JPH047594B2 - - Google Patents

Info

Publication number
JPH047594B2
JPH047594B2 JP26433485A JP26433485A JPH047594B2 JP H047594 B2 JPH047594 B2 JP H047594B2 JP 26433485 A JP26433485 A JP 26433485A JP 26433485 A JP26433485 A JP 26433485A JP H047594 B2 JPH047594 B2 JP H047594B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
thickness
band width
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26433485A
Other languages
Japanese (ja)
Other versions
JPS62123789A (en
Inventor
Kenichi Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP26433485A priority Critical patent/JPS62123789A/en
Publication of JPS62123789A publication Critical patent/JPS62123789A/en
Publication of JPH047594B2 publication Critical patent/JPH047594B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重量子井戸型半導体レーザに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-quantum well semiconductor laser.

〔従来の技術〕[Conventional technology]

従来の多重量子井戸型半導体レーザの活性層
は、量子サイズ効果が現われる以下の厚さの第1
の半導体層(量子井戸層)との量子井戸層より禁
制帯幅の広い第2の半導体層(障壁層)とが交互
に積層してなり、量子井戸層及び障壁層の禁制帯
幅は層内で均一であつた。このような従来例を記
載した論文は、例えば、アプライド・フイジツク
ス・レターズ(Applied Physics Letters)、第26
巻、1975年、463頁に見出すことができる。
The active layer of a conventional multi-quantum well semiconductor laser has a thickness of less than the thickness at which the quantum size effect appears.
A semiconductor layer (quantum well layer) and a second semiconductor layer (barrier layer) having a wider forbidden band width than the quantum well layer are laminated alternately, and the forbidden band width of the quantum well layer and the barrier layer is within the layer. It was uniform. A paper describing such a conventional example is, for example, Applied Physics Letters, No. 26.
Vol. 1975, p. 463.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の多重量子井戸型半導体レーザに
おいて、キヤリヤの各量子井戸層への分布を均一
にして低しきい電流にするには障壁層を簿くすれ
ばよいが、簿くしすぎると、活性層内における波
動関数の形がなだらかになり、いわば量子井戸間
の“結合”が大きくなつて、逆にしきい電流が上
昇してしまい、低しきい電流化が困難であるとい
う欠点がある。
In the conventional multi-quantum well semiconductor laser described above, in order to uniformly distribute the carrier to each quantum well layer and achieve a low threshold current, it is possible to make the barrier layer thinner, but if the barrier layer is thinned too much, the active layer The disadvantage is that the shape of the wave function within the quantum well becomes gentle, so to speak, the "coupling" between the quantum wells increases, and the threshold current increases, making it difficult to lower the threshold current.

本発明の目的は、しきい電流の低減された多重
量子井戸型半導体レーザを提供することにある。
An object of the present invention is to provide a multi-quantum well semiconductor laser with reduced threshold current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多重量子井戸型半導体レーザは、量子
サイズ効果が現われる厚さ以下の厚さの第1の半
導体層と前記第1の半導体より禁制帯幅の広い第
2の半導体層とが交互に積層されてなる活性層を
有する多重量子井戸型半導体レーザにおいて、前
記第2の半導体層はその厚さ方向に禁制帯幅が変
化しているという構造を有している。
In the multi-quantum well semiconductor laser of the present invention, a first semiconductor layer having a thickness equal to or less than the thickness at which a quantum size effect appears and a second semiconductor layer having a wider forbidden band width than the first semiconductor are alternately laminated. In the multi-quantum well semiconductor laser having an active layer formed by the above-described structure, the second semiconductor layer has a structure in which the forbidden band width changes in the thickness direction.

〔作用〕[Effect]

本発明の多重量子井戸型半導体レーザは、障壁
層がその厚さ方向に禁制帯幅が変化している活性
層を有しているので、例えば、各ポテンシヤル井
戸内の電子に対するポテンシヤル障壁の幅は、い
くつかの離散的エネルギ準位のうち、基底状態よ
りも励起状態に対して小さくなつている。その結
果、各ポテンシヤル井戸内の励起状態にある電子
が他のポテンシヤル井戸内へ移動する確率は大き
くなる。従つて、注入された電子は、励起状態に
ある間に、トンネル効果によつて各量子井戸層へ
均等に分布していく。正孔についても同様である
から、結局、電子、正孔それぞれの偏よりが少な
くなる。
Since the multi-quantum well semiconductor laser of the present invention has an active layer in which the barrier layer has a forbidden band width that changes in the thickness direction, for example, the width of the potential barrier for electrons in each potential well is , among several discrete energy levels, which are smaller for the excited state than for the ground state. As a result, the probability that electrons in an excited state within each potential well will move into other potential wells increases. Therefore, while the injected electrons are in an excited state, they are evenly distributed to each quantum well layer due to the tunnel effect. The same holds true for holes, so in the end, the polarization of electrons and holes becomes smaller.

レーザ発振に主として寄与する基底状態にある
キヤリヤについては、ポテンシヤル障壁の厚さが
大きいので以上のような各量子井戸間での“結
合”は少ない。
Regarding the carrier in the ground state, which mainly contributes to laser oscillation, the thickness of the potential barrier is large, so the above-mentioned "coupling" between each quantum well is small.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して
説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第1は本発明の一実施例の斜視図、第2図は第
1図のA部拡大図である。
The first is a perspective view of an embodiment of the present invention, and the second is an enlarged view of section A in FIG.

活性層はそれぞれ厚さ150〓のノンドープ
GaAs層1−1,1−2,1−8からなる量子井
戸層と厚さ50〓のノンドープAlxGa1-xAs層2−
1,2−2,…,2−8からなる障壁層とが交互
に積層した構成を有している。ノンドープAlx
Ga1-xAs層2−1の混晶比を与えるxの値は、ノ
ンドープGaAs層1−1の側で0、ノンドープ
GaAs層1−2の側で0.3となるように直線的に増
加している。ノンドープAlxGa1-xAs層2−2,
…,2−8についても同様である。なおAlx
Ga1-xAsの禁制帯幅はxが大きいほど大きくな
る。
Each active layer is undoped with a thickness of 150㎓
A quantum well layer consisting of GaAs layers 1-1, 1-2, and 1-8 and a non-doped Al x Ga 1-x As layer 2- with a thickness of 50 mm.
It has a structure in which barrier layers 1, 2-2, . . . , 2-8 are alternately laminated. Non-doped Al x
The value of x giving the mixed crystal ratio of the Ga 1-x As layer 2-1 is 0 on the side of the non-doped GaAs layer 1-1, and
It increases linearly to 0.3 on the GaAs layer 1-2 side. Non-doped Al x Ga 1-x As layer 2-2,
The same applies to ..., 2-8. Furthermore, Al x
The forbidden band width of Ga 1-x As increases as x increases.

活性層以外は公知の埋込みヘテロ接合型の半導
体レーザと同じであり、3はN型Al0.4Ga0.6As層
からなる厚さ1.5μmのクラツド層、4はP型Al0.4
Ga0.6As層からなる厚さ1.5μmのクラツド層、5
はN型GaAs層からなる厚さ1.0μmのバツフア層、
6はP型GaAs層からなる厚さ1.0μmのキヤツプ
層、7はP型A0.4Ga0.6As層からなるブロツク層、
8はN型Al0.4Ga0.6As層からなるブロツク層、9
はN型GaAs基板、10はN側電極層、11はP
側電極層である。又、共振器長は300μmである。
The components other than the active layer are the same as those of a known buried heterojunction type semiconductor laser, and numeral 3 is a 1.5 μm thick cladding layer consisting of an N-type Al 0.4 Ga 0.6 As layer, and 4 is a P-type Al 0.4
1.5 μm thick cladding layer consisting of Ga 0.6 As layer, 5
is a 1.0 μm thick buffer layer made of N-type GaAs layer,
6 is a 1.0 μm thick cap layer made of a P-type GaAs layer, 7 is a block layer made of a P-type A 0.4 Ga 0.6 As layer,
8 is a block layer consisting of an N-type Al 0.4 Ga 0.6 As layer; 9
is an N-type GaAs substrate, 10 is an N-side electrode layer, and 11 is a P
This is a side electrode layer. Moreover, the resonator length is 300 μm.

AlxGa1-xAs層の混晶比を変化させて形成する
には、例えば、分子線エピタキシヤル成長法によ
り、Alセルの温度を変化させればよい。又、有
機金属気相成長法を用い、成分ガスの流量を変化
させることによつても可能である。
In order to form the Al x Ga 1-x As layer by changing the mixed crystal ratio, the temperature of the Al cell may be changed by, for example, molecular beam epitaxial growth. It is also possible to achieve this by using a metal organic vapor phase epitaxy method and changing the flow rates of component gases.

本実施例の多重量子井戸型半導体レーザは、障
壁層の混晶比が一定のものに比べ、約半分のしき
い電流で発振した。温度特性、微分量子効率等の
他の特性に変化は見られなかつた。
The multi-quantum well type semiconductor laser of this example oscillated at about half the threshold current as compared to one in which the mixed crystal ratio of the barrier layer was constant. No changes were observed in other properties such as temperature characteristics and differential quantum efficiency.

なお、障壁層の禁制帯幅が厚さ方向に直線的に
増加している例についてのべたが、逆に、直線的
に減少していてもよい。又、変化の様子も直線的
である必要はなく、単調に変化してもよいし、更
には、増加した後再び減少していてもよい。結
局、厚さ方向に変化しておればよいのである。
Although an example has been described in which the forbidden band width of the barrier layer increases linearly in the thickness direction, it may conversely decrease linearly. Furthermore, the manner of change does not have to be linear; it may change monotonically, or it may increase and then decrease again. After all, it is sufficient if the thickness changes in the thickness direction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多重量子井戸構
造の活性層を構成する障壁層に禁制帯幅が厚さ方
向に変化したものを使用することにより、各量子
井戸間の“結合”による利得幅の増大を伴うこと
なく、キヤリヤの偏よりを少なくできるので、レ
ーザ発振のしきい電流を低減することができると
いう効果がある。
As explained above, the present invention uses a barrier layer that constitutes the active layer of a multi-quantum well structure and has a forbidden band width that changes in the thickness direction. Since the bias of the carrier can be reduced without increasing the current, there is an effect that the threshold current for laser oscillation can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は
第1図のA部拡大図である。 1−1〜1−8……GaAs層からなる量子井戸
層、2−1〜2−8……AlxGaa1-xAs層からなる
障壁層、3……N型Al0.4Ga0.6As層からなるクラ
ツド層、4……P型Al0.4Ga0.6As層からなるクラ
ツド層、5……N型GaAs層からなるバツフア
層、6……P型GaAs層からなるキヤツプ層、7
……P型Al0.4Ga0.6As層からなるブロツク層、8
……N型Al0.4Ga0.6As層からなるブロツク層、9
……N型GaAs基板、10……N側電極層、11
……P側電極層。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is an enlarged view of section A in FIG. 1-1 to 1-8...Quantum well layer made of GaAs layer, 2-1 to 2-8...Barrier layer made of Al x Gaa 1-x As layer, 3...N-type Al 0.4 Ga 0.6 As layer 4...A clad layer made of a P-type Al 0.4 Ga 0.6 As layer, 5... A buffer layer made of an N-type GaAs layer, 6... A cap layer made of a P-type GaAs layer, 7
...Block layer consisting of P-type Al 0.4 Ga 0.6 As layer, 8
...Block layer consisting of N-type Al 0.4 G a0.6 As layer, 9
...N-type GaAs substrate, 10...N-side electrode layer, 11
...P-side electrode layer.

Claims (1)

【特許請求の範囲】[Claims] 1 量子サイズ効果が現われる厚さ以下の厚さの
第1の半導体層と前記第1の半導体より禁制帯幅
の広い第2の半導体層とが交互に積層されてなる
活性層を有する多重量子井戸型半導体レーザにお
いて、前記第2の半導体層はその厚さ方向に禁制
帯幅が変化していることを特徴とする多重量子井
戸型半導体レーザ。
1. A multiple quantum well having an active layer formed by alternately stacking a first semiconductor layer having a thickness equal to or less than the thickness at which a quantum size effect appears and a second semiconductor layer having a wider forbidden band width than the first semiconductor. A multi-quantum well semiconductor laser, wherein the second semiconductor layer has a forbidden band width that changes in the thickness direction.
JP26433485A 1985-11-22 1985-11-22 Multiple quantum well semiconductor laser Granted JPS62123789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26433485A JPS62123789A (en) 1985-11-22 1985-11-22 Multiple quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26433485A JPS62123789A (en) 1985-11-22 1985-11-22 Multiple quantum well semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62123789A JPS62123789A (en) 1987-06-05
JPH047594B2 true JPH047594B2 (en) 1992-02-12

Family

ID=17401733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26433485A Granted JPS62123789A (en) 1985-11-22 1985-11-22 Multiple quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62123789A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6392960B1 (en) 2017-09-12 2018-09-19 日機装株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2019054236A (en) * 2018-08-23 2019-04-04 日機装株式会社 Nitride semiconductor light-emitting device, and method for manufacturing the same

Also Published As

Publication number Publication date
JPS62123789A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US4509173A (en) Phase-locked semiconductor laser device
JPS6110293A (en) Photo semiconductor device
EP0486128B1 (en) A semiconductor optical device and a fabricating method therefor
US4982408A (en) Variable oscillation wavelength semiconduction laser device
JPH05102604A (en) Semiconductor laser device
JP3249999B2 (en) Semiconductor laser device
JPH02130988A (en) Quantum well semiconductor laser element
JPH047594B2 (en)
JPS60145687A (en) Semiconductor laser
JPH0377677B2 (en)
JPH04234184A (en) Semiconductor laser
US4841535A (en) Semiconductor laser device
JPH01179488A (en) Optical amplifier
JPH1084170A (en) Quantum well semiconductor laser element
JP2682474B2 (en) Semiconductor laser device
JP2748570B2 (en) Semiconductor laser device
JPH0478036B2 (en)
JP3033333B2 (en) Semiconductor laser device
JPH02220025A (en) Optical modulator
JPH07111367A (en) Semiconductor laser device
JPH0278290A (en) Semiconductor laser device
JPH06104534A (en) Semiconductor laser element
JPS63211785A (en) Multiple quantum well type optical bistable semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JP3033717B2 (en) Surface emitting semiconductor laser device