JPH047397A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH047397A
JPH047397A JP10742790A JP10742790A JPH047397A JP H047397 A JPH047397 A JP H047397A JP 10742790 A JP10742790 A JP 10742790A JP 10742790 A JP10742790 A JP 10742790A JP H047397 A JPH047397 A JP H047397A
Authority
JP
Japan
Prior art keywords
polymer
electrorheological fluid
formula
weight
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10742790A
Other languages
Japanese (ja)
Inventor
Izuho Okada
出穂 岡田
Yoshinobu Asako
佳延 浅子
Minoru Kobayashi
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP10742790A priority Critical patent/JPH047397A/en
Publication of JPH047397A publication Critical patent/JPH047397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To obtain an electroviscous fluid generating a large shear stress by applying a weak electric field and having a small current density applied and excellent electric current characteristics by incorporating a dispersing phase consisting of an org. polymer particle with cation exchange capacity, a dispersing medium consisting of a specified insulating liq. and a specified polymer additive. CONSTITUTION:An electroviscous fluid is obtd. by incorporating a dispersing phase consisting of an org. polymer particle with cation exchange capacity (e.g. a sulfonic acid group-contg. PS polymer), a dispersing medium consisting of an insulating liq. wherein a hydrocarbon compd. is a main ingredient and a polymer additive. The polymer additive is constituted of structural units (A) of formula I (wherein R is H or CH; X is a group of formula II, III or IV, or CN) and structural units (B) of formula V (wherein R is H or CH3; Y is an arom. hydrocarbon group) as essential constituting units and a polymer wherein the compsn. is in the range of 0.1-60wt.% structural units A and 40-99.9wt.% structural units B and the average mol.wt. is 1,000-10,000,000. This fluid has excellent electric current characteristics wherein it generates a large shear stress by applying a relatively weak electric field and a current density applied at that time is small and the generated shear stress and the current density are excellently stable for long time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気粘性流体に関するものである。更に詳しく
は、比較的弱い電場を印加することによっても大きいせ
ん断路力を発生し、その際に流れる電流密度が小さいと
いう電流特性に優れ、かつ発生しなせん断路力及び電流
密度の経時安定性に優れ、かつ電場を印加していない状
態での分散安定性(分散相を沈降あるいは浮上させずに
、電気粘性流体を長時間均一状態に保持できる性能)に
特に優れた電気粘性流体に間するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to electrorheological fluids. More specifically, it has excellent current characteristics in that it generates a large shear path force even when a relatively weak electric field is applied, and the current density that flows at that time is small, and the stability of the shear path force and current density over time without being generated. The electrorheological fluid has excellent dispersion stability (the ability to maintain the electrorheological fluid in a uniform state for a long time without causing the dispersed phase to settle or float) when no electric field is applied. It is something.

〈従来の技術〉 電気粘性流体とは、例えば絶縁性の分散媒中に固体粒子
を分散・懸濁して得られる流体であって、そのレオロジ
ー的あるいは流れ性質が電場変化を加えることにより粘
塑性型の性質に変わる流体であり、一般に外部電場を印
加した時に粘度が著しく上昇し大きいせん断路力を誘起
する、いわゆるウィンズロ−効果を示す流体として知ら
れている。
<Prior art> An electrorheological fluid is a fluid obtained by dispersing or suspending solid particles in an insulating dispersion medium, and its rheological or flow properties can be changed to a viscoplastic type by applying an electric field change. It is generally known as a fluid that exhibits the so-called Winslow effect, in which the viscosity increases significantly and a large shear path force is induced when an external electric field is applied.

このウィンズロ−効果は応答性が速いという特徴を有す
るため、電気粘性流体はクラッチ、ダンパー、ブレーキ
、ショックアブソーバ−、アクチュエーター、パルプ等
への応用が試みられている。
Since the Winslow effect is characterized by quick response, attempts have been made to apply electrorheological fluids to clutches, dampers, brakes, shock absorbers, actuators, pulp, and the like.

従来、電気粘性流体としては、シリコン油、塩化ジフェ
ニル、トランス油等の絶縁油中に、セルロース、でんぷ
ん、大豆カゼイン、シリカゲル等の固体粒子を分散させ
たものが知られている。しかしながら、セルロース、で
んぷん、大豆カゼイン、シリカゲル等を用いたものは、
発生するせん断路力が小さいという問題点があった。
Conventionally, known electrorheological fluids include solid particles such as cellulose, starch, soybean casein, and silica gel dispersed in insulating oil such as silicone oil, diphenyl chloride, and transformer oil. However, those using cellulose, starch, soybean casein, silica gel, etc.
There was a problem in that the shear road force generated was small.

一方、高いせん断路力を発生する電気粘性流体として、
例えばイオン交換樹脂の粉体を芳香族カルボン酸の高級
アルキルエステル中に懸濁したもの(特開昭50−92
278>や、3つの結晶軸の1つのみに沿って電流を伝
導する結晶性物質と誘電性液体及び添加剤からなる組成
物(特開平1−170693)等が提案されている。し
かしながら、これらの電気粘性流体は、電場印加時に流
れる電流密度が比較的大きく電流特性に劣っており、ま
た電場無印加時に分散相が容易に分離したり逆に分散相
が分離しないよう分散相の濃度を高くした場合には流動
性に乏しくなるという問題点を有していた。
On the other hand, as an electrorheological fluid that generates high shear path force,
For example, powder of ion exchange resin is suspended in higher alkyl ester of aromatic carboxylic acid (JP-A-50-92
278>, and a composition comprising a crystalline substance, a dielectric liquid, and an additive that conducts current along only one of the three crystal axes (Japanese Patent Laid-Open No. 1-170693). However, in these electrorheological fluids, the current density flowing when an electric field is applied is relatively large and the current characteristics are poor, and the dispersed phase easily separates when no electric field is applied, and conversely, the dispersed phase is When the concentration is increased, there is a problem in that fluidity becomes poor.

分散相の分離や流動性の問題点・を解決するために、電
気粘性流体に分散安定剤等の添加剤を加える方法が提案
されている。しかし、通常の分散安定剤として知られて
いる界面活性剤やステアリン酸系添加剤等の多くは、炭
化水素系化合物を主成分とする絶縁性液体からなる分散
媒に対する溶解性に乏しいものが多く、これらの系には
実質上添加することができなかった。また分散媒に溶解
するもの(例えばリシノール酸やオレイン酸等)でも、
実用上支障をきたさないほど分散安定性を高めることは
できなかっな。
In order to solve the problems of separation of dispersed phases and fluidity, methods of adding additives such as dispersion stabilizers to electrorheological fluids have been proposed. However, many of the surfactants and stearic acid additives known as normal dispersion stabilizers have poor solubility in dispersion media consisting of insulating liquids mainly composed of hydrocarbon compounds. , could not be substantially added to these systems. Also, even if it is dissolved in a dispersion medium (such as ricinoleic acid or oleic acid),
It is not possible to increase the dispersion stability so much that it does not pose a practical problem.

また、シリカゲルを分散相とする電気粘性流体において
、分散安定剤としてN及び/またはOH含有化合物と高
級アルキル(メタ)アクリレート等の炭素数4〜24の
アルキル基含有化合物との重合体(特開昭6l−259
752)や変性シリコーンオイル〈特開平2−2663
3>が提案されている。
In addition, in an electrorheological fluid having silica gel as a dispersed phase, a polymer of an N- and/or OH-containing compound and an alkyl group-containing compound having 4 to 24 carbon atoms such as higher alkyl (meth)acrylate is used as a dispersion stabilizer. Showa 6l-259
752) and modified silicone oil (JP-A-2-2663)
3> has been proposed.

しかしながら、このような分散安定剤は、シリカゲルを
分散相とする電気粘性流体については効果があっても、
スルホン酸基含有ポリスチレン系イオン交換樹脂等の有
m重合体を分散相としてなる電気粘性流体の分散安定性
改良には十分なものではなかった。しかもこれらの公報
に記載されている電気粘性流体は、発生するせん断路力
が十分でないという問題点を有していた。
However, although such dispersion stabilizers are effective for electrorheological fluids containing silica gel as the dispersed phase,
These methods have not been sufficient to improve the dispersion stability of electrorheological fluids containing polymers such as sulfonic acid group-containing polystyrene ion exchange resins as the dispersed phase. Moreover, the electrorheological fluids described in these publications had the problem that the shear path force generated was insufficient.

(発明が解決しようとする課題) 本発明は、従来の電気粘性流体が有していた上記の間組
点を解決するものである。
(Problems to be Solved by the Invention) The present invention solves the above-described problems that conventional electrorheological fluids have.

したがって、本発明の目的は、比較的弱い電場を印加す
ることによっても大きいせん断応力を発生し、その際に
流れる電流密度か小さいという電流特性に優れ、かつ発
生しなせん断応力および電流密度の経時安定性に優れ、
さらに電場を印加していない状態での粘度が低く流動性
に優れ、しかも分散相が沈降あるいは浮上しにくいとい
う分散安定性に特に優れた電気粘性流体を提供すること
にある。
Therefore, an object of the present invention is to generate a large shear stress even by applying a relatively weak electric field, to have excellent current characteristics such that the current density flowing at that time is small, and to maintain the shear stress and current density over time without being generated. Excellent stability,
Furthermore, it is an object of the present invention to provide an electrorheological fluid that has a low viscosity when no electric field is applied, has excellent fluidity, and has particularly excellent dispersion stability in that the dispersed phase is difficult to settle or float.

(課題を解決するための手段および作用)本発明は、陽
イオン交換能を持つ有機重合体粒子からなる分散相、炭
化水素系化合物を主成分とする絶縁性液体からなる分散
蝶および高分子添加剤を含有してなる電気粘性流体であ
って、高分子(但し、式中R1は水素またはメチル基で
あり、×は または−〇Nである。)で表わされる構造単位(但し、
式中R2は水素またはメチル基であり、Yは芳香族炭化
水素基である。)で表わされる構造単位(B)とを必須
の構成単位としてなり、且つ構造単位(A)0.1〜6
0重量%で構造単位(B)40〜99.9重量%の範囲
である平均分子量1000〜1000万の重合体(I)
を使用してなる電気粘性流体に関するものである。
(Means and effects for solving the problem) The present invention provides a dispersed phase consisting of organic polymer particles having cation exchange ability, a dispersed phase consisting of an insulating liquid mainly composed of a hydrocarbon compound, and a polymer additive. It is an electrorheological fluid containing a structural unit represented by a polymer (in the formula, R1 is hydrogen or a methyl group, and x is or -〇N).
In the formula, R2 is hydrogen or a methyl group, and Y is an aromatic hydrocarbon group. ) as an essential structural unit, and the structural unit (A) is 0.1 to 6
Polymer (I) with an average molecular weight of 1000 to 10 million, which is 0% by weight and the structural unit (B) is in the range of 40 to 99.9% by weight.
This relates to an electrorheological fluid made using .

本発明の電気粘性流体に含有される高分子添加剤として
有効な重合体(I)は、前記した構造単位(A)と構造
単位(B)とを必須の構成単位としてなり、それら構成
単位の重合体(I)中の含有量か構造単位(A)0.1
〜60重量%で構造単位(B)40〜99.9重量%の
範囲でなければならない。構造単位(A>や構造単位(
B)の含有量がこの範囲を外れた重合体では、電場を印
加していない状態での粘度が低く、且つ分散相の分離が
抑制された流動性や分散安定性に優れた電気粘性流体が
得られない。
The polymer (I) that is effective as a polymer additive contained in the electrorheological fluid of the present invention has the above-mentioned structural unit (A) and structural unit (B) as essential structural units. Content in polymer (I) or structural unit (A) 0.1
-60% by weight and structural unit (B) should be in the range of 40-99.9% by weight. Structural unit (A> or structural unit (
Polymers with a content of B) outside this range are electrorheological fluids that have low viscosity when no electric field is applied and have excellent fluidity and dispersion stability with suppressed separation of the dispersed phase. I can't get it.

重合体(I)は、構造単位(A)や構造単位(B)以外
の構造単位(以下これを構造単位(C)という。)を含
有していてもよいが、構造単位(A)と構造単位(B)
との合計含有量は全構成単位中50重量%以上であるこ
とが好ましい、この合計含有量が50重量%未満の場合
には、十分な分散安定性が得られないという問題点が起
こることがある。
The polymer (I) may contain structural units other than the structural unit (A) and the structural unit (B) (hereinafter referred to as the structural unit (C)), but the structural unit (A) and the structural unit Unit (B)
It is preferable that the total content of all the constituent units is 50% by weight or more. If this total content is less than 50% by weight, the problem that sufficient dispersion stability may not be obtained may occur. be.

重合体(I)の必須構成単位である構造単位(B)中の
置換基Yは、芳香族炭化水素基であることが必要であり
、芳香族炭化水素基としては、例えばフェニル基、ナフ
チル基、メチルフェニル基、エチルフェニル基、ジメチ
ルフェニル基、トリメチルフェニル基等を挙げることが
できる。
The substituent Y in the structural unit (B), which is an essential constituent unit of the polymer (I), must be an aromatic hydrocarbon group, and examples of the aromatic hydrocarbon group include, for example, a phenyl group and a naphthyl group. , methylphenyl group, ethylphenyl group, dimethylphenyl group, trimethylphenyl group, etc.

本発明における高分子添加剤として有効な重合体(I)
を得る方法としては、特に制限なく、例えば重合により
構造単位(A)を与える不飽和化合物(a)と構造単位
(B)を与える不飽和化合物(b)を必須成分とし、必
要に応じてその他の構造単位(C)を与える不飽和化合
物(c)を加えた単量体混合物を重合する方法が挙げら
れる。
Polymer (I) effective as a polymer additive in the present invention
The method for obtaining is not particularly limited, and for example, by polymerization, the unsaturated compound (a) that provides the structural unit (A) and the unsaturated compound (b) that provides the structural unit (B) are essential components, and other components are added as necessary. Examples include a method of polymerizing a monomer mixture to which an unsaturated compound (c) is added to give the structural unit (C).

重合方法は、従来公知の方法に従えばよく、例えば前記
単量体混合物を有機溶楳中で溶液重合する方法や塊状重
合する方法があり、溶液重合による場合に溶媒として炭
化水素系化合物からなる絶縁性液体を使用すれば、重合
により得られた重合体(I)の溶液をそのまま分散相を
構成する有機重合体粒子と混合して本発明の電気粘性流
体とすることができる。
The polymerization method may be according to a conventionally known method, for example, a method of solution polymerizing the monomer mixture in an organic solvent or a method of bulk polymerizing. If an insulating liquid is used, the electrorheological fluid of the present invention can be prepared by mixing the solution of polymer (I) obtained by polymerization with the organic polymer particles constituting the dispersed phase as it is.

また、重合体(I)としては、前記した不飽和化合物(
a)および(b)として低分子量のビニルモノマーを用
いて得られるランタム共重合体でもよく、構造単位(A
>、tたは構造単位(B)を含み重合可能な官能基を末
端に持つ高分子量のマクロモノマーの存在下にマクロモ
ノマーに含有されない構造単位(A)または(B)を与
える低分子量のビニルモノマーを重合して得られるグラ
フト共重合体でもよい。
In addition, as the polymer (I), the above-mentioned unsaturated compound (
Rantam copolymers obtained using low molecular weight vinyl monomers may be used as a) and (b), and structural units (A
>, t or a low molecular weight vinyl that gives a structural unit (A) or (B) that is not contained in the macromonomer in the presence of a high molecular weight macromonomer containing the structural unit (B) and having a polymerizable functional group at the end. A graft copolymer obtained by polymerizing monomers may also be used.

重合体(I)の必須構成単位である構造単位(A)を与
える不飽和化合物(a)としては、例えば2−ビニルピ
リジン、4−ビニルピリジン、N−ビニル−2−ピロリ
ドン、(メタ)アクリロニトリル等の官能基含有とニル
モノマーや、マクロモノマーAN−6(東亜合成化学工
業■製のスチレン/アクリロニトリル系マクロモノマー
)等の分子中に構造単位(A>を含み重合可能な官能基
を末端に持つ高分子量のマクロモノマーなどを挙げるこ
とができ、これらの中から一種または二種以上を用いる
ことができる。
Examples of the unsaturated compound (a) that provides the structural unit (A) which is an essential constitutional unit of the polymer (I) include 2-vinylpyridine, 4-vinylpyridine, N-vinyl-2-pyrrolidone, and (meth)acrylonitrile. Polymerizable functional groups containing a structural unit (A>) in the molecule, such as macromonomer AN-6 (styrene/acrylonitrile macromonomer manufactured by Toagosei Kagaku Kogyo ■), which has a polymerizable functional group at the end. Examples include macromonomers with high molecular weight, and one or more of these can be used.

重合体(I)の必須構成単位である構造単位(B)を与
える不飽和化合物(b)としては、例えばスチレン、ビ
ニルナフタレン、ビニルアントラセン、メチルスチレン
、エチルスチレン、ジメチルスチレン、トリメチルスチ
レン等の芳香族ビニルモノマーや、マクロモノマーAS
−6(東亜合成化学工業■製のスチレン系のマクロモノ
マー)等の分子中に構造単位(B)を含み重合可能な官
能基を末端に持つ高分子量のマクロモノマーなどを挙げ
ることができ、これらの中から一種または二種以上を用
いることができる。
Examples of the unsaturated compound (b) that provides the structural unit (B) which is an essential constituent unit of the polymer (I) include aromatic compounds such as styrene, vinylnaphthalene, vinylanthracene, methylstyrene, ethylstyrene, dimethylstyrene, and trimethylstyrene. Group vinyl monomers and macromonomers AS
-6 (styrenic macromonomer manufactured by Toagosei Kagaku Kogyo ■), which contains the structural unit (B) in the molecule and has a polymerizable functional group at the end. One or more of these can be used.

重合体(I>中に必要に応じて含有されていてもよいそ
の他の構造単位(C)を与える不飽和化合物(C)とし
ては、例えばエチレン、プロピレン、ブタジェン、2−
メチルブタジェン、塩化ビニル、塩化ビニリデン、メチ
ル(メタ)アクリレート、エチル(メタ)アクリレート
、ブチル(メタ)アクリレート、シクロヘキシル(メタ
)アクリレート、2−エチルヘキシル〈メタ)アクリレ
ート、ラウリル(メタ)アクリレート、セチル(メタ)
アクリレート、ペンタデシル(メタ)アクリレート、ス
テアリル(メタ)アクリレート、ベヘニル(メタ)アク
リレート、酢酸ビニル、無水マレイン酸等の低分子量モ
ノマーや、マクロモノマーAA−6(東亜合成化学工業
■製のメチルメタクリレート系マクロモノマー)等の高
分子量のマクロモノマーなどを挙げることができ、これ
らの中から一種または二種以上を用いることができる。
Examples of the unsaturated compound (C) that provides other structural units (C) that may be contained in the polymer (I> if necessary) include ethylene, propylene, butadiene, 2-
Methyl butadiene, vinyl chloride, vinylidene chloride, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, cetyl ( Meta)
Low molecular weight monomers such as acrylate, pentadecyl (meth)acrylate, stearyl (meth)acrylate, behenyl (meth)acrylate, vinyl acetate, maleic anhydride, and macromonomer AA-6 (methyl methacrylate-based macro manufactured by Toagosei Chemical Industry Co., Ltd.) Examples include macromonomers with a high molecular weight such as (monomer), and one or more types of these can be used.

本発明の電気粘性流体において分散相を構成する陽イオ
ン交換能を有する有機重合体粒子としては、水等の極性
溶媒の存在下において陽イオンを解離し自らは陰イオン
となる官能基を有する重合体の粒子であれば特に制限な
く、例えば分子中にスルホン酸基、カルボン酸基、リン
酸基などの解離基を有する有機重合体の粒子が挙げられ
る。中でも、スルホン酸基を有する有機重合体粒子が好
ましく、さらに中でもスルホン酸基含有ポリスチレン系
重合体からなる粒子が、せん断応力や電流密度の点で優
れた電気粘性流体が得られるので好ましい。
The organic polymer particles having cation exchange ability constituting the dispersed phase in the electrorheological fluid of the present invention include polymer particles having a functional group that dissociates cations and becomes anions themselves in the presence of a polar solvent such as water. There are no particular limitations as long as the particles are agglomerated particles, and examples thereof include particles of organic polymers having dissociative groups such as sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups in the molecule. Among these, organic polymer particles having sulfonic acid groups are preferable, and particles made of polystyrene polymers containing sulfonic acid groups are particularly preferable because they provide an electrorheological fluid with excellent shear stress and current density.

有機重合体粒子が#l牲溶媒中で解離する陽イオンの種
類としては、特に制限はなく、例えば水素陽イオン;リ
チウムイオン、ナトリウムイオン、カリウムイオン、カ
ルシウムイオン、アルミニウムイオン、第一銅イオン、
第二銅イオン等の金属陽イオン;テトラメチルアンモニ
ウムイオン、ピリジニウムイオン等の有機物陽イオン等
を挙げることができる。
The types of cations that the organic polymer particles dissociate in the #l solvent are not particularly limited, and include, for example, hydrogen cations; lithium ions, sodium ions, potassium ions, calcium ions, aluminum ions, cuprous ions,
Examples include metal cations such as cupric ions; organic cations such as tetramethylammonium ions and pyridinium ions.

本発明において分散相として用いることができる陽イオ
ン交換能を有する有機重合体粒子を得るには、例えばス
ルホン酸基やカルボン酸基等のイオン解離基を有するビ
ニル化合物を単独あるいは必要に応じてその他のビニル
モノマーを加えた単量体混合物として公知の方法で重合
し必要に応じて所定の粒子径に粉砕してもよく、また重
合体に公知の方法でスルホン酸基等のイオン解離基を導
入してもよく、またエステル基等を有する重合体を公知
の方法で加水分解してイオン解離基を導入してもよい、
さらに市販のポリスチレン系イオン交換樹脂(例えば東
京有機化学工業■製のアンバーライト0など)を適当な
粒子径に粉砕したものを用いてもよい。
In order to obtain organic polymer particles having cation exchange ability that can be used as a dispersed phase in the present invention, for example, a vinyl compound having an ion dissociative group such as a sulfonic acid group or a carboxylic acid group may be used alone or as necessary. A monomer mixture containing a vinyl monomer may be polymerized by a known method and pulverized to a predetermined particle size if necessary, or an ionic dissociative group such as a sulfonic acid group may be introduced into the polymer by a known method. Alternatively, an ionic dissociative group may be introduced by hydrolyzing a polymer having an ester group or the like by a known method.
Furthermore, a commercially available polystyrene-based ion exchange resin (for example, Amberlite 0 manufactured by Tokyo Organic Chemical Industry Co., Ltd.) pulverized to an appropriate particle size may be used.

本発明において分散相を構成する有機重合体粒子の平均
粒子径は、0.1〜50μmの範囲にあることが好まし
い。有8!1重合体粒子の平均粒子径が0.1μm未満
の場合には、調製した電気粘性流体に電場を印加した際
に大きなせん断応力が得られないことがある。また、有
m重合体粒子の平均粒子径が50μmを越える場合には
、電場を印加していない状態での分散安定性に優れた電
気粘性流体が得られないことがある。
In the present invention, the average particle diameter of the organic polymer particles constituting the dispersed phase is preferably in the range of 0.1 to 50 μm. If the average particle diameter of the 8!1 polymer particles is less than 0.1 μm, a large shear stress may not be obtained when an electric field is applied to the prepared electrorheological fluid. Furthermore, if the average particle diameter of the m-polymer particles exceeds 50 μm, it may not be possible to obtain an electrorheological fluid with excellent dispersion stability when no electric field is applied.

本発明の電気粘性流体において分散媒の主成分を構成す
る炭化水素系化合物としては、実質的に炭化水素からな
る絶縁性液体であれば特に制限なく、例えば、ドデカン
、ヘキサデカン、オクタデカン等の脂肪族炭化水素:ベ
ンゼン、ナフタレン、アントラセン、フェナントレン等
の芳香族炭化水素;トルエン、エチルベンゼン、キシレ
ン等のアルキル置換芳香族炭化水素:サームエス030
0゜サームエス@700.サームエス@800.サーム
エス”900(以上新日鉄化学■製)や、8石ハイゾー
ル0SAS−296(日本石油化学■製)等の炭化水素
系熱媒等を挙げることかでき、これらの中から一種あ、
るいは二種以上を用いることかできる。また、これらの
炭化水素系化合物に対して、必要に応じ、例えばジアル
キルエーテル、アルキルアリールエーテル、ジアリール
エーテル、ハロゲン化アルキル、ハロゲン化アリール等
のその他の絶縁性液体を添加混合して分散媒として用い
ることもできる。
The hydrocarbon compound constituting the main component of the dispersion medium in the electrorheological fluid of the present invention is not particularly limited as long as it is an insulating liquid consisting essentially of hydrocarbons, and examples include aliphatic compounds such as dodecane, hexadecane, and octadecane. Hydrocarbons: Aromatic hydrocarbons such as benzene, naphthalene, anthracene, and phenanthrene; Alkyl-substituted aromatic hydrocarbons such as toluene, ethylbenzene, and xylene: THERM-S 030
0゜THERMS @700. THERMS@800. Hydrocarbon-based heating mediums such as THERM-S 900 (manufactured by Nippon Steel Chemical) and 8 stone Hysol 0SAS-296 (manufactured by Nippon Petrochemical) can be mentioned;
It is possible to use two or more types of lubrication. In addition, other insulating liquids such as dialkyl ether, alkylaryl ether, diaryl ether, alkyl halide, and aryl halide may be added and mixed to these hydrocarbon compounds as necessary and used as a dispersion medium. You can also do that.

本発明の電気粘性流体は、前記した特定の分散相を重合
体(I)からなる高分子添加剤の存在下に分散媒に混合
分散して得られるものである。
The electrorheological fluid of the present invention is obtained by mixing and dispersing the specific dispersed phase described above in a dispersion medium in the presence of a polymeric additive made of polymer (I).

本発明の電気粘性流体における分散相と分散媒との比は
、前者100重量部に対して後者50〜500重量部の
範囲であることが好ましい。分散媒の量が5001量部
を越える場合、調製された電気粘性流体に電場を印加し
た際に得られるせん断応力が十分大きくならないことが
ある。また、分散媒の量が50重量部未満の場合、調製
された電気粘性流体自体の流動性が低下して、電気粘性
流体としての使用が難しくなることがある。
The ratio of the dispersed phase to the dispersion medium in the electrorheological fluid of the present invention is preferably in the range of 50 to 500 parts by weight to 100 parts by weight of the former. If the amount of the dispersion medium exceeds 5001 parts, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid may not be sufficiently large. Furthermore, if the amount of the dispersion medium is less than 50 parts by weight, the fluidity of the prepared electrorheological fluid itself may decrease, making it difficult to use it as an electrorheological fluid.

また、本発明の電気粘性流体における重合体(I)から
なる高分子添加剤の使用量は、分散媒100重量部に対
して0.1〜20重量部の範囲か好ましい。高分子添加
剤の量が0.1重量部未満では、電場を印加していない
状態での分散安定性に優れた電気粘性流体が得られない
ことがある。
Further, the amount of the polymer additive made of polymer (I) used in the electrorheological fluid of the present invention is preferably in the range of 0.1 to 20 parts by weight per 100 parts by weight of the dispersion medium. If the amount of the polymeric additive is less than 0.1 part by weight, an electrorheological fluid with excellent dispersion stability in the absence of an applied electric field may not be obtained.

また、高分子添加剤の量が20重量部を越えると、添加
量増大にみあった分散安定性の向上がみられないだけで
なく、電気粘性流体としての他の性能を損なうことがあ
るため好ましくない。
Furthermore, if the amount of the polymer additive exceeds 20 parts by weight, not only will there be no improvement in dispersion stability commensurate with the increase in the amount added, but other performances as an electrorheological fluid may be impaired. Undesirable.

本発明の電気粘性流体には、その粘度調節あるいはせん
断応力向上のために、例えば界面活性剤、重合体(I)
以外の高分子分散剤、高分子増粘剤等の従来公知の各種
添加物を添加することができる。
The electrorheological fluid of the present invention may contain, for example, a surfactant, a polymer (I), etc., in order to adjust its viscosity or improve its shear stress.
Various conventionally known additives such as polymeric dispersants and polymeric thickeners can be added.

(発明の効果) 本発明の電気粘性流体は、比較的弱い電場を印加するこ
とによっても大きいせん断応力を発生し、その際に流れ
る電流密度が小さいという電流特性に優れ、かつ発生し
なせん断応力及び電流密度の経時安定性に優れ、さらに
電場を印加していない状態での粘度が低く流・動性に優
れ、しかも分散相が沈降あるいは浮上しにくいという分
散安定性に特に優れているため、クラッチ、ダンパー、
ブレーキ、ショックアブソーバ−、アクチュエーターバ
ルブ等へ有効に利用できる。
(Effects of the Invention) The electrorheological fluid of the present invention has excellent current characteristics in that it generates large shear stress even when a relatively weak electric field is applied, and the density of current flowing at that time is small, and the electrorheological fluid does not generate shear stress. It also has excellent stability over time in current density, low viscosity when no electric field is applied, excellent flow and mobility, and especially excellent dispersion stability in which the dispersed phase does not easily settle or float. clutch, damper,
It can be effectively used for brakes, shock absorbers, actuator valves, etc.

(実施例) 以下、実施例により本発明を説明するが、本発明の範囲
がこれら実施例のみに限定されるものではない。
(Examples) The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited only to these Examples.

参考例1 撹拌機、還流冷却器、温度計および9素導入管を備えた
5 00 mlの四つ目フラスコにトルエン150t、
4−ビニルピリジン7、cog、スチレン102゜5g
およびブチルメタクリレート40gを仕込み、そこへア
ゾビスイソブチロニトリル1゜5gを添加し窒素を導入
しながら室温で30分撹拌した。その後70℃で12時
間加熱して重合を行った。
Reference Example 1 150 t of toluene was added to a 500 ml fourth flask equipped with a stirrer, a reflux condenser, a thermometer and a 9 element inlet tube.
4-vinylpyridine 7, cog, styrene 102°5g
and 40 g of butyl methacrylate were charged, 1.5 g of azobisisobutyronitrile was added thereto, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen. Thereafter, polymerization was carried out by heating at 70° C. for 12 hours.

得られた重合体のトルエン溶液(以下、これを重合体溶
液(1)という。)の固形分含有率を測定したところ4
8重量%であった。モノマーの残存率から重合率を測定
したところ、4−ビニルピリジンの重合率は100%、
スチレンの重合率は96%、ブチルメタクリレートの重
合率は100%であった。また、重合体の数平均分子量
をスーパーシステムコントローラーGPCデータ処理装
置(東ソー■製)により測定したところ、11゜000
であった。
The solid content of the obtained toluene solution of the polymer (hereinafter referred to as polymer solution (1)) was 4.
It was 8% by weight. When the polymerization rate was measured from the residual rate of monomer, the polymerization rate of 4-vinylpyridine was 100%.
The polymerization rate of styrene was 96%, and the polymerization rate of butyl methacrylate was 100%. In addition, when the number average molecular weight of the polymer was measured using a Super System Controller GPC data processing device (manufactured by Tosoh), it was found to be 11°000.
Met.

参考例2 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにキシレン200g、アク
リロニトリル7.5g、スチレン87.5におよびラウ
リルメタクリレート55gを仕込み、そこへアゾビスイ
ソブチロニトリル3.5gを添加し窒素を導入しながら
室温で30分撹拌した。その後80℃で12時間加熱し
て重合を行った。
Reference Example 2 200 g of xylene, 7.5 g of acrylonitrile, 87.5 g of styrene, and 55 g of lauryl methacrylate were charged into a 500 ml four-bottle flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen inlet tube, and azobisiso 3.5 g of butyronitrile was added, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen. Thereafter, polymerization was carried out by heating at 80° C. for 12 hours.

得られた重合体のキシレン溶液の固形分含有率を測定し
たところ41重量%であった。参考例1と同様に重合率
を測定したところ、アクリロニトリルの重合率は99%
、スチレンの重合率は96%■であった6重合体の数平
均分子量を参考例1と同機に測定したところ、7,60
0であった。
The solid content of the resulting xylene solution of the polymer was measured and found to be 41% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of acrylonitrile was 99%.
The polymerization rate of styrene was 96%■.The number average molecular weight of the 6-polymer was measured using the same machine as Reference Example 1, and it was found to be 7.60.
It was 0.

この重合体のキシレン溶液を減圧下60℃で25分間加
熱し溶蝶留去することにより、固形分55%の重合体の
にキシレン溶液(以下、これを重合体溶液(2)という
。)を得た。
This xylene solution of the polymer was heated at 60°C for 25 minutes under reduced pressure and the melt was distilled off, thereby producing a xylene solution of the polymer with a solid content of 55% (hereinafter referred to as polymer solution (2)). Obtained.

参考例3 撹拌機、還流冷却器、温度計および窒素導入管を備えた
5 00 ofの四つロフラスコにトルエン150g、
N−ビニル−2−ピロリドン60g、p−メチルスチレ
ン60gおよびスチレン35gを仕込み、そこへアゾビ
スイソブチロニトリル08gを添加し窒素を導入しなが
ら室温で30分撹拌した。その後60℃で40時間加熱
して重合を行った。
Reference Example 3 150g of toluene was placed in a 500° four-bottle flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube.
60 g of N-vinyl-2-pyrrolidone, 60 g of p-methylstyrene, and 35 g of styrene were charged, and 08 g of azobisisobutyronitrile was added thereto, followed by stirring at room temperature for 30 minutes while introducing nitrogen. Thereafter, polymerization was carried out by heating at 60° C. for 40 hours.

得られた重合体のトルエン溶液(以下、これを重合体溶
液(3)という。)の固形分含有率を測定したところ5
1重量%であった。参考例1と同様に重合率を測定した
ところ、N−ビニル−2−ピロリドンの重合率は100
%、P−メチルスチレンの重合率は99%、スチレンの
重合率は100%であった。重合体の数平均分子量を参
考例1と同様に測定したところ、160,000であっ
た。
The solid content of the obtained toluene solution of the polymer (hereinafter referred to as polymer solution (3)) was 5.
It was 1% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of N-vinyl-2-pyrrolidone was 100.
%, the polymerization rate of P-methylstyrene was 99%, and the polymerization rate of styrene was 100%. The number average molecular weight of the polymer was measured in the same manner as in Reference Example 1 and was found to be 160,000.

参考例4 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにトルエン50g、N−ビ
ニルピロリドン7.5g、スチレン87.5gおよびラ
ウリルメタクリレート55gを仕込み、そこへアゾビス
イソブチロニトリル0゜3gを添加し窒素を導入しなが
ら室温で30分撹拌した。その後60℃で8時間加熱し
た後、さらにトルエン100gを流加しながら60℃で
32時間加熱することにより重合を行った 得られた重合体のトルエン溶液(以下、これを重合体溶
液(4)という。)の固形分含有率を測定したところ5
0重量%であった。参考例1と同様に重合率を測定した
ところ、N−ビニル−2ピロリドンの重合率は100%
、スチレンの重合率は99%、ラウリルメタクリレート
の重合率は100%であった0重合体の数平均分子量を
参考例1と同様に測定したところ、410,000であ
った。
Reference Example 4 50 g of toluene, 7.5 g of N-vinylpyrrolidone, 87.5 g of styrene and 55 g of lauryl methacrylate were charged into a 500 ml four-bottle flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen inlet tube, and azo 0.3 g of bisisobutyronitrile was added, and the mixture was stirred at room temperature for 30 minutes while nitrogen was introduced. Thereafter, after heating at 60°C for 8 hours, polymerization was carried out by heating at 60°C for 32 hours while adding 100 g of toluene. ) was measured and found to be 5.
It was 0% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of N-vinyl-2-pyrrolidone was 100%.
The number average molecular weight of the 0 polymer, in which the polymerization rate of styrene was 99% and the polymerization rate of lauryl methacrylate was 100%, was measured in the same manner as in Reference Example 1 and found to be 410,000.

参考例5 撹拌機、還流冷却器、温度計および窒素導入管を備えた
5 00 mlの四つロフラスコにトルエン150g、
4−ビニルピリジン7.5gおよびブチルメタクリレ−
)142.5gを仕込み、そこへアゾビスイソブチロニ
トリル1.5gを添加し窒素を導入しながら室温で30
分撹拌した。その後70℃で12時間加熱して重合を行
った。
Reference Example 5 150 g of toluene was placed in a 500 ml four-hole flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube.
7.5 g of 4-vinylpyridine and butyl methacrylate
), 1.5 g of azobisisobutyronitrile was added thereto, and the mixture was heated at room temperature for 30 minutes while introducing nitrogen.
Stir for 1 minute. Thereafter, polymerization was carried out by heating at 70° C. for 12 hours.

得られた重合体のトルエン溶液(以下、これを重合体溶
液(5)という。)の固形分含有率を測定したところ5
0重量%であった。モノマーの残存率から重合率を測定
したところ、4−ビニルピリジンの重合率は100%、
ブチルメタクリレートの重合率は100%であった。ま
た、重合体の数平均分子量をスーパーシステムコントロ
ーラーGPCデータ処理装置(東ソー■製)により測定
したところ、14,000であった。
The solid content of the obtained toluene solution of the polymer (hereinafter referred to as polymer solution (5)) was 5.
It was 0% by weight. When the polymerization rate was measured from the residual rate of monomer, the polymerization rate of 4-vinylpyridine was 100%.
The polymerization rate of butyl methacrylate was 100%. Further, the number average molecular weight of the polymer was measured using a Super System Controller GPC data processing device (manufactured by Tosoh ■) and was found to be 14,000.

実施例1 撹拌機、還流冷却器、温度計および窒素導入管を備えた
3 000 mlの四つ日フラスコにイオン交換水12
00g、クラレボバール@PVA−205(■クラレ製
、ポリビニルアルコール)16゜0gを添加・溶解させ
た後、さらにスチレン250g、工業用ジビニルベンゼ
ン(和光純薬工業■製、ジビニルベンゼン55重量%、
エチルスチレン35重量%等の混合物)50gおよび過
酸化ベンゾイル5gからなる混合物を加えた。その後、
分散II(回転数: 2000Orpm)を用イテフラ
スコの内容物を分散させ、70℃で8時間加熱した。得
られた固形物を枦別し、十分にアセトンと水で洗浄した
後、熱風乾燥器を用いて80℃で12時間乾燥し、重合
架橋体(以下、これを重合架橋体(1)という、>29
1gを得た。
Example 1 A 3 000 ml four-day flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet was charged with 12 ml of ion-exchanged water.
After adding and dissolving 16°0 g of Kuraray Bobal @ PVA-205 (■ manufactured by Kuraray, polyvinyl alcohol), 250 g of styrene, industrial divinylbenzene (manufactured by Wako Pure Chemical Industries ■, divinylbenzene 55% by weight),
A mixture of 50 g (35% by weight of ethylstyrene) and 5 g of benzoyl peroxide was added. after that,
The contents of the Itte flask were dispersed using Dispersion II (rotation speed: 2000 rpm) and heated at 70° C. for 8 hours. The obtained solid was separated, thoroughly washed with acetone and water, and then dried at 80°C for 12 hours using a hot air dryer to obtain a polymerized crosslinked product (hereinafter referred to as polymerized crosslinked product (1)). >29
1g was obtained.

次いで、この重合架橋体(1)100gを撹拌機、還流
冷却器および温度計を備えた1 000 mlの三つロ
フラスコに投入し、水冷下98重量%の硫酸500gを
流加し、撹拌下80℃で24時間加熱しスルホン化反応
を行った。その後、フラスコの内容物を0℃の水中に注
ぎ、枦別・水洗を行った。
Next, 100 g of this polymerized crosslinked product (1) was put into a 1,000 ml three-necked flask equipped with a stirrer, a reflux condenser, and a thermometer, and 500 g of 98% by weight sulfuric acid was added thereto under water cooling, and the mixture was stirred for 80 min. The mixture was heated at ℃ for 24 hours to carry out the sulfonation reaction. Thereafter, the contents of the flask were poured into water at 0°C, separated and washed with water.

得られた固形物を10重量%水酸化ナトリウム水溶液3
80 mlで中和したのち、十分に水洗した。
The obtained solid was dissolved in a 10% by weight aqueous sodium hydroxide solution 3
After neutralizing with 80 ml, the solution was thoroughly washed with water.

その後、真空乾燥器を用いて、80℃で10時間乾燥し
、平均粒子径2.5μmの有機重合体粒子(以下、これ
を分散相粒子(1)という、)184gを得た。なお、
分散相粒子(1)の陰イオン性解離基密度は4.2mg
当量/gであった。
Thereafter, it was dried at 80° C. for 10 hours using a vacuum dryer to obtain 184 g of organic polymer particles (hereinafter referred to as dispersed phase particles (1)) having an average particle diameter of 2.5 μm. In addition,
The anionic dissociative group density of the dispersed phase particles (1) is 4.2 mg
equivalent/g.

分散相粒子(1)30gを150℃で3時間乾燥後、温
度20℃、相対湿度60%の室内に40分間放置して吸
湿させた後、参考例1で得られた重合体溶液(1)3g
をサームエス@900 (新日鉄化学■製の部分水添さ
れたトリフェニル)67gに添加して得た分散媒中に均
一に分散し、本発明の電気粘性流体(1)を得た。
After drying 30 g of dispersed phase particles (1) at 150°C for 3 hours, the polymer solution obtained in Reference Example 1 (1) was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture. 3g
was added to 67 g of Therm-S@900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical Co., Ltd.) and uniformly dispersed in a dispersion medium to obtain an electrorheological fluid (1) of the present invention.

実施例2 実施例1における重合体溶液(1)の代わりに参考例2
で得られた重合体溶液(2)l1gを用い、サームエス
@900 (新日鉄化学■製の部分水添されたトリフェ
ニル)の代わりにシクロヘキシルベンゼン20gと流動
パラフィン(関東化学■製)39gの混合物を使用した
以外は実施例1と同様の方法により、本発明の電気粘性
流体(2)を得た。
Example 2 Reference Example 2 was used instead of the polymer solution (1) in Example 1.
Using 1 g of the polymer solution (2) obtained in step 1, a mixture of 20 g of cyclohexylbenzene and 39 g of liquid paraffin (manufactured by Kanto Kagaku ■) was added instead of Therm-S@900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical ■). The electrorheological fluid (2) of the present invention was obtained in the same manner as in Example 1 except for using the following method.

実施例3 実施例1における重合体溶液(1)の代わりに参考例3
で得られた重合体溶液(3)0.8gを■ 用い、サームエス 900(新日鉄化学■製の部分水添
されたトリフェニル)の使用量を69.2gとした以外
は実施例1と同様の方法により、本発明の電気粘性流体
(3)を得た。
Example 3 Reference Example 3 was used instead of the polymer solution (1) in Example 1.
The same procedure as in Example 1 was carried out, except that 0.8 g of the polymer solution (3) obtained in (1) was used, and the amount of Therm-S 900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical) was changed to 69.2 g. By the method, an electrorheological fluid (3) of the present invention was obtained.

実施例4 実施例1における重合体溶液(1)の代わりに参考例4
で得られた重合体溶液(4)3.5gを用い、サームエ
スの900 (新日鉄化学■製の部分水添されたトリフ
ェニル)の代わりに流動パラフィン55gとジフェニル
エーテル11.5gの混合物を使用した以外は実施例1
と同様の方法により、本発明の電気粘性流体(4)を得
た。
Example 4 Reference example 4 was used instead of polymer solution (1) in Example 1.
Except that 3.5 g of the polymer solution (4) obtained in 1 was used, and a mixture of 55 g of liquid paraffin and 11.5 g of diphenyl ether was used instead of Therm-S 900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical). is Example 1
The electrorheological fluid (4) of the present invention was obtained in the same manner as described above.

実施例5 還流冷却器、温度計および窒素導入管を備えた5 00
 mlの三つロセパラプルフラスコにスチレンスルホン
酸ナトリウム72g、N、N’−メチレンビスアクリル
アミド8g、過硫酸ナトリウム1gおよびイオン交換水
320gを投入し70℃で8時間加熱して重合を行った
。得られた重合体を150℃で3時間乾燥後、粉砕・分
級して、平均粒子径3,5μmの有機重合体粒子(以下
、これを分散相粒子(2)という、)46gを得た。な
お、分散相粒子(2)の陰イオン性解離基密度は4.0
mg当量/gであった。
Example 5 500 equipped with reflux condenser, thermometer and nitrogen inlet tube
72 g of sodium styrene sulfonate, 8 g of N,N'-methylenebisacrylamide, 1 g of sodium persulfate, and 320 g of ion-exchanged water were placed in a three-ml parallel flask, and polymerization was carried out by heating at 70° C. for 8 hours. The obtained polymer was dried at 150° C. for 3 hours, and then pulverized and classified to obtain 46 g of organic polymer particles (hereinafter referred to as dispersed phase particles (2)) having an average particle diameter of 3.5 μm. The anionic dissociative group density of the dispersed phase particles (2) is 4.0.
mg equivalent/g.

得られた分散相粒子<2)30gを150℃で3時間乾
燥後、温度20℃、相対湿度60%の室内に45分間放
置して吸湿させた後、重合体溶液(1)4.8gをサー
ムエス@900 (新日鉄化学■製の部分水添されたト
リフェニル)65.2gに添加して得た分散媒中c’=
均一に分散し、本発明の電気粘性流体(5)を得た。
After drying 30 g of the obtained dispersed phase particles <2) at 150°C for 3 hours, they were left in a room at a temperature of 20°C and a relative humidity of 60% for 45 minutes to absorb moisture, and then 4.8 g of the polymer solution (1) was dried. c' = in the dispersion medium obtained by adding 65.2 g of Therm-S@900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical ■)
It was uniformly dispersed to obtain an electrorheological fluid (5) of the present invention.

実施例6 実施例5における重合体溶液(1)の代わりに参考例2
で得られた重合体溶液<2)16gを用い、サームエス
@900(新日鉄化学■製の部分水添されたトリフェニ
ル)の使用量を54gとした以外は実施例5と同様の方
法により、本発明の電気粘性流体(6)を得た。
Example 6 Reference Example 2 was used instead of the polymer solution (1) in Example 5.
The present invention was carried out in the same manner as in Example 5, except that 16 g of the polymer solution <2) obtained in Example 5 was used and the amount of Therm-S@900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical) was changed to 54 g. An electrorheological fluid (6) of the invention was obtained.

実施例7 実施例5における重合体溶液(1)の代わりに参考例3
で得られた重合体溶液(3)1.5gを用い、サームエ
ス0900(新日鉄化学■製の部分水添されたトリフェ
ニル)の使用量を68゜5gとした以外は実施例5と同
様の方法により、本発明の電気粘性流体(7)を得た。
Example 7 Reference Example 3 instead of polymer solution (1) in Example 5
The same method as in Example 5 was used, except that 1.5 g of the polymer solution (3) obtained in Example 5 was used, and the amount of THERM-S 0900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical) was changed to 68°5 g. In this manner, an electrorheological fluid (7) of the present invention was obtained.

実施例8 実施例5における重合体溶液(1)の代わりに参考例4
で得られた重合体溶液(4)4.5gを用い、サームエ
ス@900 (新日鉄化学■製の部分水添されたトリフ
ェニル)の使用量を65,5gとした以外は実施例5と
同様の方法により、本発明の電気粘性流体(8)を得た
Example 8 Reference Example 4 was used instead of the polymer solution (1) in Example 5.
The same procedure as in Example 5 was carried out, except that 4.5 g of the polymer solution (4) obtained in Example 5 was used and the amount of Therm-S@900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical) was changed to 65.5 g. By the method, an electrorheological fluid (8) of the present invention was obtained.

比較例1 分散相粒子(1)30.を150℃で3時間乾燥後、温
度20℃、相対湿度60%の室内に40分間放置して吸
湿させた後、70gのサームエス0900中に混合分散
し、比較用の電気粘性流体(以下、これを比較流体(1
)という。)を得た。
Comparative Example 1 Dispersed phase particles (1) 30. After drying at 150°C for 3 hours, it was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture, and then mixed and dispersed in 70g of Therm-S 0900. Compare the fluid (1
). ) was obtained.

比較例2 分散相粒子(1)30gを150℃で3時間乾燥後、温
度20℃、相対湿度60%の室内に40分間放置して吸
湿させた後、リシノールt12tを68gのサームエス
■900中に添加して得た分散媒中に混合分散し、比較
用の電気粘性流体(以下、これを比較流体(2)という
、)を得た。
Comparative Example 2 After drying 30 g of dispersed phase particles (1) at 150°C for 3 hours, it was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture. A comparative electrorheological fluid (hereinafter referred to as comparative fluid (2)) was obtained by mixing and dispersing it in the dispersion medium obtained by adding it.

比較例3 分散相粒子(1)30tを150℃で3時間乾燥後、温
度20℃、相対湿度60%の室内に40分間放置して吸
湿させた後、参考例5で得られた重合体溶液(5)3g
を67gのサームエス■900中に添加して得た分散媒
中に混合物を分散し、比較用の電気粘性流体(以下、こ
れを比較流体(3)という、)を得た。
Comparative Example 3 After drying 30 tons of dispersed phase particles (1) at 150°C for 3 hours, the polymer solution obtained in Reference Example 5 was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture. (5) 3g
The mixture was dispersed in a dispersion medium obtained by adding the following to 67 g of Therm-S ■900 to obtain a comparative electrorheological fluid (hereinafter referred to as comparative fluid (3)).

比較例4 市販のシリカゲル(関東化学■製)を粉砕・分級して得
た平均粒子径2.5μmの粒子30.を150℃で3時
間乾燥後、温度20’C5相対湿度60%の室内に1時
間放置して吸湿させた後、70gのサームエス■900
中に混合分散し、比較用の電気粘性流体(以下、これを
比較流体(4)という、)を得た。
Comparative Example 4 Particles with an average particle diameter of 2.5 μm were obtained by crushing and classifying commercially available silica gel (manufactured by Kanto Kagaku ■). After drying at 150℃ for 3 hours, leave it in a room at a temperature of 20'C5 and a relative humidity of 60% for 1 hour to absorb moisture.
A comparative electrorheological fluid (hereinafter referred to as comparative fluid (4)) was obtained.

実施例9 実施例1〜8および比較例1〜4で得られた本発明の電
気粘性流体(1)〜(8)および比較流体(1)〜(4
)の各々について23℃にて電場無印加時の粘度を測定
した4次いで各々の電気粘性流体を、高さ150m+、
直径15閣の試験管の底から100mのところまで充填
して密閉した。
Example 9 Electrorheological fluids (1) to (8) and comparative fluids (1) to (4) of the present invention obtained in Examples 1 to 8 and Comparative Examples 1 to 4
) The viscosity of each of the electrorheological fluids was measured at 23°C with no electric field applied.
A test tube with a diameter of 15 square meters was filled to a depth of 100 m from the bottom and sealed.

その後7日間静置して、分散相粒子の沈降の程度を観察
し、電気粘性流体の分散安定性を調べた。
Thereafter, it was allowed to stand for 7 days, and the degree of sedimentation of the dispersed phase particles was observed to examine the dispersion stability of the electrorheological fluid.

その結果を第1表に示す。The results are shown in Table 1.

また、電気粘性流体の各々を共軸電場付二重円筒形回転
粘度計に入れ、内/外筒間隙1.0wn、せん断速度4
00 s ”、温度25℃の条件で交流外部電場400
0V/+m+(周波数: 50Hz)を印加したときの
せん断路力値(初期値)およびその際に流れる電流密度
(初期値)を測定した。さらに、4000 V / r
mの外部電場を印加した状態で粘度計を25℃にて3日
間連続運転した後のせん断路力値(3日後の値)および
電流密度(3日後の値)を測定し、電気粘性流体の経時
安定性を調べた。その結果を第1表に示す。
In addition, each of the electrorheological fluids was put into a double cylindrical rotational viscometer with a coaxial electric field, the inner/outer cylinder gap was 1.0wn, and the shear rate was 4.
00 s”, an AC external electric field of 400 s at a temperature of 25°C.
The shear road force value (initial value) when 0 V/+m+ (frequency: 50 Hz) was applied and the current density (initial value) flowing at that time were measured. Additionally, 4000 V/r
The shear path force value (value after 3 days) and current density (value after 3 days) after continuous operation of the viscometer at 25°C for 3 days with an external electric field of m The stability over time was investigated. The results are shown in Table 1.

第1表 第1表から明らかなように、本発明の電気粘性流体(1
)〜(8)は、比較的弱い電場を印加することによって
も大きいせん断路力を発生し、その際に流れる電流密度
か小さいという電流特性に優れ、かつ発生しなせん断路
力及び電流密度の経時安定性に優れ、さらに電場を印加
していない状態での粘度が低いだけでなく分散安定性に
特に優れていた。
Table 1 As is clear from Table 1, the electrorheological fluid (1
) to (8) are excellent in current characteristics in that they generate large shear path force even when a relatively weak electric field is applied, and the current density flowing at that time is small, and the shear path force and current density that do not occur are excellent. It had excellent stability over time, and not only had a low viscosity when no electric field was applied, but also had particularly excellent dispersion stability.

一方、比較流体(1)、(2)および(3)は、比較的
弱い電場の印加によって大きなせん断路力が得られたが
、電流特性が悪く、また電場無印加時の分散安定性にも
劣っていた。また、比較流体(4)は、比較的弱い電場
の印加によって大きなせん断路力が得られず、且つその
経時安定性および電場無印加時の分散安定性も悪かった
On the other hand, comparative fluids (1), (2), and (3) obtained large shear path force by applying a relatively weak electric field, but had poor current characteristics and poor dispersion stability when no electric field was applied. It was inferior. Furthermore, Comparative Fluid (4) could not obtain a large shear path force when a relatively weak electric field was applied, and its stability over time and dispersion stability when no electric field was applied were also poor.

(注1)分散安定性 ◎:はぼ均一な分散状態を保った ○:分散相の一部が沈降した ×二分散相がほとんど沈降した(Note 1) Dispersion stability ◎: Maintained a fairly uniform dispersion state ○: Part of the dispersed phase has settled. ×Most of the bidisperse phase sedimented

Claims (1)

【特許請求の範囲】 1、陽イオン交換能を持つ有機重合体粒子からなる分散
相、炭化水素系化合物を主成分とする絶縁性液体からな
る分散媒および高分子添加剤を含有してなる電気粘性流
体であって、高分子添加剤として一般式▲数式、化学式
、表等があります▼ (但し、式中R^1は水素またはメチル基であり、Xは ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼ または−CNである。)で表わされる構造単位(A)と
、一般式 ▲数式、化学式、表等があります▼ (但し、式中R^2は水素またはメチル基であり、Yは
芳香族炭化水素基である。)で表わされる構造単位(B
)とを必須の構成単位としてなり、且つ構造単位(A)
0.1〜60重量%で構造単位(B)40〜99.9重
量%の範囲である平均分子量1000〜1000万の重
合体( I )を使用してなる電気粘性流体。 2、陽イオン交換能を持つ有機重合体が、スルホン酸基
を有する有機重合体である請求項1記載の電気粘性流体
。 3、陽イオン交換能を持つ有機重合体がスルホン酸基含
有ポリスチレン系重合体である請求項1記載の電気粘性
流体。 4、高分子添加剤として有効な重合体( I )の必須の
構成単位である構造単位(A)と構造単位(B)との合
計含有量が全構成単位中50重量%以上である請求項1
〜3のいずれかに記載の電気粘性流体。 5、高分子添加剤の使用量が分散媒100重量部に対し
て0.1〜20重量部の範囲である請求項1〜4のいず
れかに記載の電気粘性流体。 6、陽イオン交換能を持つ有機重合体の平均粒子径が0
.1〜50μmの範囲である請求項1〜5のいずれかに
記載の電気粘性流体。
[Scope of Claims] 1. An electric device containing a dispersed phase made of organic polymer particles having cation exchange ability, a dispersion medium made of an insulating liquid mainly composed of a hydrocarbon compound, and a polymer additive. It is a viscous fluid, and as a polymer additive, there are general formulas such as ▲mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, R^1 is hydrogen or a methyl group, and X is ▲mathematical formulas, chemical formulas, tables, etc.) ▼、▲Mathematical formula, chemical formula,
There are tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ or -CN. ) and the general formula ▲ mathematical formula, chemical formula, table, etc. ▼ (However, in the formula, R^2 is hydrogen or a methyl group, and Y is an aromatic hydrocarbon group.) The structural unit represented by (B
) as an essential structural unit, and the structural unit (A)
An electrorheological fluid using a polymer (I) having an average molecular weight of 10 to 10 million, in which the structural unit (B) is 0.1 to 60% by weight and the structural unit (B) is 40 to 99.9% by weight. 2. The electrorheological fluid according to claim 1, wherein the organic polymer having cation exchange ability is an organic polymer having a sulfonic acid group. 3. The electrorheological fluid according to claim 1, wherein the organic polymer having cation exchange ability is a sulfonic acid group-containing polystyrene polymer. 4. A claim in which the total content of structural units (A) and structural units (B), which are essential structural units of polymer (I) effective as a polymer additive, is 50% by weight or more of all structural units. 1
The electrorheological fluid according to any one of 3 to 3. 5. The electrorheological fluid according to any one of claims 1 to 4, wherein the amount of the polymer additive used is in the range of 0.1 to 20 parts by weight per 100 parts by weight of the dispersion medium. 6. The average particle size of the organic polymer with cation exchange ability is 0.
.. The electrorheological fluid according to any one of claims 1 to 5, having a diameter in the range of 1 to 50 μm.
JP10742790A 1990-04-25 1990-04-25 Electroviscous fluid Pending JPH047397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10742790A JPH047397A (en) 1990-04-25 1990-04-25 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10742790A JPH047397A (en) 1990-04-25 1990-04-25 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH047397A true JPH047397A (en) 1992-01-10

Family

ID=14458873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10742790A Pending JPH047397A (en) 1990-04-25 1990-04-25 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH047397A (en)

Similar Documents

Publication Publication Date Title
US4708997A (en) Suspending agent for the suspension polymerization of water-soluble monomers
US3996180A (en) High shear mixing of latex polymers
US4992192A (en) Electrorheological fluids
US5073282A (en) Electrorheological fluids
US4990279A (en) Electrorheological fluids
JPS61215602A (en) Production of polymer particle
US5558803A (en) Electrorheological fluid with improved properties comprising composite polymer
JPH047397A (en) Electroviscous fluid
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
JPH0481496A (en) Electroviscous fluid
JPH0496997A (en) Electric viscous fluid
JP3093831B2 (en) Electrorheological fluid
JP2636446B2 (en) Electrorheological fluid composition
JP3095868B2 (en) Electrorheological fluid composition
JP2905562B2 (en) Electrorheological fluid composition
JP2667546B2 (en) Electrorheological fluid composition
JPH0791348B2 (en) Method for producing crosslinked polymer particles
JPH04275398A (en) Electroviscous fluid
JP2598828B2 (en) Electrorheological fluid composition
JP3091778B2 (en) Electrorheological fluid composition
JPH03215597A (en) Electroviscous fluid composition
JPS61283602A (en) Production of aqueous dispersion of fine polymer particle
JPH01304144A (en) Electroviscous liquid
EP0636683B1 (en) Electrorheological fluid
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition