistance for the 5th or higher overtone vibration in which the vibration energy is trapped is the overtone. The higher the order, the larger the resonator, and the smaller the Q of the resonator. On the other hand, the energy of the fundamental wave and third-order overtone vibration leaks toward the outer periphery of the piezoelectric substrate 1 and is converted via the energy absorbing section 4, so the impedance of these vibrations becomes extremely high and eventually becomes the fifth-order overtone. This is to obtain a resonator for oscillation.

而して上述の如き特性を得る為には同図bに示
す如く先ず5次オーバートーン振動の振動エネル
ギ閉じ込め率T5を例えば80%程度に設定する。
本図よりT5=80%に於ける閉じ込め係数na√
△/Hは概に0.53であるが、前記閉じ込め係数na
√△/H=na√(212/Hの内n、H、f2
びaは与件であるからf1をどの程度の値に選べば
よいかは簡単に算出し得る。f1が定まれば遮断周
波数差f2−f1は所謂プレートバツクに直接関係す
る量であつてこれを満足する電極付着量は既に周
知であるから前記第2図aに示す如き共振子は容
易に製造することができる。
In order to obtain the above characteristics, first, the vibration energy confinement rate T5 of the fifth-order overtone vibration is set to, for example, about 80%, as shown in FIG.
From this figure, the confinement coefficient na√ at T 5 = 80%
△/H is approximately 0.53, but the confinement coefficient na
√Δ/H=na√( 21 ) 2 Since n, H, f 2 and a in /H are given conditions, it is easy to calculate what value f 1 should be selected. Once f 1 is determined, the cutoff frequency difference f 2 −f 1 is a quantity directly related to the so-called plate back, and since the amount of electrode attachment that satisfies this is already well known, the resonator as shown in FIG. It can be easily manufactured.

尚、リチウムナイオベート、リチウムタンタレ
ート或は圧電セラミクスの如き高結合材料を圧電
基体として用いる場合にはわずかな電極付着量に
よつて極めて大なる周波数低下が発生するので前
記周波数低下量△を与件とし前記電極サイズaを
操作する方が好都合であろう。
Note that when a highly bonded material such as lithium niobate, lithium tantalate, or piezoelectric ceramics is used as a piezoelectric substrate, an extremely large frequency drop occurs due to a small amount of electrode adhesion. It would be more convenient to manipulate the electrode size a as a matter of fact.

又、前記振動エネルギ吸収部4,4′の遮断周
波数f3は一般にはf1と同一でよいが必要に応じて
増減し該部を介して振動エネルギの消費が極力大
きくなるようにすることが望ましい。
Further, the cutoff frequency f 3 of the vibration energy absorbing portions 4, 4' may generally be the same as f 1 , but it may be increased or decreased as necessary so that the consumption of vibration energy through the portion is as large as possible. desirable.

同図cは上述した如き構成を有する共振子に於
ける各種波動の振動エネルギの分布を定性的に示
したものである。
Figure c qualitatively shows the distribution of vibration energy of various waves in a resonator having the above-described configuration.

ところで前記振動エネルギ吸収部4を介して所
望のオーバートーン振動より低次のオーバートー
ン振動エネルギの熱への変換による消費が不足で
あつて当該周波数についてのインピーダンスが充
分上昇しない場合には第3図に示す如く発振回路
の負性抵抗特性との関係で所望のオーバートーン
発振が不可能となることがありうる。
By the way, if the consumption of overtone vibration energy lower than the desired overtone vibration by conversion into heat through the vibration energy absorbing section 4 is insufficient and the impedance at the frequency does not rise sufficiently, then as shown in FIG. As shown in FIG. 2, desired overtone oscillation may become impossible due to the negative resistance characteristic of the oscillation circuit.

このような問題を解決する為本発明に係るオー
バートーン発振用共振子は以下の如き構成をと
る。
In order to solve such problems, the overtone oscillation resonator according to the present invention has the following configuration.

即ち、第1図に示す如く前記振動エネルギ吸収
部に付着した両面電極4,4′の間に所要の抵抗
Rを接続するものである。
That is, as shown in FIG. 1, a required resistance R is connected between the double-sided electrodes 4 and 4' attached to the vibration energy absorbing section.

斯くすることによつて前記振動エネルギ吸収部
に伝搬した所望のオーバートーン次数より低次の
振動エネルギは該部に於ける圧電基板1を励振
し、その結果該部の電極4,4′に発生した電荷
は抵抗Rによつて電気的に熱エネルギに変換消費
されることになるから基本波振動を含むこれら低
次のオーバートーン振動についてのインピーダン
スを充分に上昇せしめることになる。
By doing so, the vibration energy of an order lower than the desired overtone order propagated to the vibration energy absorbing section excites the piezoelectric substrate 1 in that section, and as a result, it is generated in the electrodes 4 and 4' of that section. The generated charges are electrically converted into thermal energy and consumed by the resistor R, thereby sufficiently increasing the impedance for these low-order overtone vibrations including fundamental wave vibrations.

尚、前記抵抗Rの値は前記電極4,4′間容量
をCo、前記振動エネルギを熱に変換して消費せ
しめるべきオーバートーン振動の周波数をfnとし
た場合(2πfnCo)-1とほヾ等しくなるよう設定す
ればよく、これは交流回路に於いてインピーダン
スが整合した状態に相当するので不要な振動エネ
ルギを吸収する上で最も効率的であることが理解
されよう。
The value of the resistance R is approximately equal to (2πfnCo) -1 , where Co is the capacitance between the electrodes 4 and 4', and fn is the frequency of overtone vibration that should convert the vibrational energy into heat and consume it. It will be understood that this is the most efficient way to absorb unnecessary vibration energy since it corresponds to a state in which the impedances are matched in an AC circuit.

更に、例えば5次オーバートーン発振用共振子
の如く基本波(1次)及び3次オーバートーン振
動の複数の振動エネルギを消費せしめる必要があ
る場合には前記基本波周波数fn1と3次オーバー
トーン周波数fn3との中間的な周波数fmを用い前
記抵抗の値をR=(2πfmCo)-1に設定するか或は
第4図に示す如く前記振動エネルギ吸収部電極
4,4を分割し夫々抵抗値R1=(2πfn1Co)-1、R2
=(2πfn3Co)-1なる抵抗を接続してもよい。
Furthermore, when it is necessary to consume a plurality of vibration energies of the fundamental wave (first order) and third-order overtone vibration, such as a resonator for fifth-order overtone oscillation, the fundamental wave frequency fn 1 and the third-order overtone are used. Either use a frequency fm intermediate between the frequency fn 3 and set the value of the resistance to R=(2πfmCo) -1 , or divide the vibration energy absorption part electrodes 4 and 4 and set a resistance for each as shown in FIG. Value R 1 = (2πfn 1 Co) -1 , R 2
= (2πfn 3 Co) -1 may be connected.

さて、本発明に係るオーバートーン発振用共振
子の原理は上述した通りであるが、現実の共振子
は第5図に示す如く構成するのが生産性及び使用
上の面から好都合である。
Now, although the principle of the overtone oscillation resonator according to the present invention is as described above, it is convenient from the viewpoint of productivity and use to configure the actual resonator as shown in FIG.

第5図aは本発明に係るオーバートーン発振用
圧電共振動子の電極構造の一実施例を示す平面図
であつて、水晶基板1の中央部両面に振動エネル
ギ閉じ込め用電極2,2′を設けると共に該電極
2,2′をリード・パターン5,5′を介して前記
基板1外周適所に設ける振動エネルギ吸収部電極
4,4′に接続する。
FIG. 5a is a plan view showing an embodiment of the electrode structure of the piezoelectric resonator for overtone oscillation according to the present invention, in which vibration energy confinement electrodes 2 and 2' are provided on both sides of the central part of the crystal substrate 1. At the same time, the electrodes 2, 2' are connected to vibration energy absorbing portion electrodes 4, 4' provided at appropriate locations on the outer circumference of the substrate 1 via lead patterns 5, 5'.

而して前記電極4,4′に於いてはこれを図示
を省略した当該共振子を支持するベースから立設
した共振子保持部材6,6と導電性接着剤7,7
にて固定することにより電気的導通と機械的固定
を行うものである。
In the electrodes 4, 4', resonator holding members 6, 6 and conductive adhesives 7, 7, which are not shown, are installed upright from a base that supports the resonator.
Electrical conduction and mechanical fixation are achieved by fixing with.

この際、前記導電性接着剤7,7によつて前記
電極の表裏4及び4′が短絡しないよう注意する
必要がある。
At this time, care must be taken not to short-circuit the front and back surfaces 4 and 4' of the electrodes due to the conductive adhesives 7, 7.

この際前記電極4,4′の一部であつて前記基
板1の端面に所要の抵抗値を有する接着剤8,8
を塗着することによつて不要振動のエネルギ吸収
を増大せしめるようにする。
At this time, adhesives 8, 8, which are part of the electrodes 4, 4' and have a required resistance value, are attached to the end surface of the substrate 1.
By applying , the energy absorption of unnecessary vibrations is increased.

前記接着剤8としては例えばエポキシ樹脂中に
分散する炭素粒子の量をコントロールしたものを
用いればよい。
The adhesive 8 may be, for example, an epoxy resin in which the amount of carbon particles dispersed is controlled.

尚、第5図bは同図aのA−A断面を示すもの
である。
Incidentally, FIG. 5b shows a cross section taken along line AA in FIG. 5a.

更に、前述した如く振動エネルギを吸収すべき
波動が複数の場合には第6図に示す如く基板1外
周の振動エネルギ吸収部電極4,4を分割し、分
割電極9,9及び10,10を夫々基板1端部に
於いて前述の抵抗接着剤8,8,……によつて表
裏接続すればよい。この際夫々の接着剤の抵抗値
は振動エネルギを吸収すべき波動の周波数に相応
したものとすべきことはいうまでもない。
Furthermore, as described above, when there are multiple waves to absorb vibration energy, the vibration energy absorbing portion electrodes 4, 4 on the outer periphery of the substrate 1 are divided as shown in FIG. The front and back sides may be connected using the aforementioned resistance adhesives 8, 8, . . . at the respective ends of the substrate 1. In this case, it goes without saying that the resistance value of each adhesive should correspond to the frequency of the waves to absorb vibrational energy.

又、本発明は前記主振動閉じ込め部電極2を分
割した2ポート共振子に適用してもよく斯くする
ことによつて所望のオーバートーン周波数の発振
を一層容易にすることも可能である。
Furthermore, the present invention may be applied to a two-port resonator in which the main vibration confinement electrode 2 is divided, thereby making it easier to oscillate at a desired overtone frequency.

以上、本発明をオーバートーン発振用の振動子
としてのみ説明したが本発明はこれに限定される
ものではなくモノリジツク圧電フイルタ用素子と
して利用可能である。
Although the present invention has been described above only as a vibrator for overtone oscillation, the present invention is not limited thereto and can be used as an element for a monolithic piezoelectric filter.

即ち、周知の如く単一圧電基板上に所定の間隙
を介した分割電極を設けることによつて同一周波
数の振動を音響的に結合せしめその結果生ずる共
振と反共振とを利用して通過帯域を得るフイルタ
が広く用いられているが、前記主振動閉じ込め領
域に付着する電極を所望の間隙を有する分割電極
とすれば前記間隙に対応した通過帯域を呈するフ
イルタとなることは自明であろう。
That is, as is well known, by providing split electrodes on a single piezoelectric substrate with a predetermined gap between them, vibrations of the same frequency are acoustically coupled, and the resulting resonance and anti-resonance are used to widen the passband. This filter is widely used, and it is obvious that if the electrode attached to the main vibration confinement region is a divided electrode having a desired gap, the filter will have a pass band corresponding to the gap.

尚、実施例として電極を圧電基板に付着せしめ
た最も一般的な共振子についてのみ説明したが本
発明はこれに限定されるものではなく共振子のQ
を向上する為圧電基板表面にエア・ギヤツプを介
して電極を配置した形式の共振子にも適用しうる
ことは云うまでもない。
Although only the most common resonator in which electrodes are attached to a piezoelectric substrate has been described as an example, the present invention is not limited to this, and the Q of the resonator is
Needless to say, the present invention can also be applied to a type of resonator in which electrodes are arranged on the surface of a piezoelectric substrate through an air gap in order to improve the quality.

(発明の効果) 本発明は以上説明した如く構成するものである
から本願発明者が既に提案したオーバートーン発
振用圧電共振子に極めてわずかな工程を付加する
のみで発振を所望するオーバートーン次数の周波
数についてのインピーダンスと上記次数以下のオ
ーバートーン周波数についてのそれとの差を充分
に確保することが可能となるので当該共振子の発
振回路の特性に対する依存性を一層減少せしめる
上で著しい効果を発揮する。
(Effects of the Invention) Since the present invention is constructed as described above, it is possible to obtain the desired overtone order by adding extremely few steps to the piezoelectric resonator for overtone oscillation that the inventor has already proposed. Since it is possible to secure a sufficient difference between the impedance for the frequency and that for the overtone frequency below the above-mentioned order, it has a remarkable effect in further reducing the dependence of the resonator on the characteristics of the oscillation circuit. demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るオーバートーン発振用圧
電共振子の電極構造の基本原理を示す断面図、第
2図a乃至cは夫々本発明を適用すべきオーバー
トーン発振用圧電共振子の構造を示す断面図、発
振を所望するオーバートーン次数とその他のオー
バートーン次数との振動エネルギ閉込め率との関
係を示す図及び5次オーバートーン発振用共振子
の各次オーバートーン振動の振動エネルギ分布を
示す断面図、第3図は各次オーバートーン周波数
についての共振子インピーダンスと発振回路の特
性との関係を示す図、第4図は本発明に於いて振
動エネルギを吸収すべきオーバートーン振動が複
数ある場合についての基本原理を示す平面図、第
5図a及びbは夫々本発明の一実施例を示す平面
図及びA−A断面図、第6図は本発明の他の実施
例を示す平面図である。 1……圧電基板、2……振動エネルギ閉込め部
(電極)、3……振動エネルギ伝搬部、4……振動
エネルギ吸収部(電極)、R,R1及びR2……抵
抗。
FIG. 1 is a sectional view showing the basic principle of the electrode structure of a piezoelectric resonator for overtone oscillation according to the present invention, and FIGS. A cross-sectional view showing the relationship between the vibration energy confinement rate of the overtone order for which oscillation is desired and other overtone orders, and a diagram showing the vibration energy distribution of each overtone vibration of the resonator for 5th overtone oscillation. 3 is a diagram showing the relationship between the resonator impedance and the characteristics of the oscillation circuit for each overtone frequency, and FIG. 4 is a diagram showing the relationship between the resonator impedance and the characteristics of the oscillation circuit for each overtone frequency. A plan view showing the basic principle in a certain case, FIGS. 5a and 5b are a plan view and an A-A sectional view showing an embodiment of the present invention, and FIG. 6 is a plan view showing another embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1...Piezoelectric substrate, 2...Vibration energy confinement part (electrode), 3...Vibration energy propagation part, 4...Vibration energy absorption part (electrode), R, R1 and R2 ...Resistance.

Claims (1)

【特許請求の範囲】 1 圧電基板に遮断周波数f1なる振動エネルギ閉
じ込め部を設けその周辺に遮断周波数f2(但しf1
<f2)なる振動エネルギ伝搬部を、更にその外周
適所に遮断周波数f3(但しf1≒f3<f2)なる振動エ
ネルギ吸収部を配置し前記振動エネルギ閉じ込め
部とその周辺近傍に所望のオーバートーン振動の
次数以上の次数のオーバートーン振動のエネルギ
を閉じ込めると共に基本波振動を含む前記所望の
オーバートーン振動より低次のオーバートーン振
動の振動エネルギを前記振動エネルギ伝搬部に大
量に漏洩せしめ、当該漏洩した振動エネルギを前
記振動エネルギ吸収部を介して消費せしめる如く
前記遮断周波数f1とf2との差及び前記振動エネル
ギ閉じ込め部と前記振動エネルギ吸収部との間〓
を設定することによつて少なくとも前記所望のオ
ーバートーン振動による発振を前記所望のオーバ
ートーン振動より低次のオーバートーン振動によ
るそれよりも容易ならしめたオーバートーン発振
用圧電共振子に於いて、前記圧電基板の振動エネ
ルギ吸収部両面に付着した電極間に(2πfCo)-1
[但しfは振動エネルギを吸収すべき基本波振動
周波数、C0は前記電極間容量]或は(2πfnC0-1
[但しfnは振動エネルギを吸収すべき基本波振動
及び更に高次のオーバートーン振動の周波数間の
適当な値の周波数]にほぼ相当する抵抗を接続す
ることによつて前記漏洩した振動エネルギの消費
を大ならしめたことを特徴とするオーバートーン
発振用圧電共振子の電極構造。 2 前記振動エネルギ吸収部両面に付着する電極
を複数個に分割し、これら両面電極間に接続する
抵抗の値を夫々(2πfo1C0-1、、(2πfo3C0-1、…
…[但しfo1、fo3、……は夫々基本波周波数、3
次オーバートーン周波数、……]にほぼ一致せし
めたことを特徴とする特許請求の範囲第1記載の
オーバートーン発振用圧電共振子の電極構造。 3 前記振動エネルギ閉じ込め部に付着する電極
を分割して2ポート共振子としたことを特徴とす
る特許請求の範囲1又は2記載のオーバートーン
発振用圧電共振子の電極構造。
[Claims] 1. A vibration energy confinement portion having a cutoff frequency f 1 is provided on the piezoelectric substrate, and a cutoff frequency f 2 (however, f 1
A vibration energy propagation section with a cut-off frequency f 3 (where f 1 ≒ f 3 < f 2 ) is further arranged at a suitable location on the outer circumference of the vibration energy propagation section, and a vibration energy absorption section with a cutoff frequency f 3 (where f 1 ≒ f 3 < f 2 ) is disposed at a desired location in the vicinity of the vibration energy confinement section and its periphery. traps the energy of overtone vibrations of an order higher than the order of the overtone vibration of the desired overtone vibration, and causes a large amount of vibration energy of overtone vibrations of a lower order than the desired overtone vibration, including fundamental wave vibration, to leak to the vibration energy propagation section. , the difference between the cutoff frequencies f 1 and f 2 and the gap between the vibration energy confinement part and the vibration energy absorption part so that the leaked vibration energy is consumed through the vibration energy absorption part.
In the piezoelectric resonator for overtone oscillation, in which the oscillation by the desired overtone vibration is made easier than that by the overtone vibration of a lower order than the desired overtone vibration by setting the above-mentioned Between the electrodes attached to both sides of the vibration energy absorption part of the piezoelectric substrate (2πfCo) -1
[However, f is the fundamental wave vibration frequency at which vibration energy should be absorbed, C 0 is the capacitance between the electrodes] or (2πf n C 0 ) -1
By connecting a resistor approximately equivalent to [where f n is a frequency with an appropriate value between the frequencies of the fundamental wave vibration and the higher-order overtone vibration that should absorb vibration energy], the leaked vibration energy can be absorbed. An electrode structure of a piezoelectric resonator for overtone oscillation characterized by increased consumption. 2. Divide the electrodes attached to both sides of the vibration energy absorption part into a plurality of parts, and set the values of the resistances connected between the electrodes on both sides as (2πf o1 C 0 ) -1 , (2πf o3 C 0 ) -1 ,...
...[However, f o1 , f o3 , ... are respectively the fundamental wave frequency, 3
The electrode structure of a piezoelectric resonator for overtone oscillation according to claim 1, characterized in that the electrode structure of the piezoelectric resonator for overtone oscillation is made to substantially match the next overtone frequency, ...]. 3. The electrode structure of a piezoelectric resonator for overtone oscillation according to claim 1 or 2, characterized in that the electrode attached to the vibration energy trapping portion is divided to form a two-port resonator.
JP60119055A 1985-04-11 1985-05-31 Electrode structure for piezoelectric resonator for overtone oscillation Granted JPS61277214A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60119055A JPS61277214A (en) 1985-05-31 1985-05-31 Electrode structure for piezoelectric resonator for overtone oscillation
KR1019860700886A KR920005610B1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
EP86902487A EP0220320B1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
DE3650562T DE3650562T2 (en) 1985-04-11 1986-04-11 PIEZOELECTRIC RESONATOR FOR GENERATING HARMONICS
EP95108355A EP0680142A1 (en) 1985-04-11 1986-04-11 Piezoelectric resonators for overtone oscillations
PCT/JP1986/000181 WO1986006228A1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
US07/191,628 US4870313A (en) 1985-04-11 1988-05-09 Piezoelectric resonators for overtone oscillations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60119055A JPS61277214A (en) 1985-05-31 1985-05-31 Electrode structure for piezoelectric resonator for overtone oscillation

Publications (2)

Publication Number Publication Date
JPS61277214A JPS61277214A (en) 1986-12-08
JPH0476527B2 true JPH0476527B2 (en) 1992-12-03

Family

ID=14751789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119055A Granted JPS61277214A (en) 1985-04-11 1985-05-31 Electrode structure for piezoelectric resonator for overtone oscillation

Country Status (1)

Country Link
JP (1) JPS61277214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508669Y2 (en) * 1989-01-26 1996-08-28 株式会社村田製作所 Phase shift circuit for FM detection and piezoelectric resonance component for FM detection circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610727A (en) * 1979-07-05 1981-02-03 Yuji Yanagisawa Crystal oscillator having secondary electrode for frequency fine adjustment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610727A (en) * 1979-07-05 1981-02-03 Yuji Yanagisawa Crystal oscillator having secondary electrode for frequency fine adjustment

Also Published As

Publication number Publication date
JPS61277214A (en) 1986-12-08

Similar Documents

Publication Publication Date Title
KR920005610B1 (en) Piezo-electric resonator for generating overtones
US3699484A (en) Width extensional resonator and coupled mode filter
JPH0216613B2 (en)
JP2000252786A (en) Piezoelectric vibrating element
JPS61236208A (en) Piezoelectric resonator for over-tone oscillation
JPH0476527B2 (en)
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JPH07336184A (en) Energy confining type piezoelectric resonator
JP2002299998A (en) Piezoelectric vibrator and piezoelectric filter
JP3088801B2 (en) Surface acoustic wave filter
JPS6357967B2 (en)
JPH0278313A (en) Structure for overtone oscillating piezoelectric resonator
JP2967432B2 (en) Surface acoustic wave filter
JPS60199211A (en) Piezoelectric resonator
JPH066166A (en) Piezoelectric vibrator
JPH0326663Y2 (en)
JPH0344451B2 (en)
JPS63206018A (en) Piezoelectric resonator
JP4356151B2 (en) Piezoelectric vibration element, manufacturing method thereof, and piezoelectric filter
JPH0590879A (en) Quartz oscillator
JP2640937B2 (en) Overtone oscillation piezoelectric resonator with composite structure
JPH08265093A (en) Chip type piezoelectric resonance component
JPH01106513A (en) Fixing method for saw resonator or the like
JPS62169510A (en) Structure of vibrating energy absorbing part of piezoelectric resonantor for oscillation of overtone
JPH0563494A (en) Overtone crystal oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees