JPH0475647B2 - - Google Patents

Info

Publication number
JPH0475647B2
JPH0475647B2 JP59068456A JP6845684A JPH0475647B2 JP H0475647 B2 JPH0475647 B2 JP H0475647B2 JP 59068456 A JP59068456 A JP 59068456A JP 6845684 A JP6845684 A JP 6845684A JP H0475647 B2 JPH0475647 B2 JP H0475647B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
pattern
molecular weight
fine pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068456A
Other languages
Japanese (ja)
Other versions
JPS60211939A (en
Inventor
Akira Morinaka
Shigeru Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6845684A priority Critical patent/JPS60211939A/en
Publication of JPS60211939A publication Critical patent/JPS60211939A/en
Publication of JPH0475647B2 publication Critical patent/JPH0475647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • ing And Chemical Polishing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、微細パタン形成に応用できる新規な
ポジ型の微細パタン形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel positive type fine pattern forming method that can be applied to fine pattern formation.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、集積回路の作製において各種基板及び被
覆層のエツチング加工又は不純物のドーピング加
工のために、部分的マスク材として有機物高分子
重合体のレジスト組成物を用いて微細パタンを形
成させる技術が発展してきた。レジスト組成物を
用い微細パタンを形成させるためには可視光又は
紫外光を用いたフオトリソグラフイーによるのが
通常であるが、最近は電子線、X線などの波長の
極めて短いエネルギー線を用いた高精度のマイク
ロリソグラフイーによつて加工精度の向上がはか
られつつある。このようなリソグラフイー工程に
用いられるレジスト組成物としては、ポリ・メタ
クリル酸メチル(PMMA)、ポリフツ化アルキル
メタクリレートなどの有機高分子重合体が用いら
れてきた。〔松山謙太郎「電子線、X線レジスト
材料」電子通信学会誌第61巻、第8号823ページ
(1978)、及び特願昭52−14605号参照〕。
In recent years, technology has been developed to form fine patterns using organic polymer resist compositions as partial mask materials for etching or impurity doping of various substrates and coating layers in the production of integrated circuits. Ta. In order to form fine patterns using resist compositions, photolithography using visible light or ultraviolet light is usually used, but recently energy beams with extremely short wavelengths such as electron beams and X-rays have been used. Efforts are being made to improve processing accuracy through high-precision microlithography. As resist compositions used in such lithography processes, organic polymers such as polymethyl methacrylate (PMMA) and polyfluorinated alkyl methacrylate have been used. [See Kentaro Matsuyama, "Electron Beam and X-ray Resist Materials," Journal of the Institute of Electronics and Communication Engineers, Vol. 61, No. 8, page 823 (1978), and Japanese Patent Application No. 14605-1977].

このような、有機高分子重合体は、あらかじめ
重合によつて高分子量化された物質を適当な溶媒
に溶解し、スピンコート法、或いはデイツプ法に
よつて基板上に塗布し、レジスト組成物の薄膜を
形成させるものである。スピンコート法或いはデ
イツプ法を用いる場合、重合体を溶液にするため
に、大量の溶媒を必要とする上に、ピンホール等
の欠陥が発生し易い。更に段差のついた基板にお
いては段差部の均一塗布ができない欠点を持つて
いた。
Such an organic high-molecular polymer is prepared by dissolving a substance whose molecular weight has been made high through polymerization in an appropriate solvent, and applying the solution onto a substrate by a spin coating method or a dip method to form a resist composition. It forms a thin film. When a spin coating method or a dip method is used, a large amount of solvent is required to turn the polymer into a solution, and defects such as pinholes are likely to occur. Furthermore, in the case of a substrate with steps, there is a drawback that uniform coating cannot be applied to the steps.

このために、レジスト組成物薄膜を基板上に作
製するために、溶媒を用いないいわゆるドライプ
ロセスの実現が望まれていた。
For this reason, it has been desired to realize a so-called dry process that does not use a solvent in order to produce a resist composition thin film on a substrate.

基板をレジスト組成物薄膜に作製されたパタン
に従つてエツチング加工する技術も、液体エツチ
ング剤によるレジストパタンの膨潤やパタンのサ
イドエツチング等に起因する加工精度の低下を防
ぐために、極微細パタン作製にはCCl4,CF4など
のガスプラズマによつて基板エツチング加工を行
なうドライエツチングが主流になりつつある。
The technique of etching a substrate according to a pattern created in a thin film of a resist composition is also used to create ultra-fine patterns in order to prevent deterioration in processing accuracy caused by swelling of the resist pattern due to liquid etching agents and side etching of the pattern. Dry etching, which etches the substrate using gas plasma such as CCl 4 or CF 4 , is becoming mainstream.

以上に述べた様に、ドライ状態でのパタン形成
用レジスト組成物薄膜の形成は重要であり、レジ
スト組成物薄膜の露光後のパターニング及び基板
加工エツチング過程でのガスプラズマ工程におい
て耐性の強い材料であることが望まれている。1
つの解決策としては、レジスト組成物薄膜を、基
板上に低圧ガス状態で導入し、光照射、グロー放
電によつて重合させることによつて重合、堆積す
る方法が提案されているが、組成変性によるレジ
スト特性(感度、解像度)の低下、導入ガスの基
板上での液滴化付着等の問題があり完全なドライ
化を達成することは困難であつた。
As mentioned above, it is important to form a thin film of a resist composition for pattern formation in a dry state, and it is necessary to use a material that is highly resistant to the patterning of a thin resist composition film after exposure and the gas plasma process in the substrate processing and etching process. Something is desired. 1
As a solution, a method has been proposed in which a resist composition thin film is introduced onto the substrate in a low-pressure gas state and polymerized and deposited by light irradiation and glow discharge. It has been difficult to achieve complete drying due to problems such as deterioration of resist properties (sensitivity, resolution) due to drying, and droplet adhesion of the introduced gas on the substrate.

〔発明の目的〕[Purpose of the invention]

本発明は以上述べた従来の微細パタン形成法の
欠点を解決するためになされたものであり、微細
パタンのドライプロセス化を可能にすることを特
徴とし、その目的は、汚染、欠陥の少ない微細パ
タン形成法を提供することにある。
The present invention has been made to solve the above-mentioned drawbacks of the conventional fine pattern forming method, and is characterized by enabling dry processing of fine patterns, and its purpose is to form fine patterns with less contamination and defects. An object of the present invention is to provide a pattern forming method.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に、低分子量有機物薄膜を形
成し、この低分子量有機物薄膜を高エネルギー線
源によつて熱的に除去してパタンを生成し、この
生成したパタンをマスクとして基板に微細パタン
を転写することを特徴とする微細パタン形成法で
ある。
In the present invention, a low molecular weight organic thin film is formed on a substrate, this low molecular weight organic thin film is thermally removed using a high-energy radiation source to generate a pattern, and the generated pattern is used as a mask to form fine particles on the substrate. This is a fine pattern forming method characterized by transferring a pattern.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例を詳細に
説明する。図は本発明による微細パタン形成法を
示したものである。図中、11は加工される基
板、12は低分子量有機物薄膜、13はパタン形
成部、14は基板加工部を示す。図は本発明によ
るパタン形成法の工程を、順に示したものであ
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. The figure shows a method for forming fine patterns according to the present invention. In the figure, 11 is a substrate to be processed, 12 is a low molecular weight organic thin film, 13 is a pattern forming section, and 14 is a substrate processing section. The figures sequentially show the steps of the pattern forming method according to the present invention.

(A) 低分子量薄膜の形成 SiO2或いは表面酸化したSiウエハ(SiO2Si)
を基板として、この基板上に低分子量有機物薄膜
の形成を行なう。用いる低分子量有機物材料とし
ては、均質な薄膜を形成する化合物が望ましい。
耐ドライエツチ性を向上させるには、構造にベン
ゼン環、ベンゼン縮合環を含む有機物を用いる。
例えば真空蒸着スパツタリングが可能な低分子量
有機物材料としてフルオレセイン、アウリン、ロ
ーダミンB等の色素類、クリスタルバイオレツト
ラクトンマラカイトロイコグリン等のロイコ染料
が用いられる。これらの材料は真空蒸着又はスパ
ツタリングによつて基板上に均質な薄膜を形成す
ることが知られている。
(A) Formation of low molecular weight thin film SiO 2 or surface oxidized Si wafer (SiO 2 Si)
is used as a substrate, and a low molecular weight organic thin film is formed on this substrate. The low molecular weight organic material used is preferably a compound that forms a homogeneous thin film.
In order to improve dry etch resistance, an organic substance containing a benzene ring or a benzene condensed ring in its structure is used.
For example, pigments such as fluorescein, aurin, and rhodamine B, and leuco dyes such as crystal violet lactone and malachite leukoglin are used as low molecular weight organic materials that can be vacuum evaporated and sputtered. These materials are known to form homogeneous thin films on substrates by vacuum deposition or sputtering.

ドライプロセスを考慮しなければ、従来のスピ
ンコート、デイピング法も利用することができ
る。
Conventional spin coating and dipping methods can also be used if dry processes are not considered.

(B) 低分子量薄膜のパターニング 基板表面に形成した低分子量の薄膜は、集光さ
れたレーザ光、電子ビームを照射される。レーザ
光を照射した場合、低分子量薄膜の吸収域がレー
ザ発振波長と重なる時(フルオレセイン、アウリ
ン:Arレーザ(488nm)、ローダミンB:He−
Ne(632nm)クリスタルバイオレツトラクトン:
He−Cd(>342nm以下))、照射されたエネルギ
ーは薄膜に吸収され熱となつて、薄膜は蒸発、溶
融してパタンが形成される。電子線を照射した場
合はやはり薄膜に吸収されたエネルギーの内、発
熱するエネルギー比率の分に対応して蒸発溶融し
てパタンが形成できる。
(B) Patterning of low molecular weight thin film The low molecular weight thin film formed on the substrate surface is irradiated with focused laser light and electron beam. When irradiated with laser light, when the absorption range of the low molecular weight thin film overlaps with the laser oscillation wavelength (fluorescein, aurin: Ar laser (488 nm), rhodamine B: He-
Ne (632nm) Crystal Violet Lactone:
He-Cd (>342 nm or less)), the irradiated energy is absorbed by the thin film and becomes heat, which evaporates and melts the thin film, forming a pattern. When irradiated with an electron beam, a pattern can be formed by evaporation and melting corresponding to the ratio of energy generated to the energy absorbed by the thin film.

電子線を用いる場合は、低分子量有機物薄膜部
に吸収される電子線エネルギーを多くするため、
通常の電子線リソグラフイーに使われるより低エ
ネルギー(数ev〜数ev)のビームが用いられる。
When using an electron beam, in order to increase the electron beam energy absorbed by the low molecular weight organic thin film,
A beam with lower energy (several ev to several ev ) is used than that used in normal electron beam lithography.

レーザ光を照射して、低分子量有機物薄膜が蒸
発、溶融によつてパタンが形成される事実は既に
記録即時再生形(DRAW)光デイスクに応用さ
れ、良好なパタンを形成することが知られてい
る。
The fact that a pattern is formed by evaporating and melting a thin film of low molecular weight organic matter when irradiated with laser light has already been applied to recording-ready-ready (DRAW) optical discs, and is known to form good patterns. There is.

(C) 基板のエツチング 次に上記(B)で得られたパタンをマスクにして基
板のエツチングを行なう。基板がSiO2である場
合はCF4ガスプラズマによるドライエツチングが
最も有効である。上記(A)(B)工程で形成した低分子
量薄膜は、本工程において条件を最適化すれば、
ドライエツチング用のマスクとして十分実用に耐
えさせることができる。例えばフルオレセインを
マスクとしてSiO2基板をCF4プラズマエツチング
した例では、マスク材フルオレセイン薄膜と
SiO2のCF4ガスプラズマに対するエツチレートは
約1:1以下でマスク材フルオレセインはあまり
損傷を受けずにSiO2をパタン加工できる。エツ
チング溶液の種類によつては従来のウエツトエツ
チ法も適用できる。
(C) Etching the substrate Next, the pattern obtained in (B) above is used as a mask to etch the substrate. When the substrate is SiO 2 , dry etching using CF 4 gas plasma is most effective. The low molecular weight thin film formed in steps (A) and (B) above can be obtained by optimizing the conditions in this step.
It can be used as a mask for dry etching. For example, in the case of CF 4 plasma etching of a SiO 2 substrate using fluorescein as a mask, the mask material fluorescein thin film and
Since the etching rate of SiO 2 to CF 4 gas plasma is about 1:1 or less, SiO 2 can be patterned without much damage to the fluorescein mask material. Conventional wet etching methods can also be applied depending on the type of etching solution.

(D) 薄膜の除去 低分子量薄膜は本来、溶媒可溶性のため、加工
後溶媒中に浸漬することにより容易に除去される
が、溶媒による汚染等を防ぐ意味からは、Ar−
O2混合ガスによるプラズマ灰化装置で簡単にド
ライ状態で除去できる。基板の加熱が許される場
合であれば、真空下で加熱することによつても容
易に除去できる。
(D) Removal of thin film Since low molecular weight thin films are inherently solvent soluble, they can be easily removed by immersing them in a solvent after processing, but in order to prevent contamination with solvents, Ar-
It can be easily removed in a dry state using a plasma ashing device using O 2 mixed gas. If heating the substrate is permitted, it can also be easily removed by heating under vacuum.

以下、本発明を具体的実施例により更に説明す
るが、本発明はこれらに限定されるものではな
い。
Hereinafter, the present invention will be further explained using specific examples, but the present invention is not limited thereto.

〔実施例 1〕 シリコンウエハ上にSiO2膜を1000Å作製した
基板に、フルオレセインを10-4Pa以下の圧力で
2000Å真空蒸着した。次にArレーザ(波長
488nm)を1μm幅に絞り1μmのピツチでライン
パタンを描画した。このフルオレセイン膜を平行
電極型プラズマエツチング装置を用いてCF4ガス
流量40c.c./分、エツチング層圧力35Pa,RF電力
200Wで10分間ドライエツチしたところウエハ上
のSiO2膜は500Åエツチングされ、フルオレセイ
ン膜のマスク部と非マスク部で1μピツチのライ
ンパタンで500Åの段差が形成された。次にこの
基板をプラズマ灰化装置を用いてフルオレセイン
を灰化除去した所、フルオレセイン残膜は除去さ
れSiO2のパタン化が行なえた。
[Example 1] Fluorescein was applied to a substrate with a SiO 2 film of 1000 Å on a silicon wafer at a pressure of 10 -4 Pa or less.
2000Å vacuum deposited. Next, Ar laser (wavelength
488 nm) to a width of 1 μm, and a line pattern was drawn at a pitch of 1 μm. This fluorescein film was etched using a parallel electrode plasma etching device at a CF4 gas flow rate of 40 c.c./min, etching layer pressure of 35 Pa, and RF power.
When dry etching was performed at 200 W for 10 minutes, the SiO 2 film on the wafer was etched by 500 Å, and a step of 500 Å was formed between the masked and unmasked portions of the fluorescein film with a line pattern of 1 μ pitch. Next, when the fluorescein was removed by ashing on this substrate using a plasma ashing device, the remaining fluorescein film was removed and SiO 2 could be patterned.

〔実施例 2〕 SiO2基板上に、上記実施例1と同様にアウリ
ンを1500Å真空蒸着した。次にArレーザで0.6μ
mのラインを描画して、アウリン薄膜の一部を除
去した。次にこのアウリン膜をマスクとし、CF4
ガスでCF4圧力30Pa、RF電力150Wで5分間ドラ
イエツチしたところ300ÅのSiO2がエツチングさ
れ、0.6μm幅のパタンが形成できた。残部のアウ
リン薄膜は、プラズマ灰化装置及びアセトン浸漬
で容易に除去できた。
[Example 2] Aurin was vacuum-deposited to a thickness of 1500 Å on a SiO 2 substrate in the same manner as in Example 1 above. Next, 0.6μ with Ar laser
A line of m was drawn and a part of the aurin thin film was removed. Next, using this aurin membrane as a mask, CF 4
When dry etching was carried out using gas for 5 minutes at a CF 4 pressure of 30 Pa and an RF power of 150 W, 300 Å of SiO 2 was etched and a pattern with a width of 0.6 μm was formed. The remaining aurin thin film could be easily removed using a plasma ashing device and immersion in acetone.

〔実施例 3〕 シリコンウエハの表面を100Å酸化した基板を
用いてフルオレセインを1000Å真空蒸着した。こ
の基板上に電子線を走査して、0.5μmのラインパ
タンをフルオレセイン薄膜部に作製した。次に
CF4ガス圧力35Pa、RF電力200Wで2分間ドライ
エツチした所、パタン部のSiO2酸化膜は除去さ
れSiが露出した。最後にプラズマアツシヤーでフ
ルオレセインを除去し、パタン形成を終了した。
[Example 3] Using a substrate in which the surface of a silicon wafer was oxidized to a thickness of 100 Å, fluorescein was vacuum-deposited to a thickness of 1000 Å. This substrate was scanned with an electron beam to create a 0.5 μm line pattern on the fluorescein thin film portion. next
When dry etching was performed for 2 minutes at CF 4 gas pressure of 35 Pa and RF power of 200 W, the SiO 2 oxide film on the pattern area was removed and Si was exposed. Finally, fluorescein was removed using a plasma atsher to complete pattern formation.

〔実施例 4〕 SiO2基板上に、ローダミンBを2000Å蒸着し
た。次にHe−Neレーザを用いローダミンB薄膜
部にラインパタンを描画し、これをマスクとして
上記実施例1と同様の条件でドライエツチした
所、SiO2のパタンが作製できた。
[Example 4] Rhodamine B was deposited to a thickness of 2000 Å on a SiO 2 substrate. Next, a line pattern was drawn on the rhodamine B thin film portion using a He--Ne laser, and using this as a mask, dry etching was performed under the same conditions as in Example 1, thereby producing a SiO 2 pattern.

〔実施例 5〕 シリコンウエハ上に、500ÅのSiO2膜をつけ、
この基板上に2000Åのクリスタルバイオレツトラ
クトンをArスパツタリングによつて作製した。
次にこのクリスタルバイオレツトラクトン上に
He−Cdレーザでパタンを描画した。この後上記
実施例1と同様の条件でドライエツチングし、
SiO2のパタンを作製することができた。
[Example 5] A 500 Å SiO 2 film was applied on a silicon wafer,
Crystal violet lactone with a thickness of 2000 Å was fabricated on this substrate by Ar sputtering.
Then on this crystal violet lactone
The pattern was drawn using a He-Cd laser. After that, dry etching was performed under the same conditions as in Example 1 above.
We were able to create a SiO 2 pattern.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明による微細パタン形
成法は、リソグラフイー工程の現像工程をドライ
工程化することができる。このために従来避けら
れなかつた現像時の溶媒の大量使用、廃棄処理を
全く必要としない。また、低分子有機物薄膜のコ
ートは真空蒸着やスパツタリングを用いた場合、
膜厚の均一性に優れエツチング時の膜厚むらによ
る欠陥は発生しない。また、加工する基板に段差
やエツジがある場合も、真空蒸着時の真空度調
整、スパツタリング条件によつて格段に優れた被
覆特性を持たせることができる。更に、パタンの
解像度は低分子量有機物薄膜を用いるため、パタ
ン描画用エネルギー線源の狭幅化の限界まで向上
させることができる。特に、高分子重合体レジス
ト組成物で問題になる現像時の膨潤等の解像度低
下要因工程を含まないため、優れたパタン形状の
加工が可能となる。
As explained above, the fine pattern forming method according to the present invention allows the development process of the lithography process to be a dry process. For this reason, there is no need for the use of a large amount of solvent during development or for disposal, which was previously unavoidable. In addition, when coating a thin film of low-molecular organic material using vacuum evaporation or sputtering,
The film has excellent uniformity of thickness, and defects due to uneven film thickness do not occur during etching. Furthermore, even if the substrate to be processed has steps or edges, it is possible to provide extremely superior coating properties by adjusting the degree of vacuum during vacuum evaporation and sputtering conditions. Furthermore, since the low molecular weight organic thin film is used, the resolution of the pattern can be improved to the limit of narrowing the width of the energy beam source for pattern drawing. In particular, since it does not include processes that cause resolution degradation, such as swelling during development, which is a problem with high molecular weight resist compositions, it is possible to process excellent pattern shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における各工程での形成
物を示す断面図である。 11…加工される基板、12…低分子量有機物
薄膜、13…パタン形成部、14…基板加工部。
The figure is a sectional view showing a product formed in each step in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11...Substrate to be processed, 12...Low molecular weight organic thin film, 13...Pattern forming section, 14...Substrate processing section.

Claims (1)

【特許請求の範囲】[Claims] 1 ベンゼン環又はベンゼン縮合環を有し、特定
波長の高エネルギー線を吸収するフルオレセイ
ン、アウリン、ローダミンBを含む色素又はクリ
スタルバイオレツトラクトン、マラカイトロイコ
グリーンを含むロイコ染料から成る単一組成の低
分子量有機物マスク材層を真空蒸着もしくはスパ
ツタリングにより、基板上に形成し、前記マスク
材層に、前記特定波長の高エネルギー線を照射す
ることにより、前記マスク材層の照射部分を熱的
に除去して微細パタンを生成し、この生成した微
細パタンをマスクとして前記基板に前記微細パタ
ンを転写することを特徴とする微細パタン形成
法。
1 A low molecular weight single composition consisting of a dye containing a benzene ring or a benzene condensed ring and which absorbs high-energy rays of a specific wavelength, including fluorescein, aurin, and rhodamine B, or a leuco dye containing crystal violet lactone and malachite leucogreen. An organic masking material layer is formed on a substrate by vacuum evaporation or sputtering, and the irradiated portion of the masking material layer is thermally removed by irradiating the masking material layer with high-energy rays of the specific wavelength. A method for forming a fine pattern, comprising: generating a fine pattern; and using the generated fine pattern as a mask, the fine pattern is transferred onto the substrate.
JP6845684A 1984-04-06 1984-04-06 Formation of microscopic pattern Granted JPS60211939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6845684A JPS60211939A (en) 1984-04-06 1984-04-06 Formation of microscopic pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6845684A JPS60211939A (en) 1984-04-06 1984-04-06 Formation of microscopic pattern

Publications (2)

Publication Number Publication Date
JPS60211939A JPS60211939A (en) 1985-10-24
JPH0475647B2 true JPH0475647B2 (en) 1992-12-01

Family

ID=13374213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6845684A Granted JPS60211939A (en) 1984-04-06 1984-04-06 Formation of microscopic pattern

Country Status (1)

Country Link
JP (1) JPS60211939A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221415B2 (en) 2006-02-16 2009-02-12 株式会社東芝 Method for manufacturing magnetic recording medium
JP4421582B2 (en) 2006-08-15 2010-02-24 株式会社東芝 Pattern formation method
JP4445538B2 (en) 2007-09-26 2010-04-07 株式会社東芝 Pattern formation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218175A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Circuit pattern formation method and its device
JPS5711344A (en) * 1980-06-25 1982-01-21 Mitsubishi Electric Corp Dry developing method
JPS57157241A (en) * 1981-03-25 1982-09-28 Oki Electric Ind Co Ltd Formation of resist material and its pattern
JPS57162330A (en) * 1981-03-31 1982-10-06 Kazuyuki Sugita Dry formation of pattern or dry removal of resist pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218175A (en) * 1975-08-01 1977-02-10 Hitachi Ltd Circuit pattern formation method and its device
JPS5711344A (en) * 1980-06-25 1982-01-21 Mitsubishi Electric Corp Dry developing method
JPS57157241A (en) * 1981-03-25 1982-09-28 Oki Electric Ind Co Ltd Formation of resist material and its pattern
JPS57162330A (en) * 1981-03-31 1982-10-06 Kazuyuki Sugita Dry formation of pattern or dry removal of resist pattern

Also Published As

Publication number Publication date
JPS60211939A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US5989776A (en) Photoresist composition for extreme ultraviolet lithography
US3934057A (en) High sensitivity positive resist layers and mask formation process
EP0903637B1 (en) Electron beam resist
US4604294A (en) Process for forming an organic thin film
US4386152A (en) Plasma developable electron resist process
US5071671A (en) Process for forming pattern films
US4704342A (en) Photomask having a patterned carbon light-blocking coating
US4590149A (en) Method for fine pattern formation on a photoresist
US4543319A (en) Polystyrene-tetrathiafulvalene polymers as deep-ultraviolet mask material
US5139922A (en) Method of making resist pattern
JPH0475647B2 (en)
US5104481A (en) Method for fabricating laser generated I.C. masks
JPS62247356A (en) Manufacture of evaporation photoresist of anionic polymerizable monomer and product thereof
US4027052A (en) Fabrication of iron oxide pattern
EP0113034B1 (en) A method for producing a resist image involving the use of polystyrene-tetrathiafulvalene polymer as a deep-ultraviolet printing mask
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPS5828571B2 (en) Resist formation method for microfabrication
US6503688B1 (en) Electron beam resist
US4588675A (en) Method for fine pattern formation on a photoresist
JPH0314172B2 (en)
KR100258803B1 (en) Method of patterning of semiconductor device
JPS58214149A (en) Formation of micropattern
US8512937B2 (en) Lithographic dry development using optical absorption
JPS6048023B2 (en) positive resist
JPH0147009B2 (en)