JPH0475871B2 - - Google Patents

Info

Publication number
JPH0475871B2
JPH0475871B2 JP2980987A JP2980987A JPH0475871B2 JP H0475871 B2 JPH0475871 B2 JP H0475871B2 JP 2980987 A JP2980987 A JP 2980987A JP 2980987 A JP2980987 A JP 2980987A JP H0475871 B2 JPH0475871 B2 JP H0475871B2
Authority
JP
Japan
Prior art keywords
ceramics
foil
ceramic
brazing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2980987A
Other languages
Japanese (ja)
Other versions
JPS63201070A (en
Inventor
Yoshio Harakawa
Masahiro Oguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP2980987A priority Critical patent/JPS63201070A/en
Publication of JPS63201070A publication Critical patent/JPS63201070A/en
Publication of JPH0475871B2 publication Critical patent/JPH0475871B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、セラミツクとセラミツク、あるいは
セラミツクとメタルをろう付により接合する方法
に関する。 〔従来の技術〕 最近、セラミツク材料がその優れた諸特性から
構造材料として広い分野に利用されはじめてい
る。その多くの場合、セラミツク単体で使われて
いるのが現状であるが、セラミツクの持つ脆性の
ため、靭性のあるメタルとの複合化が必要のこと
がある。また複雑な形のセラミツクを作るために
セラミツク相互を接合するためのろう材が必要と
されている。ところで、従来からセラミツクの接
合方法として以下の方法が知られている。 セラミツク母材表面に、Mo、Wを主成分と
する粉末を塗布し、還元雰囲気中で1400〜1700
℃に加熱してセラミツク母材上にメタライズ層
を形成し、その後Niめつきした後、銀ろうな
どにより金属とセラミツクの接合や同様にメタ
ライズ・Niめつき処理したセラミツク同志の
接合を行う方法。 セラミツク母材表面に配置されたPt、Auな
どを介して接合するメタルやセラミツクを組み
合せ対向させた後、これらの一方から圧力を加
えて適当な高温下で接合する方法。 セラミツクを硫酸銅とカオリンの混合粉末で
被覆し、酸化雰囲気中900〜1300℃で加熱して
焼付した後、焼付層を還元処理し、還元層上に
塗布された銀ろうなどで他の金属部材と接合す
る方法。 銅箔とチタン箔とを組み合せたものを接合す
べくセラミツクとセラミツク、セラミツクとメ
タルとの間にセツトし、真空雰囲気中、共晶温
度でろう接する方法(米国特許第2857663号参
照)。 Cu、Fe、Niの少なくとも1種からなる遷移
金属と、Ti、Zr、Y、Hfの少なくとも1種と
からなる厚さ30μm以下の箔によるメタライズ
を行なつたセラミツクを接合する方法(特開昭
60−32648号)。この方法で厚さを30μm以下に
したのはメタライジング後のセラミツクにクラ
ツクが発生するからである。 しかしながらの方法の場合、作業工程が4工
程と長く且つ煩雑であるという欠点があるのに加
えて加熱温度が高い欠点がある。の方法の場
合、圧接という簡単な方法で接合できるが、高価
な貴金属を被接合部材間に介在させる必要がある
ため経済的でなく、しかも金属母材とセラミツク
母材とが十分に接触するように高い圧力を必要と
して複雑形状になると接合が困難になるという欠
点がある。の方法の場合、大気中で前処理がで
きるため前処理が簡単であるという良い点があ
る。しかしながら、その後の銀ろう付などにより
セラミツクと被接合物との間に応力などが生じみ
かけの剪段強度は5Kg/mm2を越えるものの、接合
部に微細なクラツクが生じており、気密性がない
欠点がある。の方法の場合、活性金属ろう付法
と言われ、セラミツクの接合を容易にする方法と
して知られているが、窒化硅素などフアインセラ
ミツクと呼ばれるセラミツクの場合、酸化物セラ
ミツクで有効であつた本手法を利用しても、高い
接合強度を得ることは難しい。の方法の場合、
メタライジング工程が必要になるため工程が長く
なる。 〔発明が解決しようとする問題点〕 上記した従来法において、の方法はろう材を
使用するがセラミツクの接合がろう材だけで行な
われておらない。、の方法はろう材による接
合ではない。、の方法はろう接方法である。 しかしながら、の開示に見られるように金属
とセラミツク、セラミツクとセラミツクとの接合
でろう接界面で熱応力のためセラミツク部にクラ
ツクを発生し問題となつていた。の方法による
この問題の解決手段は、真空もしくは不活性雰囲
気中でのメタライズを前提とする。 本発明者は、液体急冷法により製造された箔を
用い接合されたセラミツクの接合強度の影響因子
を種々調査したところ、厚さが厚い箔をろう材と
して使用した直接ろう材(すなわちメタライズ工
程を省略したろう付)法により高い接合強度が得
られることを見出した。従つて、本発明は前記問
題点をろう材の金属組織と箔の厚さにより解決
し、セラミツクとセラミツク、セラミツクとメタ
ルとの接合に適するろう付接合方法を提供するこ
とを目的とする。 〔問題点を解決するための手段〕 本発明は、Cu40〜70原子%、Ti30〜60原子%、
Ni・Co・Feのうち少くとも1種が0.5〜15原子%
からなり、厚さが40μm以上の非晶質又は微結晶
合金箔帯をろう材として用い、メタライズするこ
となく、セラミツクを接合することを特徴とする
セラミツクの接合方法を提供するものである。 本発明は構成要件を先ず合金箔の組成について
説明する。 Tiは酸素、窒素等との親和性の高い元素であ
り、セラミツクのO、N等と反応して接合層を形
成する。Tiが30原子%(24.4重量%)より少ない
とアモルフアス箔帯の製造が困難となり、60原子
%(53.1重量%)を越えると接合部でTiNなどの
Ti化合物形成後にろう接部に残留するTi量が多
くなる。この場合は、ろう接後のセラミツクに応
力負荷が残留し、場合によつてはクラツクを発生
させるので好ましくない。最適なTi含有量は、
30〜45原子%である。活性金属であるTiは融点
が高く(1720℃)、そのままでは通常のろう接材
として不満であるものの、Cuとの合金において
は、その共晶組成領域においては数百℃低下さ
せ、Ti23Cu77では約880℃になる。このことを利
用してTiCu合金はセラミツクとセラミツクとの
間に活性金属を介在させたり、セラミツクとメタ
ルとの間に接合できるろう接材料となる。この作
用をもたらすためには40〜70原子%(46.9〜75.6
重量%)のCuが必要である。また、Cu−Ti二元
系アモルフアスもしくは微結晶合金を作るため
に、40〜70原子%のCu含有量が必要である。 Fe、Ni、Coの少なくとも1種は、ろう付接合
時にセラミツク界面で形成される窒化物反応層、
ケイ化物反応層、酸化物反応層の発達を制御する
ことにより、接合強度の向上に寄与する元素であ
る。本発明者の実験では、Al2O3とAl2O3との接
合の場合、Cu50Ti50のろう材では10Kg/mm2の剪断
強度であつたが、Cu45Ti45Ni10では剪段強度15
Kg/mm2が得られ、Niの顕著な剪断強度向上効果
が明らかとなつた。ところでCu−Ti二元系合金
は共晶組成附近でアモルフアスになることが知ら
れているが、本発明者の実験によりかなり多量の
Fe、Ni、Coを添加してもアモルフアスもしくは
アモルフアスに近い微結晶組織が得られることが
分つた。而して、Ni、Co、Feの添加量が0.5原子
%未満では接合強度向上の効果がなく、一方15原
子%を越えると通常の結晶組織になるため、添加
量を0.5〜15原子%とした。なお、Ni、Co、Feの
2種以上が添加される場合は合計添加量とする。 次に、本発明の他の構成要件である箔寸法と金
属組織について説明する。 従来技術のろう材の形状は本発明と同じ箔形
状であるが銅箔とチタン箔を組み合わせたもので
あつたため、各金属成分を迅速に均一溶融するこ
とが困難であつた。本発明のろう材は合金箔であ
るために各成分が迅速に均一溶融できる。従来技
術の箔は厚さが30μm以下としてクラツクの発
生を防止できないが、本発明においては合金箔の
組織はアモルフアスもしくは微結晶組織であるた
めに均一であり、これによりクラツクの発生がな
い。高い接合強度の接合セラミツクの製造が可能
になる一条件が整えられる。ここで、微結晶とは
粒径がμm以下オングストロームオーダーの超急
冷により得られる結晶組織を言う。箔の厚さを
40μm以上としたのは40μm未満では接合強度が
低下する傾向が現われかつクラツクが発生するこ
ともあるためである。すなわち、40μm以上の箔
の厚さが高い接合強度のセラミツクを得る等の条
件となる。厚さの好ましい上限は80μmである。 かかる箔は所定組成の合金溶湯を単ロール法も
しくは双ロール法により超急冷することにより得
られる。続いて、本発明における接合操作の構成
要件について説明する。上記のような合金箔を被
接合部材間にはさみ、合金箔を溶融させてろう付
を行なう。この際の加熱は真空、附活性ガス雰囲
気による必要がある。本発明においては、合金箔
がアモルフアスもしくは微結晶であるため、溶解
が均一に進行すること、ならびに箔が厚いために
被接合部材間に残存するろう付合金がろう材の凝
固時の応力緩衝およびセラミツクとの濡れ性を向
上することにおそらく起因すると思われる従来に
ないろう付現像により接合後もセラミツクにクラ
ツクなどの欠陥を発生させない直接ろう付が可能
になつた。 〔実施例〕 以下、実施例によりさらに本発明を説明する。 実施例 1 45%Cu、45%Ti、10%Ni(原子%)なる合金
をアーク炉中で溶解し、インゴツトとした。その
インゴツトを#30透明石英管中に高さ60mmまで装
填した。石英管は下端部で偏平に圧縮されて幅20
mm及び内径0.5m/mのスリツト状開口部を有し
ていた。片ロールと呼ばれる非晶質作製装置の、
ロール径500mmロール幅50mmの冷却ロールの上部
に前記石英管をセツトし、溶融点より100℃高い
温度まで溶解した後、周速30m/secで回転する
冷却ロールに溶湯を吹きつけ、厚さ50μm幅20mm
長さ10mの箔帯を得た。この箔帯を、直径10mm、
厚さ5mmの円盤状Al2O3と、直径20mm、厚さ5mm
の円盤状Al2O3の間にはさみ、これらを加熱炉に
装入した。なお、接合条件は真空(10-4Torr)
1050℃、30分の均熱、かつ無加圧であつた。ろう
接部材の剪断強度を第1図に示す方法で測定し
た。図中1は加圧治具、2はセツト治具、3,4
はセラミツク接合体である。接合されたAl2O3
剪断強度は15Kg/mm2であつた。 実施例 2 実施例1と同様な処理で、表1の組成の箔帯の
作製可否及び接合のテストを行つた。なお、箔帯
の作製が不可能であつた組成は粉末状ろう材とし
て供試した。
[Industrial Application Field] The present invention relates to a method for joining ceramics to ceramics or ceramics to metal by brazing. [Prior Art] Recently, ceramic materials have begun to be used in a wide range of fields as structural materials due to their excellent properties. In most cases, ceramics are used alone, but due to the brittleness of ceramics, it is sometimes necessary to combine them with tough metals. Furthermore, in order to make ceramics with complex shapes, a brazing material is needed to join the ceramics together. By the way, the following method has been known as a method for joining ceramics. Powder mainly composed of Mo and W is applied to the surface of the ceramic base material and heated to 1400 to 1700 in a reducing atmosphere.
A method in which a metallized layer is formed on a ceramic base material by heating to ℃, and then Ni plating is applied, and then metal and ceramic are joined using silver solder, or ceramics that have been similarly metallized and Ni-plated are joined together. A method of joining metals and ceramics that are joined via Pt, Au, etc. placed on the surface of the ceramic base material, facing each other, and then applying pressure from one side to join them at an appropriate high temperature. Ceramic is coated with a mixed powder of copper sulfate and kaolin, heated and baked at 900-1300℃ in an oxidizing atmosphere, the baked layer is reduced, and silver solder etc. applied on the reduced layer is used to coat other metal parts. How to join with. A method in which a combination of copper foil and titanium foil is placed between ceramics or ceramics and metals for bonding, and soldered at eutectic temperature in a vacuum atmosphere (see US Pat. No. 2,857,663). A method of bonding ceramics metallized with a foil of 30 μm or less thick consisting of a transition metal consisting of at least one of Cu, Fe, and Ni and at least one of Ti, Zr, Y, and Hf (Unexamined Japanese Patent Publication No.
60-32648). The reason why the thickness was kept below 30 μm using this method is that cracks would occur in the ceramic after metallizing. However, in the case of this method, there are disadvantages in that the working steps are as long as four and complicated, and in addition, there is a disadvantage in that the heating temperature is high. In the case of method 2, it is possible to join by a simple method called pressure welding, but it is not economical because it requires intervening an expensive precious metal between the parts to be joined, and it is difficult to ensure sufficient contact between the metal base material and the ceramic base material. The drawback is that high pressure is required for the process, making it difficult to join the complex shapes. The advantage of this method is that the pretreatment is simple because it can be carried out in the atmosphere. However, stress occurs between the ceramic and the objects to be joined due to subsequent silver brazing, etc. Although the apparent shear strength exceeds 5 kg/mm 2 , minute cracks have occurred in the joint, and the airtightness has deteriorated. There are no drawbacks. This method is called active metal brazing and is known as a method that facilitates the joining of ceramics. However, in the case of ceramics called fine ceramics such as silicon nitride, this method was effective for oxide ceramics. Even if this method is used, it is difficult to obtain high bonding strength. In the case of the method,
The process becomes longer because a metallizing process is required. [Problems to be Solved by the Invention] In the above-mentioned conventional method, a brazing material is used in the method, but the joining of ceramics is not performed only with a brazing material. The method of , does not involve joining using brazing metal. , is a soldering method. However, as seen in the disclosure of 2007, when joining metal and ceramic or ceramic to ceramic, cracks were generated in the ceramic part due to thermal stress at the soldering interface, which was a problem. The method of solving this problem assumes metallization in a vacuum or an inert atmosphere. The present inventor investigated various factors that influence the bonding strength of ceramics bonded using foil manufactured by the liquid quenching method, and found that a direct brazing filler metal (i.e., a metallization process) using thick foil as a brazing filler metal was used. We have found that high bonding strength can be obtained by the omitted brazing method. Therefore, it is an object of the present invention to solve the above-mentioned problems by changing the metal structure of the brazing material and the thickness of the foil, and to provide a brazing joining method suitable for joining ceramics to ceramics and ceramics to metals. [Means for solving the problem] The present invention provides Cu40 to 70 atom%, Ti30 to 60 atom%,
At least one of Ni, Co, and Fe is 0.5 to 15 atomic%
The present invention provides a method for joining ceramics, which is characterized in that ceramics are joined without metallization using an amorphous or microcrystalline alloy foil strip having a thickness of 40 μm or more as a brazing material. The constituent elements of the present invention will first be explained with respect to the composition of the alloy foil. Ti is an element that has a high affinity with oxygen, nitrogen, etc., and reacts with O, N, etc. of ceramics to form a bonding layer. If Ti is less than 30 atomic% (24.4% by weight), it will be difficult to manufacture an amorphous amorphous foil strip, and if it exceeds 60 atomic% (53.1% by weight), TiN etc. will form at the joint.
After the Ti compound is formed, the amount of Ti remaining in the solder joint increases. In this case, a stress load remains in the ceramic after soldering, which may cause cracks, which is not preferable. The optimal Ti content is
It is 30-45 atom%. Ti, an active metal, has a high melting point (1720°C) and is unsatisfactory as a normal brazing material as it is, but when alloyed with Cu, it is lowered by several hundred degrees Celsius in its eutectic composition region, and Ti 23 Cu At 77 it will be about 880℃. Utilizing this fact, TiCu alloy can be used as a soldering material that can be used to interpose active metals between ceramics or to join ceramics and metals. To bring about this effect, 40 to 70 atom% (46.9 to 75.6
(wt%) of Cu is required. Further, in order to make a Cu-Ti binary amorphous or microcrystalline alloy, a Cu content of 40 to 70 atomic % is required. At least one of Fe, Ni, and Co is a nitride reaction layer formed at the ceramic interface during brazing,
It is an element that contributes to improving the bonding strength by controlling the development of the silicide reaction layer and the oxide reaction layer. In the inventor's experiments, in the case of joining Al 2 O 3 and Al 2 O 3 , the shear strength was 10 Kg/mm 2 for the Cu 50 Ti 50 brazing filler metal, but the shear strength was 10 Kg/mm 2 for the Cu 45 Ti 45 Ni 10 . Stage strength 15
Kg/mm 2 was obtained, and the remarkable effect of Ni on improving shear strength became clear. By the way, it is known that Cu-Ti binary alloy becomes amorphous near the eutectic composition, but the inventor's experiments revealed that a fairly large amount of
It was found that even when Fe, Ni, and Co were added, an amorphous or nearly amorphous microcrystalline structure could be obtained. Therefore, if the amount of Ni, Co, or Fe added is less than 0.5 atom%, there is no effect of improving the bonding strength, while if it exceeds 15 atom%, a normal crystal structure will result. did. In addition, when two or more types of Ni, Co, and Fe are added, the amount is the total amount added. Next, the foil dimensions and metal structure, which are other constituent elements of the present invention, will be explained. The shape of the brazing material in the prior art was the same foil shape as in the present invention, but it was a combination of copper foil and titanium foil, so it was difficult to melt each metal component quickly and uniformly. Since the brazing material of the present invention is an alloy foil, each component can be melted quickly and uniformly. The foil of the prior art has a thickness of 30 μm or less and cannot prevent the occurrence of cracks, but in the present invention, the structure of the alloy foil is amorphous or microcrystalline, so it is uniform, and therefore no cracks occur. A condition is established that makes it possible to manufacture bonded ceramics with high bonding strength. Here, the term "microcrystal" refers to a crystal structure obtained by ultra-quenching with a grain size of .mu.m or less on the order of angstroms. foil thickness
The reason why the thickness is set to 40 μm or more is that if the thickness is less than 40 μm, the bonding strength tends to decrease and cracks may occur. That is, a foil thickness of 40 μm or more is a condition for obtaining ceramics with high bonding strength. The preferred upper limit of the thickness is 80 μm. Such a foil is obtained by ultra-quenching a molten alloy having a predetermined composition by a single roll method or a twin roll method. Next, the constituent elements of the joining operation in the present invention will be explained. The alloy foil as described above is sandwiched between the members to be joined, and the alloy foil is melted and brazed. Heating at this time must be done in a vacuum or in an activated gas atmosphere. In the present invention, since the alloy foil is amorphous or microcrystalline, melting progresses uniformly, and because the foil is thick, the brazing alloy remaining between the parts to be joined is able to absorb stress during solidification of the brazing filler metal. Unconventional brazing development, which is probably due to improved wettability with ceramic, has made it possible to perform direct brazing without causing defects such as cracks in the ceramic even after bonding. [Example] The present invention will be further described below with reference to Examples. Example 1 An alloy consisting of 45% Cu, 45% Ti, and 10% Ni (atomic %) was melted in an arc furnace to form an ingot. The ingot was loaded into a #30 transparent quartz tube to a height of 60 mm. The quartz tube is compressed flat at the lower end and has a width of 20 mm.
mm and had a slit-like opening with an inner diameter of 0.5 m/m. An amorphous production device called a single roll,
The quartz tube was set on top of a cooling roll with a roll diameter of 500 mm and a roll width of 50 mm, and after melting to a temperature 100°C higher than the melting point, the molten metal was sprayed onto a cooling roll rotating at a circumferential speed of 30 m/sec to a thickness of 50 μm. Width 20mm
A foil strip with a length of 10 m was obtained. This foil strip is 10mm in diameter.
A disk-shaped Al 2 O 3 with a thickness of 5 mm, a diameter of 20 mm, and a thickness of 5 mm.
was sandwiched between disk-shaped Al 2 O 3 and charged into a heating furnace. The bonding conditions are vacuum (10 -4 Torr)
It was soaked at 1050°C for 30 minutes and no pressure was applied. The shear strength of the brazed member was measured by the method shown in FIG. In the figure, 1 is a pressure jig, 2 is a setting jig, 3, 4
is a ceramic conjugate. The shear strength of the bonded Al 2 O 3 was 15 Kg/mm 2 . Example 2 Using the same treatment as in Example 1, tests were conducted to determine whether or not a foil strip having the composition shown in Table 1 could be produced and to test its bonding. In addition, compositions for which it was impossible to produce foil strips were tested as powdered brazing filler metals.

【表】【table】

【表】 表1より、Ti30〜60%、Ni、Co、Feの1種以
上0.5〜15原子%、残部Cuからなり、厚さが40μ
m以上の液体急冷箔を用いると高い接合強度の
Si3N4、Al2O3、SiC接合体が得られることが分か
る。
[Table] From Table 1, it is composed of 30-60% Ti, 0.5-15 atomic% of one or more of Ni, Co, and Fe, and the balance Cu, and the thickness is 40μ.
High bonding strength can be achieved by using liquid quenched foil of m or more.
It can be seen that a Si 3 N 4 , Al 2 O 3 , SiC bonded body is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は剪断強度試験方法の説明図である。 1……加圧治具、3,4……セラミツク接合
体。
FIG. 1 is an explanatory diagram of a shear strength test method. 1... Pressure jig, 3, 4... Ceramic bonded body.

Claims (1)

【特許請求の範囲】[Claims] 1 Cu40〜70原子%、Ti30〜60原子%、Ni・
Co・Feのうち少くとも1種が0.5〜15原子%から
なり、厚さが40μm以上の非晶質又は微結晶合金
箔をろう材として用い、メタライズすることな
く、セラミツクを接合することを特徴とするセラ
ミツクの接合方法。
1 Cu40~70 at%, Ti30~60 at%, Ni・
It is characterized by using an amorphous or microcrystalline alloy foil containing 0.5 to 15 atomic percent of at least one of Co and Fe and having a thickness of 40 μm or more as a brazing material to join ceramics without metallization. A method for joining ceramics.
JP2980987A 1987-02-13 1987-02-13 Ceramic joining method Granted JPS63201070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2980987A JPS63201070A (en) 1987-02-13 1987-02-13 Ceramic joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2980987A JPS63201070A (en) 1987-02-13 1987-02-13 Ceramic joining method

Publications (2)

Publication Number Publication Date
JPS63201070A JPS63201070A (en) 1988-08-19
JPH0475871B2 true JPH0475871B2 (en) 1992-12-02

Family

ID=12286351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2980987A Granted JPS63201070A (en) 1987-02-13 1987-02-13 Ceramic joining method

Country Status (1)

Country Link
JP (1) JPS63201070A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129414A1 (en) * 1990-11-13 1993-03-11 Endress Hauser Gmbh Co Ternary activated solder
JP2006327888A (en) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd Brazed structure of ceramic and metal
JP7107591B2 (en) * 2020-09-29 2022-07-27 株式会社フェローテックホールディングス bonded substrate

Also Published As

Publication number Publication date
JPS63201070A (en) 1988-08-19

Similar Documents

Publication Publication Date Title
US4117968A (en) Method for soldering metals with superhard man-made materials
US4797328A (en) Soft-solder alloy for bonding ceramic articles
JP4245924B2 (en) Electronic component package and manufacturing method thereof
JPS582276A (en) Metal-ceramic joint body and manufacture
US4859531A (en) Method for bonding a cubic boron nitride sintered compact
JPH02208274A (en) Composition for metallizing ceramic surface, surface-metallizing method and surface-metallized product
JPH0475871B2 (en)
JPH07126079A (en) Soldering material for bonding ceramic material
JPS62137193A (en) Method of lengthening storage life of pb-in-ag solder foil by addition of sn and soldering method
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH02215140A (en) Fine gold alloy wire for semiconductor element and its bonding method
JPH04162982A (en) Brazing of tini alloy
EP0242525A1 (en) Improved wetting of low melting temperature solders by surface active additions
JPS62263895A (en) Brazing filler metal
JPH0532463A (en) Soldering material for bonding metal and ceramic
JPS6160291A (en) Silicon carbide group ceramic fused alloy
JPH0215874A (en) Method and material for joining metal and ceramics
JPS6228067A (en) Joining method for ceramics
JPH0450107B2 (en)
JPS6272472A (en) Joining method for ceramics and metal or the like
JP3493586B2 (en) Ceramic metallization composition
JPH0649620B2 (en) Method for joining ceramic member and metal member
JPH04294884A (en) Method of liquid phase diffusion joining of stainless steel
JP3147601B2 (en) Pb alloy solder for semiconductor device assembly with excellent high temperature strength
JPS61291943A (en) Alloy for metallizing