JPH0475254A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0475254A
JPH0475254A JP2187933A JP18793390A JPH0475254A JP H0475254 A JPH0475254 A JP H0475254A JP 2187933 A JP2187933 A JP 2187933A JP 18793390 A JP18793390 A JP 18793390A JP H0475254 A JPH0475254 A JP H0475254A
Authority
JP
Japan
Prior art keywords
electrode
aluminum
secondary battery
current collector
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2187933A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2187933A priority Critical patent/JPH0475254A/en
Publication of JPH0475254A publication Critical patent/JPH0475254A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a terminal which is electrically and mechanically excellent and enhance reliability of a secondary battery by sandwiching an aluminium electrode current collector of predetermined thickness between metals having predetermined hardness each, and electrically connecting each metal to aluminium. CONSTITUTION:The thickness of an aluminium current collector is less than 200mum. Two metals having Vickers hardness more than 40mum each and used for sandwiching aluminium between them are of the same kind. Ultrasonic welding is preferable as connecting method from the point of view of reproducibility, electrical properties and mechanical properties. The time required for ultrasonic welding is 0.1 to 10min, pressurizing forces are 0.5 to 7kg/cm<2>, output frequency is 20 to 40kHz.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二次電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a secondary battery.

[従来の技術] 近年機器の小型化、軽量化、ポータプル化に伴い、その
電源となる電池にも小型、軽量で薄く、高寿命な電池が
要望されている。
[Prior Art] In recent years, as devices have become smaller, lighter, and more portable, there has been a demand for smaller, lighter, thinner, and longer-life batteries for the batteries that serve as their power sources.

アルミニウムは軽量で加工性に優れることから電極の集
電体に用いると軽量で高エネルギー密度の電池を形成す
ることが可能であり、例えば特願昭63−83971で
はアルミニウム集電体をポリマー電池の集電体に用いる
提案がなされている。またアルミニウムはリチウムと合
金を形成し、充放電の繰り返しに対し安定な活物質とす
ることができ、集電体上にL 1−A1合金を担持させ
た電極は二次電池用負極としては高エネルギー密度、高
サイクル寿命である。
Aluminum is lightweight and has excellent workability, so when used as a current collector for electrodes, it is possible to form lightweight batteries with high energy density. Proposals have been made for use in current collectors. In addition, aluminum forms an alloy with lithium and can be used as an active material that is stable against repeated charging and discharging, and an electrode in which L1-A1 alloy is supported on a current collector is highly recommended as a negative electrode for secondary batteries. Energy density and high cycle life.

しかしながら、このようにアルミニウムを集電体に用い
た電極においては端子取り出しの点で問題が多い。たと
えば、アルミニウムとNi、ステンレス鋼等の金属ある
いは合金とはアーク溶接等では接合不能であり、ハンダ
付けでは端子部で極部電池を形成し品すく、導電性接着
剤による接着では電解液による接着強度の低下、導電性
の点で問題があった。コンデンサーの分野ではアルミニ
ウム電極をアルミニウムリード板で超音波溶接し端子と
しているが、アルミニウムリード板と外部回路との接続
の問題が残り、またこのアルミニウム電極は電池の分野
で使用される電極集電体にくらべ厚く、またアルミニウ
ムリード板も厚い。二次電池の集電体に用いるアルミニ
ウムの厚さではアルミニウムが軟らかすぎるため溶接部
分が伸び、薄くなり、ついには破断してしまい電気的2
機械的な接続が不良となりやすい。また端子部はかなり
の厚さになってしまうためシート状電極を各種電池へ実
装する際の障害となる。
However, electrodes using aluminum as a current collector have many problems in terms of terminal extraction. For example, metals or alloys such as aluminum, Ni, and stainless steel cannot be joined by arc welding, etc., and soldering requires forming a terminal cell at the terminal, and bonding with a conductive adhesive requires bonding with an electrolyte. There were problems in terms of reduced strength and conductivity. In the field of capacitors, aluminum electrodes are ultrasonically welded to aluminum lead plates to form terminals, but problems remain in connection between the aluminum lead plate and external circuits, and this aluminum electrode is used as an electrode current collector used in the battery field. It is thicker than the original, and the aluminum lead plate is also thicker. The thickness of the aluminum used for the current collector of secondary batteries is too soft, so the welded part stretches, becomes thinner, and eventually breaks, resulting in an electrical
Mechanical connections are likely to be defective. Furthermore, since the terminal portion is quite thick, it becomes an obstacle when mounting the sheet-like electrode on various types of batteries.

[発明が解決しようとする課題] 本発明は、こうした実状に鑑み端子部における上記した
欠点を解消した二次電池を提供することを目的とするも
のである。
[Problems to be Solved by the Invention] In view of these actual circumstances, an object of the present invention is to provide a secondary battery that eliminates the above-described drawbacks in the terminal portion.

[課題を解決するための手段] 本発明者は上記問題点について鋭意検討を重ねた結果、
ビッカース硬さが50以上の金属あるいは合金でアルミ
ニウムをはさみ、これを溶接により電気的に接続するこ
とにより電極端子とすることができ、これを用いた電極
端子はアルミニウム集電体の厚さを、たとえ200μI
以下としても、機械的、電気的特性に優れることを見出
し本発明に至った。
[Means for Solving the Problems] As a result of intensive studies on the above problems, the inventors have found that:
An electrode terminal can be made by sandwiching aluminum between metals or alloys with a Vickers hardness of 50 or more and electrically connecting them by welding. Even if 200μI
We have found that the following also have excellent mechanical and electrical properties, leading to the present invention.

即ち、本発明は厚さ200μ重以下のアルミニウムを電
極集電体とするシート状電極を用いる二次電池において
、該集電体の一部をビッカース硬度40以上の金属ある
いは合金ではさみ、該金属あるいは合金をアルミニウム
とともに電気的に接続させ端子部とすることを特徴とす
る二次電池である。
That is, the present invention provides a secondary battery using a sheet-like electrode having a thickness of 200 μm or less aluminum as an electrode current collector, in which a part of the current collector is sandwiched between metals or alloys having a Vickers hardness of 40 or more, and the metal Alternatively, it is a secondary battery characterized in that the alloy is electrically connected with aluminum to form a terminal portion.

本発明におけるアルミニウム集電体の厚さとしては20
0μm以下、好ましくは5μIl〜150μmである。
The thickness of the aluminum current collector in the present invention is 20
It is 0 μm or less, preferably 5 μIl to 150 μm.

200μlを越えるとアルミニウム集電体の重量が大き
く、軽量性のメリットが少なくなる。
If it exceeds 200 μl, the weight of the aluminum current collector becomes large, and the merit of lightness decreases.

ビッカース硬さが40以上の金属あるいは合金としては
銅、ニッケル、ステンレススチール等の高電気伝導度の
ものが用いられる。なお、アルミニウムをはさみこむビ
ッカース硬さ40μM以上の二つの金属あるいは合金は
同種のものが好ましいが、異っていてもよい。
As the metal or alloy having a Vickers hardness of 40 or more, metals with high electrical conductivity such as copper, nickel, and stainless steel are used. It is preferable that the two metals or alloys having a Vickers hardness of 40 μM or more sandwiching the aluminum are of the same type, but may be different.

ビッカース硬さが40以上の金属あるいは合金の厚みと
しては5〜100μ寵、好ましくは10〜70μ■であ
る。5μI未満では、強度的に不利であり、100μ−
を越えると端子部が厚く、また重くなってしまう。
The thickness of the metal or alloy having a Vickers hardness of 40 or more is 5 to 100 .mu.m, preferably 10 to 70 .mu.m. If it is less than 5μI, it is disadvantageous in terms of strength, and if it is less than 100μ-
If it exceeds this, the terminal will become thick and heavy.

接続の方法としては超音波溶接、スポット溶接。Connection methods include ultrasonic welding and spot welding.

レーザー溶接、プラズマ溶接を例示することができるが
超音波溶接が再現性、電気的特性9機械的特性の点で好
ましい。
Examples include laser welding and plasma welding, but ultrasonic welding is preferred in terms of reproducibility, electrical properties, and mechanical properties.

超音波溶接の時間としては0.1〜10秒、加圧力とし
ては0.5〜7 )cg / cgf、出力周波数は2
0〜40KHzが用いられる。
Ultrasonic welding time is 0.1~10 seconds, pressure is 0.5~7)cg/cgf, output frequency is 2
0-40KHz is used.

本発明の電極端子部はさらに圧接、導電性接着剤、ハン
ダ付け、溶接等により外部回路へ接続するためのリード
線、リード板を設置することも可能である。また本発明
の二次電池の電極端子部の取り付けは活物質の担持の前
に行ってもよいが、担持の後さらには電池実装の際に行
ってもよい。
The electrode terminal portion of the present invention can further be provided with lead wires and lead plates for connection to an external circuit by pressure welding, conductive adhesive, soldering, welding, or the like. Furthermore, the electrode terminal portions of the secondary battery of the present invention may be attached before the active material is supported, or may be attached after the active material is supported or even during battery mounting.

本発明の電極は、二次電池、コンデンサー、エレクトロ
クロミック素子、トランジスター 太陽電池等の素子へ
応用可能であるが、二次電池の電極に用いると最も効果
が高い。
The electrode of the present invention can be applied to devices such as secondary batteries, capacitors, electrochromic devices, transistors, solar cells, etc., but is most effective when used as an electrode for secondary batteries.

次に本発明の電極を用いる二次電池について説明する。Next, a secondary battery using the electrode of the present invention will be explained.

本発明の電池は、基本的には正極、負極及び電解質より
構成されている。
The battery of the present invention basically consists of a positive electrode, a negative electrode, and an electrolyte.

正極の活物質としてはM o S   T i S2゛
2 V  O、MnO、CaO2等の金属カルコゲン化合物
、ポリピロール、ポリアセチレン、ポリ3メチルチオフ
エン、ポリアニリン、ポリパラフェニレン、ポリジフェ
ニルベンジジン、ポリアズレン、ポリカルバゾール等の
導電性高分子材料を例示することができるが、中でも導
電性高分子材料が軽量性、フレキシビリティ−の点で最
も好ましい。
As active materials for the positive electrode, metal chalcogen compounds such as M o S T i S2'2 VO, MnO, and CaO2, polypyrrole, polyacetylene, poly3-methylthiophene, polyaniline, polyparaphenylene, polydiphenylbenzidine, polyazulene, polycarbazole, etc. Among these conductive polymer materials, conductive polymer materials are most preferable in terms of lightness and flexibility.

負極活物質としてはLiとAll及びPb、St。The negative electrode active materials include Li, All, Pb, and St.

Ga、In、Mg等の合金、ポリアセチレン、ポリチオ
フェン、ポリピリジン等の導電性高分子。
Alloys such as Ga, In, and Mg, and conductive polymers such as polyacetylene, polythiophene, and polypyridine.

炭素体が例示することができるがL L−Al1合金が
サイクル寿命の点で最も好ましい。
Although a carbon body can be used as an example, L L-Al1 alloy is most preferable in terms of cycle life.

電解質溶液を構成する溶媒としては、特に限定はされれ
ないが、比較的極性の大きい溶媒が好適に用いられる。
The solvent constituting the electrolyte solution is not particularly limited, but a relatively highly polar solvent is preferably used.

具体的には、プロピレンカーボネート、エチレンカーボ
ネート、ベンゾニトリル。
Specifically, propylene carbonate, ethylene carbonate, and benzonitrile.

アセトニトリル、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、γ−ブチルラクトン、ジオキソラン、
トリエチルフォスフェート、トリエチルフォスファイト
、ジメチルホルムアミド、ジメチルアセトアミド、ジメ
チルスルフオキシド。
Acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyl lactone, dioxolane,
Triethyl phosphate, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethyl sulfoxide.

ジオキサン、ジメトキシエタン、ポリエチレングリコー
ル、スルフオラン、ジクロロエタン、クロルベンゼン、
ニトロベンゼン等の有機溶媒の1種又は2種以上の混合
物を挙げることができる。
Dioxane, dimethoxyethane, polyethylene glycol, sulforane, dichloroethane, chlorobenzene,
One or a mixture of two or more organic solvents such as nitrobenzene can be mentioned.

電解塩質としては、LiPF  、LiSbF6゜Li
AsF  、LiCgO、NaCl0.。
As electrolytic salts, LiPF, LiSbF6゜Li
AsF , LiCgO, NaCl0. .

K I 、K P F  、K S b F  、K 
A s F e 。
K I , K P F , K S b F , K
A s F e .

K C10、[(n  B u )  N 3  、A
 s F e[(n−Bu)  Nl ” ・CD O
,−[(n−Bu)  Nl”・BF4− L I A II CI  、L i B F  、 
L i CF a S O3などを挙げることができる
K C10, [(n B u ) N 3 , A
s F e [(n-Bu) Nl ” ・CD O
,-[(n-Bu)Nl''・BF4- L I A II CI , L i B F ,
Examples include L i CF a S O3.

セパレータとしては、電解質溶液のイオン移動に対して
低抵抗であり、かつ、溶液保持性に優れたものが用いら
れる。例えば、ガラス繊維フィルタ;ポリエステル、テ
フロン1ポリフロン、ポリプロピレン等の高分子ボアフ
ィルタ、不織布;あるいはガラス繊維とこれらの高分子
からなる不織布等を用いることができる。
As the separator, one is used that has low resistance to ion movement of the electrolyte solution and has excellent solution retention. For example, a glass fiber filter; a polymer bore filter such as polyester, Teflon 1 Polyflon, or polypropylene; a nonwoven fabric; or a nonwoven fabric made of glass fiber and these polymers can be used.

また、これら電解液、セパレータに代わる構成要素とし
て固体電解質を用いることもできる。例えば、無機系で
は、AgCJ 、AgB r、Ag I。
Moreover, a solid electrolyte can also be used as a component in place of these electrolytes and separators. For example, in inorganic systems, AgCJ, AgBr, Ag I.

Li1などの金属ハロゲン化物、RbAg415゜Rb
Ag414CN等が挙げられる。また、有機系では、ポ
リエチレンオキサイド、ポリプロピレンオキサイド、ポ
リフッ化ビニリデン、ポリアクリルアミド等をポリマー
マトリクスとして先に述べた電解質塩をポリマーマトリ
クス中に溶解せしめた複合体、あるいはこれらの架橋体
、低分子量ポリエチレンオキサイド、クラウンエーテル
などのイオン解離基をポリマー主鎖にグラフト化した高
分子電解質あるいは高分子量重合体に電解質を担持させ
たゲル状電解質が挙げられる。
Metal halides such as Li1, RbAg415°Rb
Examples include Ag414CN. In addition, in organic systems, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide, etc. are used as a polymer matrix, and the above-mentioned electrolyte salt is dissolved in the polymer matrix to form a composite, or a crosslinked product of these, and low molecular weight polyethylene oxide. , a polymer electrolyte in which an ionic dissociative group such as a crown ether is grafted onto a polymer main chain, or a gel electrolyte in which an electrolyte is supported on a high molecular weight polymer.

電池の形態としては特に限定されるものではないが、コ
イン型、シート型、筒型、ガム型等の各種電池に実装す
ることができる。
Although the form of the battery is not particularly limited, it can be mounted in various types of batteries such as coin type, sheet type, cylindrical type, and gum type.

[実施例] 以下に実施例を挙げて本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 純度99.99%のアルミニウム箔(厚さ50×90 
X O,Hm)を塩酸を含む電解液中で50V直流電圧
を印加して粗面化した(表面積・・・平面箔の30倍)
Example 1 Aluminum foil with a purity of 99.99% (thickness 50 x 90
X O, Hm) was roughened by applying a 50 V DC voltage in an electrolytic solution containing hydrochloric acid (surface area: 30 times that of a flat foil)
.

第1,2図に示すように5 X 30 X O,H龍と
5X 5 X O,0:(uのNiホイルでアルミニウ
ム箔をはさみ3kg、 0.1秒間超音波溶接を行った
。端子部の接続は十分な強度を持っていた。
As shown in Figures 1 and 2, 5 x 30 x O, H dragon and 5 x 5 x O, 0: (U) Ni foil was sandwiched with aluminum foil and 3 kg was ultrasonically welded for 0.1 seconds. Terminal section The connection had sufficient strength.

次いでこのアルコニウム箔を陽極とし、アジピン酸アン
モニウム20g/II水溶液を電解液として2v印加す
ることにより陽極酸化被膜(厚さ約30人)を形成した
。次に過硫酸アンモニウムの20tr/1水溶液に陽極
酸化被膜を形成したアルミニウム箔(以下単にアルミニ
ウム箔という)を5分間浸漬した後、ビロール単量体の
10tr/flエタノール溶液に浸漬してアルミニウム
箔表面に化学酸化重合ビロール膜を形成した。
Next, using this alkonium foil as an anode, an anodic oxide film (approximately 30 ml thick) was formed by applying 2 volts of 20 g/II aqueous solution of ammonium adipate as an electrolyte. Next, the aluminum foil on which the anodized film was formed (hereinafter simply referred to as aluminum foil) was immersed in a 20 tr/1 aqueous solution of ammonium persulfate for 5 minutes, and then immersed in a 10 tr/fl ethanol solution of virol monomer to coat the surface of the aluminum foil. A chemically oxidized polymerized virol film was formed.

パラトルエンスルホン酸0.2mol/N及びビロール
0.3mol/1を含む電解液に前記処理したアルミニ
ウム箔を浸漬し、これを陽極とし、ステンレス板を陰極
として0.5mA/c−の定電流で電解重合を行いポリ
ピロール/l電極を作製した。
The treated aluminum foil was immersed in an electrolytic solution containing 0.2 mol/N of paratoluenesulfonic acid and 0.3 mol/1 of virol, and a constant current of 0.5 mA/c was applied using this as an anode and a stainless steel plate as a cathode. Electrolytic polymerization was performed to produce a polypyrrole/l electrode.

比較例1 5 X 30 X O,03111IのNiホイルを単
独で超音波溶接を試みた。Alの破断により端子の設置
は不能であった。
Comparative Example 1 Ultrasonic welding was attempted on a 5 x 30 x O, 03111I Ni foil alone. It was impossible to install the terminal due to the breakage of the aluminum.

比較例2 アルミニウムハンダを用い、5 X 30 X O,0
B+nのNiホイルのみで接続する以外は実施例1と同
様にして端子部を設置した。接続は良好であるが、接続
部は第3図に示すように平坦ではなかった。
Comparative Example 2 Using aluminum solder, 5 x 30 x O,0
The terminal portion was installed in the same manner as in Example 1 except that the connection was made using only the B+n Ni foil. Although the connection was good, the connection was not flat as shown in FIG.

実施例2 コンデンサ用エツチド箔(50X 90 Xo、07m
m)上にLiを45μl真空蒸着した。これを120℃
に加熱することによりLi−Al1合金電極を得た。こ
れを5 X 30 X O,05關と5 X 5 X 
O,05順のNiホイルで第1図のようにはさみ3.5
 kg、 0.08秒間超音波溶接を行い端子部を設け
た。
Example 2 Etched foil for capacitor (50X 90Xo, 07m
m) 45 μl of Li was vacuum deposited on top. This at 120℃
A Li-Al1 alloy electrode was obtained by heating to . This is 5 X 30 X O, 05 and 5 X 5 X
As shown in Figure 1, cut the Ni foil in the order of O, 05 with scissors 3.5
kg, and terminals were formed by ultrasonic welding for 0.08 seconds.

比較例3 5 X 30 X 0.05mmのNiホイルを単独で
用いる以外は実施例2と同様にして電極を得た。溶接部
は完全に接続されてなく、一部のみが接続されているに
すぎなかった。
Comparative Example 3 An electrode was obtained in the same manner as in Example 2 except that a Ni foil of 5 x 30 x 0.05 mm was used alone. The welds were not completely connected, only partially connected.

電池試験 実施例1.比較例2で製造した電極を正極、実施例2で
製造した電極を負極に用いセパレータにポリプロピレン
微多孔性膜に3M LBF4/プロピレンカーボネイト
+ジメトキシエタン(7:3)をしみこませたものを用
い外装剤にポリエステル/Aft /ポリエチレン三層
構造の熱融着フィルムを用い第4図に示すような電池を
製造した。
Battery test example 1. The electrode manufactured in Comparative Example 2 was used as the positive electrode, the electrode manufactured in Example 2 was used as the negative electrode, and the separator was a polypropylene microporous membrane impregnated with 3M LBF4/propylene carbonate + dimethoxyethane (7:3). A battery as shown in FIG. 4 was manufactured using a heat-sealable film having a three-layer structure of polyester/Aft/polyethylene as the agent.

比較例3の電極を負極、実施例1の電極を正極に用いて
上記方法と同じように電池を製造した。
A battery was manufactured in the same manner as above using the electrode of Comparative Example 3 as a negative electrode and the electrode of Example 1 as a positive electrode.

電池性能を表1に示す。Table 1 shows the battery performance.

表  1 [発明の効果] 以上説明したように、本発明の二次電池は、電気的1機
械的に優れた端子部を有し、高性能かつ信頼性が高い。
Table 1 [Effects of the Invention] As explained above, the secondary battery of the present invention has terminal parts that are electrically and mechanically excellent, and has high performance and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1および2図は本発明の二次電池における端子部の構
成の一例を説明する図で、第1図は平面図、第2図は側
面図、第3図は比較例3における端子部の接続状態を説
明する図、第4図は電池試験に供した本発明の二次電池
の構成を模式的に説明する図。 第1図 第4図 正極活物質 第2図 jL惚γ古’v+i 第3図
1 and 2 are diagrams illustrating an example of the structure of the terminal section in the secondary battery of the present invention, in which FIG. 1 is a plan view, FIG. 2 is a side view, and FIG. 3 is a diagram of the terminal section in Comparative Example 3. FIG. 4 is a diagram illustrating the connection state, and FIG. 4 is a diagram schematically illustrating the configuration of the secondary battery of the present invention that was subjected to a battery test. Figure 1 Figure 4 Positive electrode active material Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)厚さ200μm以下のアルミニウムを電極集電体
とするシート状電極を用いる二次電池において、該集電
体の一部をビッカース硬度40以上の金属あるいは合金
ではさみ該金属あるいは合金をアルミニウムとともに電
気的に接続させ端子部とした電極を用いることを特徴と
する二次電池。
(1) In a secondary battery using a sheet-like electrode in which aluminum with a thickness of 200 μm or less is used as an electrode current collector, a part of the current collector is sandwiched between metals or alloys with a Vickers hardness of 40 or more, and the metals or alloys are replaced with aluminum. A secondary battery characterized by using an electrode which is electrically connected to the electrode and serves as a terminal part.
(2)電気的な接続が超音波溶接による請求項(1)記
載の二次電池。
(2) The secondary battery according to claim (1), wherein the electrical connection is made by ultrasonic welding.
JP2187933A 1990-07-18 1990-07-18 Secondary battery Pending JPH0475254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187933A JPH0475254A (en) 1990-07-18 1990-07-18 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187933A JPH0475254A (en) 1990-07-18 1990-07-18 Secondary battery

Publications (1)

Publication Number Publication Date
JPH0475254A true JPH0475254A (en) 1992-03-10

Family

ID=16214725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187933A Pending JPH0475254A (en) 1990-07-18 1990-07-18 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0475254A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349479A (en) * 1993-06-11 1994-12-22 Murata Mfg Co Ltd Manufacture of flat power source element
JPH07326336A (en) * 1994-05-31 1995-12-12 Sony Corp Secondary battery
US5667205A (en) * 1995-03-22 1997-09-16 Yamashita Rubber Kabushiki Kaisha Fluid-sealed type anti-vibration rubber device
EP0798794A1 (en) * 1996-03-27 1997-10-01 SANYO ELECTRIC Co., Ltd. A cell which secures the reliability of a protective circuit
JPH10312788A (en) * 1997-05-14 1998-11-24 Ricoh Co Ltd Flat battery
JP2005116434A (en) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd Welding method of battery electrode and battery pack
JP2006324143A (en) * 2005-05-19 2006-11-30 Nissan Motor Co Ltd Secondary battery
JP2007250376A (en) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
JPWO2014034385A1 (en) * 2012-08-28 2016-08-08 株式会社Gsユアサ Power storage device manufacturing method and power storage device
JP2017130442A (en) * 2016-01-20 2017-07-27 Fdk株式会社 Laminate-type power storage element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349479A (en) * 1993-06-11 1994-12-22 Murata Mfg Co Ltd Manufacture of flat power source element
JPH07326336A (en) * 1994-05-31 1995-12-12 Sony Corp Secondary battery
US5667205A (en) * 1995-03-22 1997-09-16 Yamashita Rubber Kabushiki Kaisha Fluid-sealed type anti-vibration rubber device
EP0798794A1 (en) * 1996-03-27 1997-10-01 SANYO ELECTRIC Co., Ltd. A cell which secures the reliability of a protective circuit
US5976729A (en) * 1996-03-27 1999-11-02 Sanyo Electric Co., Ltd. Cell which secures the reliability of a protective circuit
JPH10312788A (en) * 1997-05-14 1998-11-24 Ricoh Co Ltd Flat battery
JP2005116434A (en) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd Welding method of battery electrode and battery pack
JP2006324143A (en) * 2005-05-19 2006-11-30 Nissan Motor Co Ltd Secondary battery
JP2007250376A (en) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
JPWO2014034385A1 (en) * 2012-08-28 2016-08-08 株式会社Gsユアサ Power storage device manufacturing method and power storage device
JP2017130442A (en) * 2016-01-20 2017-07-27 Fdk株式会社 Laminate-type power storage element

Similar Documents

Publication Publication Date Title
US6195251B1 (en) Electrode assembly and electric double layer capacitor having the electrode assembly
JP5124953B2 (en) Bipolar battery, battery pack and vehicle equipped with these
US6198623B1 (en) Carbon fabric supercapacitor structure
JP3428448B2 (en) Electrode structure and battery using the same
JP2003510768A (en) Lithium secondary battery having individual cells connected to each other, and a clock, a computer, and a communication device equipped with such a battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP2001297795A (en) Battery
JPH0475254A (en) Secondary battery
JP2001297798A (en) Manufacturing method of flat battery
JP2001035523A (en) Manufacture of film exterior trimming battery
JPH0458146B2 (en)
JP3244691B2 (en) Electric double layer capacitor
JP2001148234A (en) Electrochemical device
JP4283518B2 (en) Electrochemical devices
JP3775633B2 (en) Stacked polymer electrolyte battery
JP2003036825A (en) Nonaqueous electrolyte solution battery
JP2001332240A (en) Lead for battery, and mounting structure of the lead for battery
KR20010005879A (en) Method for manufacturing lithium ion battery
JPH11260343A (en) Polymer electrolyte battery
JPS62115663A (en) Organic electrolyte secondary battery
JP2000243374A (en) Polymer electrolyte battery
JP2002075297A (en) Battery
JP3108142B2 (en) Non-aqueous electrolyte battery
JP2770388B2 (en) Manufacturing method of all solid state secondary battery
JPH09270250A (en) Lead wire for nonaqueous electrolyte battery