JPS6048023B2 - positive resist - Google Patents

positive resist

Info

Publication number
JPS6048023B2
JPS6048023B2 JP11370679A JP11370679A JPS6048023B2 JP S6048023 B2 JPS6048023 B2 JP S6048023B2 JP 11370679 A JP11370679 A JP 11370679A JP 11370679 A JP11370679 A JP 11370679A JP S6048023 B2 JPS6048023 B2 JP S6048023B2
Authority
JP
Japan
Prior art keywords
resist
pmma
positive resist
ultraviolet light
azide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11370679A
Other languages
Japanese (ja)
Other versions
JPS5638039A (en
Inventor
和男 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11370679A priority Critical patent/JPS6048023B2/en
Publication of JPS5638039A publication Critical patent/JPS5638039A/en
Publication of JPS6048023B2 publication Critical patent/JPS6048023B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は遠紫外光、電子線、X線等の照射により主鎖の
切断を生ずるポジ型のレジスト材料に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive resist material whose main chain is cleaved by irradiation with deep ultraviolet light, electron beams, X-rays, etc.

半導体基板上への薄膜パターンの形成は主としてフォト
レジスト層の存在下でエッチングすることにより達成さ
れる。
Formation of thin film patterns on semiconductor substrates is primarily accomplished by etching in the presence of a photoresist layer.

エッチング法としては、大別して2つのプロセスがある
Etching methods can be roughly divided into two processes.

すなわち、各種の液体化学薬品を用いるウェットプロセ
スと、液体を使用しないか、あるいは従来液体が使用さ
れていたプロセスを液体を使用しない技術で置きかえた
ドライプロセスとである。ウェットプロセスは優れたも
のであるが、素子の密度を高め、回路を小型化するにと
もなつて、配線を微細に規定するために必要な微小な解
像度を得るためにはウェットプロセスは実用的でない段
階になりつつある。
These are wet processes that use various liquid chemicals, and dry processes that either do not use liquids or replace conventional liquid processes with liquid-free techniques. Wet processes are excellent, but as device densities increase and circuits become smaller, wet processes become impractical to obtain the fine resolution needed to finely define interconnects. It is becoming a stage.

液体化学薬品を用いるウェットプロセスをドライプロセ
スにすることにより、製造工程の簡略化、清浄化、微細
パターンの加工寸法精度の向上と加工の安定性などの効
果が期待できる。
By converting a wet process that uses liquid chemicals into a dry process, we can expect effects such as simplification of the manufacturing process, cleaning, improvement of the precision of processing dimensions of fine patterns, and stability of processing.

ドライエッチングプロセスにも多くの方式があるが、現
在実用化の最も進んでいるプラズマエッチングに関連し
た問題の1つに、温度上昇がある。
Although there are many types of dry etching processes, one of the problems associated with plasma etching, which is currently the most advanced in practical use, is temperature rise.

すなわち、エッチング中に反応熱、プラズマからの放射
などにより基板温度が200゜C以上にも上昇するため
に、周知のフォトレジスト材料及び電子ビーム用レジス
ト材料のほとんどはそのままでは処理に耐えることがで
きず、プラズマエッチング中に形がくずれ、そのため配
線パターンが変形して精密なパターンができないという
問題があつた。ところでポジ型電子線レジストのうち、
ポリメチルメタアクリレート (PMMA)は最も解像
性に優れ、信頼度も高く実用的であるが、反面低速度の
ため露光時間が長くなり作業性が悪かつた。
In other words, during etching, the substrate temperature rises to over 200°C due to reaction heat, radiation from plasma, etc., so most of the well-known photoresist materials and electron beam resist materials cannot withstand the process as they are. First, there was a problem in that the shape was distorted during plasma etching, and as a result, the wiring pattern was deformed, making it impossible to form a precise pattern. By the way, among positive electron beam resists,
Polymethyl methacrylate (PMMA) has the best resolution and is highly reliable and practical, but on the other hand, it has a slow exposure time, resulting in long exposure times and poor workability.

PMMAの高感度化は適当な増感剤、たとえばシンナミ
ルアルデヒド等を添加することによりある程度可能であ
るが、その場合には増感剤が蒸発しやすいのでこれを防
ぐために、プリベイク温度を”充分に上げることができ
なくなる。例えはプリベイク温度を100゜C以下に押
さえると、PMMAの密着性が低下し、解像性も劣下す
る欠点がありPMMA本来の優れた性能を十分に発揮す
ることができなくなる。またPMMAの熱分解点は23
0、゜C)ガラス転移点は105℃と低いため、耐ドラ
イエッチング性が低かつた。本発明はこれらの点に鑑み
なされたもので、パターニングを行う薄膜表面にレジス
トとして複数個のアジド基を含むアジド型架橋剤を添加
したPMrlV4Aを塗布し、前処理として紫外線を照
射するか100〜200゜Cの温度に加熱することによ
り、PMrvAに架橋反応を起こさせ、しかる後遠紫外
光,電子線,X線等の照射により、レジストのパターン
を形成し、該レジストをマスクとして、荊記薄膜のドラ
イエッチングを行う、新規なレジスト材料を提供するも
のである。
It is possible to increase the sensitivity of PMMA to some extent by adding an appropriate sensitizer, such as cinnamyl aldehyde, but in that case, the sensitizer tends to evaporate, so to prevent this, the pre-baking temperature must be set to a sufficient level. For example, if the pre-bake temperature is kept below 100°C, the adhesion of PMMA will decrease and the resolution will also deteriorate, making it impossible for PMMA to fully demonstrate its original excellent performance. Also, the thermal decomposition point of PMMA is 23
0.°C) Since the glass transition point was as low as 105°C, the dry etching resistance was low. The present invention was developed in view of these points. PMrlV4A containing an azide-type crosslinking agent containing a plurality of azide groups is applied as a resist to the surface of a thin film to be patterned, and ultraviolet rays are irradiated as a pretreatment. By heating to a temperature of 200°C, a crosslinking reaction is caused in PMrvA, and then a resist pattern is formed by irradiation with deep ultraviolet light, electron beams, X-rays, etc. The present invention provides a new resist material for thin film dry etching.

以下本発明のレジスト及び該レジストを用いる方法の実
施例について説明を行う。
Examples of the resist of the present invention and the method of using the resist will be described below.

本発明において架橋剤として用いるアジド化合物の例を
下式に示す。
An example of the azide compound used as a crosslinking agent in the present invention is shown in the following formula.

4,4゛−ジアジドカルゴン 2,6−ビスー4゛アジドベンジル−シクロヘキサノン
2,6−ビスー4゛アジドスチリルーアセトン上記ビス
アジド化合物は波長0.3〜0.4p肌の近紫外光を照
射するか、あるいは100〜200゜Cの温度に加熱す
ることにより、2,6−ビスー4゛アジドベンジル−シ
クロヘキサノンを例として下式に示すごとく、非常に活
性な遊離基と窒素ガスに分解する。
4,4゛-diazidecalgon 2,6-bis-4゛azidobenzyl-cyclohexanone 2,6-bis-4゛azidostyrylacetone Does the above bisazide compound irradiate the skin with near-ultraviolet light with a wavelength of 0.3 to 0.4p? Alternatively, by heating to a temperature of 100-200°C, 2,6-bis-4'azidobenzyl-cyclohexanone is decomposed into highly active free radicals and nitrogen gas as shown in the formula below.

光又は熱 上記反応により生じた活性な遊離基はPMMAと結合し
て下式のごとく架橋反応を行うものと考えられる。
It is believed that the active free radicals generated by the above photo- or thermal reaction combine with PMMA to perform a cross-linking reaction as shown in the following formula.

上記のごとき架橋反応によりレジストの分子量は大きく
なり、溶媒に対する溶解量が減少する。
Due to the crosslinking reaction as described above, the molecular weight of the resist increases, and the amount dissolved in the solvent decreases.

すなわち、PMMAに0.1〜5唾量%、好ましくは1
〜2呼量%のビスアジド型架橋剤を添加したレジスト材
料をパターニングを行う基板上にスピンコート法等の方
法で塗布し、にれをPMMA分子鎖を切断することのな
い)0.3〜0.4μmの紫外光を照射するか、100
〜200℃の温度に加熱することにより、PMMAは架
橋され、分子量が大きくなる。前記レジストに波長0.
18〜0.26μm程度の遠紫外光または電子線等を用
いてパターニングを行うことにより、照射された部分の
PMMAの主鎖が切断されて、低分子化し現像液に可溶
になり、現像が可能となる。
That is, PMMA contains 0.1 to 5% saliva, preferably 1
A resist material to which a bisazide crosslinking agent of ~2% by volume is added is applied onto the substrate to be patterned by a method such as a spin coating method, and the resist material is coated with a resist material containing a bisazide type crosslinking agent of 0.3 to 0 (without cutting the PMMA molecular chains). .4μm ultraviolet light or 100μm
By heating to temperatures of ~200<0>C, PMMA is crosslinked and its molecular weight increases. The resist has a wavelength of 0.
By patterning using deep ultraviolet light or electron beams of about 18 to 0.26 μm, the main chain of PMMA in the irradiated part is cut, and the molecular weight becomes low and soluble in the developer, making it difficult to develop. It becomes possible.

本発明のビスアジド型化合物を添加して PMMAの架橋するレジストを用いれば、通常PMMA
のプリベイクは170℃×30〜60n11nの条件で
行われるが、その場合と同様にプリベイク温度を充分上
げることができるので本明細書の最初の部分に述べたP
MMAの優れた性能を十分に発揮させることができる。
If a resist that crosslinks PMMA by adding the bisazide compound of the present invention is used, it is usually possible to
Pre-baking is carried out under the conditions of 170°C x 30-60n11n, but as in that case, the pre-bake temperature can be raised sufficiently, so P
The excellent performance of MMA can be fully demonstrated.

さらに、PMMAレジストのみを用いる従来法では、P
MrS/1Aが溶解性の強い溶媒、あるいは現像液によ
つて未露光部分までが溶解し、パターンがだれる等の不
具合な点があつたが、本発明の方法によるPMMAをあ
らかじめ架橋させてから遠紫外露光を行う方法では、レ
ジストは分子量が大きくなり溶媒に対する溶解性が減る
ので未露光部分溶解速度がほぼ0となりパターンがだれ
にくくなり、また現像液を用いて従来より長い時間現像
することができるようになり、きれいなパターンを形成
することができる。さらに、架橋することによりPMM
Aの分子量が大きくなり、三次元的に結合されるために
耐熱性も向上する。
Furthermore, in the conventional method using only PMMA resist, P
There were problems such as unexposed areas of MrS/1A being dissolved by solvents with strong solubility or developing solutions, resulting in sagging of the pattern, but after crosslinking PMMA in advance using the method of the present invention In the method of deep ultraviolet exposure, the molecular weight of the resist increases and its solubility in solvents decreases, so the dissolution rate of unexposed areas becomes almost 0, making the pattern less likely to fade, and it is also possible to develop the resist for a longer time using a developer than before. This allows you to form beautiful patterns. Furthermore, by crosslinking, PMM
Since the molecular weight of A increases and it is bonded three-dimensionally, the heat resistance also improves.

従つてたとえばビスアジドを10”1%程度添加した本
発明のレジストは耐ドライエッチ性が無添加のものに比
べ約6倍程度向上する利点がある。また、波長0.4μ
m程度の紫外光を用いて露光する従来法に比べ、本発明
のレジストを用いる方法では紫外光よりも短波長の遠紫
外光,電子線を照射して露光を行うので、識別可能な各
パターン間の間隔は従来3μm程度であつたものが、例
えば遠紫外光を用いた場合には2μm程度に改善され、
素子の集積密度を高めることができる。
Therefore, for example, the resist of the present invention to which about 10"1% of bisazide is added has the advantage that the dry etch resistance is about 6 times higher than that of a resist without additives. Also, at a wavelength of 0.4μ
Compared to the conventional method of exposing using ultraviolet light of about Conventionally, the distance between the two is about 3 μm, but when using far ultraviolet light, for example, it can be improved to about 2 μm.
The integration density of elements can be increased.

Claims (1)

【特許請求の範囲】 1 ポリメチルメタアクリレート(PMMA)に0.1
〜50重量%のアジド型架橋剤を添加したことを特徴と
するポジ型レジスト。 2 架橋剤として、複数個のアジド基を持つアジド化合
物を用いることを特徴とする特許請求の範囲第1項に記
載のポジ型レジスト。
[Claims] 1 0.1 to polymethyl methacrylate (PMMA)
A positive resist characterized by adding ~50% by weight of an azide crosslinking agent. 2. The positive resist according to claim 1, wherein an azide compound having a plurality of azide groups is used as the crosslinking agent.
JP11370679A 1979-09-05 1979-09-05 positive resist Expired JPS6048023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11370679A JPS6048023B2 (en) 1979-09-05 1979-09-05 positive resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11370679A JPS6048023B2 (en) 1979-09-05 1979-09-05 positive resist

Publications (2)

Publication Number Publication Date
JPS5638039A JPS5638039A (en) 1981-04-13
JPS6048023B2 true JPS6048023B2 (en) 1985-10-24

Family

ID=14619095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11370679A Expired JPS6048023B2 (en) 1979-09-05 1979-09-05 positive resist

Country Status (1)

Country Link
JP (1) JPS6048023B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589548B2 (en) * 1980-02-08 1983-02-21 株式会社 拓和 plasma plug
JPS5852634A (en) * 1981-09-25 1983-03-28 Tokyo Ohka Kogyo Co Ltd Photosensitive composition
JPS58114033A (en) * 1981-12-28 1983-07-07 Fujitsu Ltd Formation of pattern
JPS6159334A (en) * 1984-08-30 1986-03-26 Ube Ind Ltd Photosensitive polyimide composition soluble to organic solvent

Also Published As

Publication number Publication date
JPS5638039A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
US4536421A (en) Method of forming a microscopic pattern
US3987215A (en) Resist mask formation process
JPH07261393A (en) Negative resist composition
JPH033378B2 (en)
KR100555497B1 (en) Method for forming fine patterns
US3935117A (en) Photosensitive etching composition
JP2707785B2 (en) Resist composition and pattern forming method
JPS6048023B2 (en) positive resist
US4454200A (en) Methods for conducting electron beam lithography
JPS6037548A (en) Plasma developable negative resist compound for electron beam, x ray and optical lithography and manufacture thereof
JPH1055068A (en) Production of semiconductor device using high resolving power lithography and device therefor
JPH0383063A (en) Pattern forming method
JPS6359246B2 (en)
KR20010113735A (en) Method for producing a pattern suitable for forming sub-micron width metal lines
JPS6362593B2 (en)
JPS62258449A (en) Making of two-layer resist image
JPH0334055B2 (en)
JPH0334053B2 (en)
JPH02156244A (en) Pattern forming method
JPS58214149A (en) Formation of micropattern
JPS62138843A (en) Composite resist structural body
JPS61289345A (en) Resist for lithography
JPH0458170B2 (en)
JPS6152567B2 (en)
JPH0147009B2 (en)