JPH0496997A - Electric viscous fluid - Google Patents

Electric viscous fluid

Info

Publication number
JPH0496997A
JPH0496997A JP21439290A JP21439290A JPH0496997A JP H0496997 A JPH0496997 A JP H0496997A JP 21439290 A JP21439290 A JP 21439290A JP 21439290 A JP21439290 A JP 21439290A JP H0496997 A JPH0496997 A JP H0496997A
Authority
JP
Japan
Prior art keywords
polymer
group
electrorheological fluid
vinyl
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21439290A
Other languages
Japanese (ja)
Inventor
Izuho Okada
出穂 岡田
Yoshinobu Asako
佳延 浅子
Minoru Kobayashi
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP21439290A priority Critical patent/JPH0496997A/en
Publication of JPH0496997A publication Critical patent/JPH0496997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To provide the title fluid excellent in current characteristics, dispersion stability and fluidity, useful for clutches, etc., comprising each specific disperse phase, dispersion medium and polymeric additive prepared by polymerizing a vinyl monomer in the presence of a polymer carrying at its one end vinyl group. CONSTITUTION:The objective fluid comprising (A) 100 pts.wt. of a disperse phase consisting of organic polymer granules with cation exchange ability such as a sulfonic acid group-contg. polystyrene-based polymer ones, (B) pref. 50-500 pts.wt. of a dispersion medium consisting of an electrical insulating fluid mainly of a hydrocarbon compound such as dodecane, and (C) pref. 0.1-60 pts.wt. of a polymeric additive prepared by polymerizing a vinyl monomer such as styrene in the presence of a polymer carrying at its one end vinyl group, made up of structural unit of formula I (R<1> and R<2> are each H or methyl) and/or formula II (R<3> is H or methyl; X is aromatic hydrocarbon or substituent having O or N).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気粘性流体に関するものである。更に詳しく
は、比較的弱い電場を印加することによっても大きいせ
ん断路力を発生し、その際に流れる電流密度が小さいと
いう電流特性に優れ、かつ発生しなせん断路力及び電流
密度の経時安定性に優れ、かつ電場を印加していない状
態での分散安定性(分散相を沈降あるいは浮上させずに
、電気粘性流体を長時間均一状態に保持できる性能)に
特に優れた電気粘性流体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to electrorheological fluids. More specifically, it has excellent current characteristics in that it generates a large shear path force even when a relatively weak electric field is applied, and the current density that flows at that time is small, and the stability of the shear path force and current density over time without being generated. This refers to an electrorheological fluid that has excellent dispersion stability (ability to maintain an electrorheological fluid in a uniform state for a long time without causing the dispersed phase to settle or float) when no electric field is applied. be.

(従来の技術) 電気粘性流体とは、例えば絶縁性の分散媒中に固体粒子
を分散・懸濁して得られる流体であって、そのレオロジ
ー的あるいは流れ性質か電場変化を加えることにより粘
塑性型の性質に変わる流体であり、一般に外部電場を印
加した時に粘度が著しく上昇し大きいせん断路力を誘起
する、いわゆるウィンスロー効果を示す流体として知ら
れている。
(Prior art) An electrorheological fluid is a fluid obtained by dispersing/suspending solid particles in an insulating dispersion medium. It is generally known as a fluid that exhibits the so-called Winslow effect, in which the viscosity increases significantly and a large shear path force is induced when an external electric field is applied.

このウィンスロー効果は応答性が速いという特徴を有す
るため、電気粘性流体はクラッチ、タンパ、ブレーキ、
ショックアブソーバ−、アクチュエーター、バルブ等へ
の応用が試みられている。
This Winslow effect has the characteristic of quick response, so electrorheological fluids can be used in clutches, tampers, brakes, etc.
Applications to shock absorbers, actuators, valves, etc. are being attempted.

従来、電気粘性流体としては、シリコン油、塩化ジフェ
ニル、トランス油等の絶縁油中に、セルロース、でんぷ
ん、大豆カゼイン、シリカゲル等の固体粒子を分散させ
たものが知られている。しかしながら、セルロース、で
んぷん、大豆カゼイン、シリカゲル等を用いたものは、
発生するせん断路力が小さいという問題点があった。
Conventionally, known electrorheological fluids include solid particles such as cellulose, starch, soybean casein, and silica gel dispersed in insulating oil such as silicone oil, diphenyl chloride, and transformer oil. However, those using cellulose, starch, soybean casein, silica gel, etc.
There was a problem in that the shear road force generated was small.

一方、高いせん断路力を発生する電気粘性流体として、
例えばイオン交換樹脂の粉体を芳香族カルボン酸の高級
アルキルエステル中に懸濁したちのく特開昭50−92
278>や、3つの結晶中白の1つのみに沿って電流を
伝導する結晶性物質と誘電性液体及び添加剤からなる組
成物(特開平1−170693)等が提案されている。
On the other hand, as an electrorheological fluid that generates high shear path force,
For example, when powder of ion exchange resin is suspended in higher alkyl ester of aromatic carboxylic acid,
278>, and a composition comprising a crystalline substance, a dielectric liquid, and an additive that conducts current along only one of the three crystals (Japanese Patent Laid-Open No. 1-170693).

しかしながら、これらの電気粘性流体は、電場印加時G
こ流れる電流密度が比較的大きく電流特性に劣っており
、また電場無印加時に分散相が容易に分離したり逆に分
散相が分離しないよう分散相の濃度を高くした場合には
流動性に乏しくなるという問題点を有していた。
However, these electrorheological fluids have a G
The current density is relatively large and the current characteristics are poor, and the dispersed phase easily separates when no electric field is applied, and conversely, when the concentration of the dispersed phase is increased to prevent separation, the fluidity is poor. It had the problem of becoming.

分散相の分離や流動性の問題点を解決するために、電気
粘性流体に分散安定剤等の添加剤を加える方法が提案さ
れている。しかし、通常の分散安定剤として知られてい
る界面活性剤やステアリン酸系添加剤等の多くは、炭化
水素系化合物を主成分とする絶縁性液体からなる分散媒
に対する溶解性に乏しいものか多く、これらの系には実
質上添加することかできなかった。また分散媒に溶解す
るものく例えばリシノール酸やオレイン酸等)でも、実
用上支障をきたさないほど分散安定性を高めることはで
きなかった。
In order to solve the problems of separation of dispersed phases and fluidity, methods of adding additives such as dispersion stabilizers to electrorheological fluids have been proposed. However, many of the surfactants and stearic acid additives known as ordinary dispersion stabilizers have poor solubility in dispersion media consisting of insulating liquids mainly composed of hydrocarbon compounds. , it was virtually impossible to add them to these systems. Furthermore, even with substances that are soluble in the dispersion medium (such as ricinoleic acid and oleic acid), it has not been possible to improve the dispersion stability to the extent that it does not pose a practical problem.

また、シリカゲルを分散相とする電気粘性流体において
、分散安定剤としてN及び/またはOH含有化合物と高
級アルキル(メタ)アクリレート等の炭素数4〜24の
アルキル基含有化合物との重合体(特開昭6l−259
752)や変性シリコーンオイル(特開平2−2663
3>が提案されている。
In addition, in an electrorheological fluid having silica gel as a dispersed phase, a polymer of an N- and/or OH-containing compound and an alkyl group-containing compound having 4 to 24 carbon atoms such as higher alkyl (meth)acrylate is used as a dispersion stabilizer. Showa 6l-259
752) and modified silicone oil (JP-A-2-2663)
3> has been proposed.

しかしながら1、このような分散安定剤は、シリカゲル
分散相とする電気粘性流体については効果があっても、
スルホン酸基含有ポリスチレン系イオン交換樹脂等の有
機重合体を分散相としてなる電気粘性流体の分散安定性
改良には十分なものではなかった。しかもこれらの公報
に記載されている電気粘性流体は、発生するせん断路力
か十分でないという問題点を有していた。
However, 1. Although such dispersion stabilizers are effective for electrorheological fluids with a silica gel dispersed phase,
This method has not been sufficient to improve the dispersion stability of electrorheological fluids containing organic polymers such as sulfonic acid group-containing polystyrene ion exchange resins as a dispersed phase. Moreover, the electrorheological fluids described in these publications had the problem that the shear path force generated was insufficient.

(発明が解決しようとする課題) 本発明は従来の電気粘性流体が有していた上記の問題点
を解決するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems that conventional electrorheological fluids have.

したかつて、本発明の目的は、比較的弱い電場を印加す
ることによっても大きいせん断応力を発生し、その際に
流れる電流密度が小さいという電流特性に優れ、かつ発
生しなせん断応力および電流密度の経時安定性に優れ、
さらに電場を印加していない状態での粘度が低く流動性
に優れ、しかも分散相が沈降あるいは浮上しにくいとい
う分散安定性に特に擾れた電気粘性流体を提供すること
にある。
The object of the present invention is to generate a large shear stress even by applying a relatively weak electric field, and to have excellent current characteristics such that the current density flowing at that time is small, and to reduce the shear stress and current density without being generated. Excellent stability over time,
Furthermore, it is an object of the present invention to provide an electrorheological fluid that has a low viscosity when no electric field is applied, has excellent fluidity, and has particularly excellent dispersion stability such that the dispersed phase does not easily settle or float.

(課題を解決するための手段および作用)本発明は、陽
イオン交換能を持つ有機重合体粒子からなる分散相、炭
化水素系化合物を主成分とする絶縁性液体からなる分散
媒および高分子添加剤を含有してなる電気粘性流体であ
って、高分子添加剤として、片末端にビニル基を有する
重合体(I>の存在下にビニル単量体を重合して得られ
る重合体(II)を使用することを特徴とする電気粘性
流体に関するものである。
(Means and effects for solving the problem) The present invention provides a dispersed phase made of organic polymer particles having cation exchange ability, a dispersion medium made of an insulating liquid mainly composed of a hydrocarbon compound, and a polymer additive. A polymer (II) obtained by polymerizing a vinyl monomer in the presence of a polymer (I>) having a vinyl group at one end as a polymer additive. The present invention relates to an electrorheological fluid characterized by using.

本発明の電気粘性流体に含有される高分子添加剤として
有効な重合体(If)を得るに際し、原料として用いら
れる片末端にビニル基を有する重合体(I)は、主鎖の
主成分に一般式 %式% (但し、式中R1、R2はそれぞれ独立に水素またはメ
チル基である。) で表される構造単位(A)および/または一般式(但し
、式中R3は水素またはメチル基であり、Xは芳香族炭
化水素基または窒素原子もしくは酸素原子を有する置換
基である。)で表される構造単位(B)を有しているこ
とが好ましい、このような構造単位(A)および/また
は構造単位(B)が重合体(1)の主鎖の主成分として
含有されることによって、得られる重合体(II)を電
気粘性流体の高分子添加剤として使用した際の効果がよ
り有効に発揮される。すなわち、重合体(I)中に構造
単位(A)および/または構造単位(B)が含有されて
いない場合では、電流特性や分散安定性にずぐれな電気
粘性流体が得られないことがある。
When obtaining the polymer (If) which is effective as a polymer additive contained in the electrorheological fluid of the present invention, the polymer (I) having a vinyl group at one end used as a raw material is used as the main component of the main chain. The structural unit (A) represented by the general formula % formula % (wherein R1 and R2 are each independently hydrogen or methyl group) and/or the general formula (wherein R3 is hydrogen or methyl group) and X is an aromatic hydrocarbon group or a substituent having a nitrogen atom or an oxygen atom.) Such a structural unit (A) preferably has a structural unit (B) represented by and/or the structural unit (B) is contained as a main component in the main chain of the polymer (1), thereby increasing the effect when the resulting polymer (II) is used as a polymer additive for electrorheological fluids. more effectively. That is, if the structural unit (A) and/or the structural unit (B) are not contained in the polymer (I), an electrorheological fluid with excellent current characteristics and dispersion stability may not be obtained. .

重合体(I)の主成分である構造単位(A>を与える化
合物としては、例えばエチレンオキサイド、プロピレン
オキサイド、2.3−ブチレンオキサイド等のアルキレ
ンオキサイド;エチレングリコール、プロピレングリコ
ール、2.3−ブチレングリコール等のグリコール等を
挙げることかでき、これらの中から一種あるいは二種以
上を使用することができる。
Compounds that provide the structural unit (A> that is the main component of the polymer (I) include, for example, alkylene oxides such as ethylene oxide, propylene oxide, and 2,3-butylene oxide; ethylene glycol, propylene glycol, and 2,3-butylene. Glycols such as glycol can be mentioned, and one kind or two or more kinds thereof can be used.

重合体(I)の主鎖の主成分である構造単位(B)中の
置換基Xは、芳香族炭化水素基または窒素原子もしくは
酸素原子を有する置換基であることが必要である。芳香
族炭化水素基としては、例えばフェニル基、ナフチル基
、アントリル基、フェナントリル基等のアリール基;メ
チルフェニル基、エチルフェニル基、プロピルフェニル
基、ブチルフェニル基、ペンチルフェニル基、ヘキシル
フェニル基等のモノアルキルアリール基、ジメチルフェ
ニル基、メチルエチルフェニル基、メチルプロピルフェ
ニル基、ジエチルフェニル基、エチルプロピルフェニル
基、ジプロピルフェニル基等のジアルキルアリール基;
トリメチルフェニル基、ジメチルエチルフェニル基、メ
チルジエチルフェニル基、トリエチルフェニル基、トリ
プロピルフェニル基等のトリアルキルアリール基等を挙
げることができる。また窒素原子もしくは酸素原子を有
する置換基としては、例えばシアノ基:2ピリジル基、
4−ピリジル基;2−ピロリドン1−イル基ニアミノメ
チルフェニル基、ジメチルアミノメチルフェニル基等の
アミノアリール基:メトキシフェニル基、メトキシメチ
ルフェニル基等のアルコキシアリール基、メトキシカル
ボニル基、エトキシカルボニル基、プロポキシカルボニ
ル基、ブトキシカルボニル基、ペンチルオキシカルボニ
ル基、ヘキシルオキシカルボニル基、オクチルオキシカ
ルボニル基、デシルオキシカルボニル基、ドデシルオキ
シカルボニル基等のアルキルオキシカルボニル基;ヒド
ロキシエトキシカルボニル基、アミノエチルオキシカル
ボニル基、N。
The substituent X in the structural unit (B) which is the main component of the main chain of the polymer (I) needs to be an aromatic hydrocarbon group or a substituent having a nitrogen atom or an oxygen atom. Examples of aromatic hydrocarbon groups include aryl groups such as phenyl, naphthyl, anthryl, and phenanthryl groups; methylphenyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, and hexylphenyl groups. Dialkyl aryl groups such as monoalkylaryl group, dimethylphenyl group, methylethylphenyl group, methylpropylphenyl group, diethylphenyl group, ethylpropylphenyl group, dipropylphenyl group;
Examples include trialkylaryl groups such as trimethylphenyl group, dimethylethylphenyl group, methyldiethylphenyl group, triethylphenyl group, and tripropylphenyl group. Further, examples of the substituent having a nitrogen atom or an oxygen atom include a cyano group: 2-pyridyl group,
4-pyridyl group; 2-pyrrolidone-1-yl group; aminoaryl group such as niaminomethylphenyl group or dimethylaminomethylphenyl group; alkoxyaryl group such as methoxyphenyl group or methoxymethylphenyl group; methoxycarbonyl group or ethoxycarbonyl group; , propoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, octyloxycarbonyl group, decyloxycarbonyl group, dodecyloxycarbonyl group; alkyloxycarbonyl group; hydroxyethoxycarbonyl group, aminoethyloxycarbonyl group ,N.

N−ジメチルアミンエチルオキシカルボニル基等の置換
アルキルオキシカルボニル基:N〜メチルアミノカルボ
ニル基、N、N−ジメチルアミノカルボニル基等のアル
キルアミノカルボニル基:アセトキシ基、ベンゾイルオ
キシ基等のカルボニルオキシ基;メトキシ基、エトキシ
基、プロポキシ基等のアルコキシ基などを挙げることが
できる。
Substituted alkyloxycarbonyl group such as N-dimethylamine ethyloxycarbonyl group: N~methylaminocarbonyl group, alkylaminocarbonyl group such as N,N-dimethylaminocarbonyl group: carbonyloxy group such as acetoxy group, benzoyloxy group; Examples include alkoxy groups such as methoxy, ethoxy, and propoxy groups.

重合体(I>の主成分である構造単位(B)を与える化
合物としては、例えばスチレン、ビニルナフタレン、ビ
ニルアントラセン、ビニルフェナントレン、ビニルトル
エン、エチルスチレン、プロピルスチレン、ブチルスチ
レン、ペンチルスチレン、ヘキシルスチレン、ジメチル
スチレン、メチルエチルスチレン、メチル10ピルスチ
レン、ジエチルスチレン、エチルプロピルスチレン、ジ
プロピルスチレン、トリメチルスチレン、ジメチルエチ
ルスチレン、メチルジエチルスチレン、トリエチルスチ
レン、トリプロピルスチレン等の芳香族炭化水素基を有
するビニル単量体;(メタ)アクリロニトリル、2−ビ
ニルピリジン、4−ビニルピリジン、N−ビニルピロリ
ドン、アミンメチルスチレン、ジメチルアミノメチルス
チレン、メトキシスチレン、メトキシメチルスチレン、
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル
、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブ
チル、(メタ)アクリル酸ペンチル、(メタ)アクリル
酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)ア
クリル酸デシル、(メタ)アクリル酸ドテシル、(メタ
)アクリル酸しドロキシエチル、(メタ)アクリル酸ア
ミノエチル、(メタ)アクリル酸−N、N−ジメチルア
ミノエチル、N−メチル(メタ)アクリルアミド、NN
−ジメチル(メタ)アクリルアミド、酢酸ビニル、安息
香酸ビニル、メチルビニルエーテル、エチルビニルエー
テル、プロピルビニルエーテル等の窒素原子もしくは酸
素原子を有する置換基をもつビニル単量体等を挙げるこ
とができ、これらの中から一種あるいは二種以上を用い
ることができる。
Examples of compounds providing the structural unit (B) which is the main component of the polymer (I>) include styrene, vinylnaphthalene, vinylanthracene, vinylphenanthrene, vinyltoluene, ethylstyrene, propylstyrene, butylstyrene, pentylstyrene, hexylstyrene. , dimethylstyrene, methylethylstyrene, methyl-10pylstyrene, diethylstyrene, ethylpropylstyrene, dipropylstyrene, trimethylstyrene, dimethylethylstyrene, methyldiethylstyrene, triethylstyrene, tripropylstyrene, etc. Vinyl having an aromatic hydrocarbon group Monomer; (meth)acrylonitrile, 2-vinylpyridine, 4-vinylpyridine, N-vinylpyrrolidone, aminemethylstyrene, dimethylaminomethylstyrene, methoxystyrene, methoxymethylstyrene,
Methyl (meth)acrylate, Ethyl (meth)acrylate, Propyl (meth)acrylate, Butyl (meth)acrylate, Pentyl (meth)acrylate, Hexyl (meth)acrylate, Octyl (meth)acrylate, ( Decyl (meth)acrylate, dotecyl (meth)acrylate, droxyethyl (meth)acrylate, aminoethyl (meth)acrylate, -N,N-dimethylaminoethyl (meth)acrylate, N-methyl (meth)acrylamide ,NN
-Vinyl monomers with substituents having a nitrogen atom or an oxygen atom, such as dimethyl (meth)acrylamide, vinyl acetate, vinyl benzoate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, etc.; One type or two or more types can be used.

また、重合体<I)は、構造単位(A)および/または
構造単位(B)以外のその他の構造単位を有していても
よい。その他の構造単位を与える化合物としては、例え
ばエチレン、プロピレン、ブチレン、ブタジェン、イソ
プレン、クロロプレン、フッ化ビニル、フッ化ビニリデ
ン、塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化
スチレン、塩化スチレン、臭化スチレン、マレイン酸、
無水マレイン酸、フマル酸等を挙げることができ、これ
らの中から一種あるいは二種以上を用いることができる
Moreover, the polymer <I) may have structural units other than the structural unit (A) and/or the structural unit (B). Examples of compounds that provide other structural units include ethylene, propylene, butylene, butadiene, isoprene, chloroprene, vinyl fluoride, vinylidene fluoride, vinyl chloride, vinylidene chloride, vinyl bromide, styrene fluoride, styrene chloride, and bromide. styrene, maleic acid,
Examples include maleic anhydride and fumaric acid, and one or more of these can be used.

重合#(I)がその他の構造単位を有する場合において
、その他の構造単位の割合は、重合体(1)中30重量
%以下の範囲であることが好ましい、その他の構造単位
の重合体(I)中の割合が30重量%より大きい場合に
は、得られる電気粘性流体の分散安定性が良くない場合
がある6重合体(1)を得る方法としては、特に制限な
く、例えば(1)所定の温度でカチオン系触媒の存在下
(メタ)アクリル酸しドロキシエチル等の水酸基を有す
るビニル単量体に、構造単位(A)を与える化合物であ
るエチレンオキサイド等のアルキレンオキサイドを所定
量加えて付加重合させる方法、(2)構造単位(B)を
与える化合物であるスチレン等の芳香族炭化水素基を有
するビニル単量体にn−ブチルリチウム等のアニオン重
合開始剤を加えて所定時間撹拌した後、メタクリル酸ク
ロライド等のビニル基を有する停止剤を添加して合成す
る方法、(3)所定の温度でメルカプト酢酸等のラジカ
ル連鎖移動剤の存在下、構造単位(B)を与える化合物
であるスチレンや〈メタ)アクリル酸メチルやN、N−
ジメチル(メタ)、アクリルアミド等の芳香族炭化水素
基または窒素原子もしくは酸素原子を有する置換基を持
つビニル単量体にアゾビスイソブチロニトリル等のラジ
カル重合開始剤を添加し所定時間撹拌して重合し、この
重合物に(メタ)アクリル酸りリシジル等の連鎖移動剤
残基と反応するビニル単量体を添加・撹拌して合成する
方法等、公知の方法を用いることかできる。また市販品
等を使用してもよい。
When polymerization #(I) has other structural units, the proportion of the other structural units in the polymer (I) is preferably in the range of 30% by weight or less in the polymer (1). ) is larger than 30% by weight, the dispersion stability of the resulting electrorheological fluid may be poor. There are no particular restrictions on the method for obtaining hexapolymer (1). For example, (1) (meth)acrylic acid in the presence of a cationic catalyst at a temperature of (2) After adding an anionic polymerization initiator such as n-butyllithium to a vinyl monomer having an aromatic hydrocarbon group such as styrene, which is a compound providing the structural unit (B), and stirring for a predetermined time, A method of synthesis by adding a terminator having a vinyl group such as methacrylic acid chloride, (3) a method of synthesis by adding a terminator having a vinyl group such as methacrylic acid chloride, and (3) a method of synthesis by adding a terminator having a vinyl group such as methacrylic acid chloride. (Meth) acrylate, N, N-
A radical polymerization initiator such as azobisisobutyronitrile is added to a vinyl monomer having an aromatic hydrocarbon group such as dimethyl (meth) or acrylamide or a substituent having a nitrogen or oxygen atom, and the mixture is stirred for a predetermined period of time. Known methods can be used, such as a method in which a vinyl monomer that reacts with a chain transfer agent residue such as lysidyl (meth)acrylate is added and stirred to the polymerized product. Also, commercially available products may be used.

重合体(I)の存在下に重合することにより本発明にお
ける高分子添加剤として有効な重合体(II)を生成す
るビニル単量体としては、特に制限なく、例えば°スチ
レン、ビニルナフタレン、ビニルアントラセン、ビニル
フェナントレン、ビニルトルエン、エチルスチレン、プ
ロピルスチレン、ブチルスチレン、ペンチルスチレン、
ヘキシルスチレン、ジメチルスチレン、メチルエチルス
チレン、メチルプロピルスチレン、ジエチルスチレン、
エチルプロピルスチレン、ジプロピルスチレン、トリメ
チルスチレン、ジメチルエチルスチレン、メチルジエチ
ルスチレン、トリエチルスチレン、トリプロピルスチレ
ン等の芳香族炭化水素基を有するビニル単量体:(メタ
)アクリロニトリル、2−ビニルピリジン、4−ビニル
ピリジン、Nビニルピロリドン、アミノメチルスチレン
、ジメチルアミノメチルスチレン、メトキシスチレン、
メトキシメチルスチレン、(メタ)アクリル酸メチル、
(メタ)アクリル酸エチル、(メタ)アクリル酸プロピ
ル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペ
ンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリ
ル酸オクチル、(メタ)アクリル酸デシル、(メタ)ア
クリル酸ドデシル、(メタ)アクリル酸しドロキシエチ
ル、(メタ)アクリル酸アミノエチル、(メタ)アクリ
ル酸−N、N−ジメチルアミノエチル、N−メチル(メ
タ)アクリルアミド、N、N−ジメチル(メタ)アクリ
ルアミド、酢酸ビニル、安息香酸ビニル、メチルビニル
エーテル、エチルビニルエーテル、プロピルビニルエー
テル等の窒素原子もしくは酸素原子を有する置換基をも
つビニル単量体:エチレン、プロピレン、ブチレン、ブ
タジェン、イソプレン、クロロプレン、フッ化ビニル、
フッ化ビニリデン、塩化ビニル、塩化ビニリデン、臭化
ビニル、フッ化スチレン、塩化スチレン、臭化スチレン
、マレイン酸、無水マレイン酸、フマル酸等その他のビ
ニル単量体等を挙げることかでき、これらの中から一種
あるいは二種以上を用いることができる。
The vinyl monomer that can be polymerized in the presence of polymer (I) to produce polymer (II) which is effective as a polymer additive in the present invention is not particularly limited, and examples thereof include styrene, vinylnaphthalene, and vinyl monomer. Anthracene, vinylphenanthrene, vinyltoluene, ethylstyrene, propylstyrene, butylstyrene, pentylstyrene,
Hexylstyrene, dimethylstyrene, methylethylstyrene, methylpropylstyrene, diethylstyrene,
Vinyl monomers having aromatic hydrocarbon groups such as ethylpropylstyrene, dipropylstyrene, trimethylstyrene, dimethylethylstyrene, methyldiethylstyrene, triethylstyrene, tripropylstyrene: (meth)acrylonitrile, 2-vinylpyridine, 4 -vinylpyridine, N-vinylpyrrolidone, aminomethylstyrene, dimethylaminomethylstyrene, methoxystyrene,
Methoxymethylstyrene, methyl (meth)acrylate,
Ethyl (meth)acrylate, Propyl (meth)acrylate, Butyl (meth)acrylate, Pentyl (meth)acrylate, Hexyl (meth)acrylate, Octyl (meth)acrylate, Decyl (meth)acrylate, ( dodecyl (meth)acrylate, droxyethyl (meth)acrylate, aminoethyl (meth)acrylate, -N,N-dimethylaminoethyl (meth)acrylate, N-methyl (meth)acrylamide, N,N-dimethyl ( Vinyl monomers with a substituent having a nitrogen or oxygen atom such as meth)acrylamide, vinyl acetate, vinyl benzoate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, etc.: ethylene, propylene, butylene, butadiene, isoprene, chloroprene, fluorine, etc. vinyl chloride,
Examples include other vinyl monomers such as vinylidene fluoride, vinyl chloride, vinylidene chloride, vinyl bromide, styrene fluoride, styrene chloride, styrene bromide, maleic acid, maleic anhydride, and fumaric acid. One or more of them can be used.

片末端にビニル基を有する重合体(I)は平均分子量が
300〜10万の範囲であることが好ましい。平均分子
量が300未満あるいは10万より大きい場合には、電
気粘性流体の分散安定性が良くない場合がある。
The average molecular weight of the polymer (I) having a vinyl group at one end is preferably in the range of 300 to 100,000. If the average molecular weight is less than 300 or greater than 100,000, the dispersion stability of the electrorheological fluid may be poor.

片末端にビニル基を有する重合体(1)および、ビニル
単量体の使用割合は、重合体(I)/ビニル単量体=0
.1/99.9〜9515(重量比)の範囲が好ましい
。重合体(I)/ビニル単量体が0.1/99.9より
小さい場合や9515より大きい場合、得られる重合体
(II)を電気粘性流体の高分子添加剤として用いた際
に添加量に見合った分散安定化効果が得られないことが
ある。
The ratio of the polymer (1) having a vinyl group at one end and the vinyl monomer is polymer (I)/vinyl monomer=0.
.. The range of 1/99.9 to 9515 (weight ratio) is preferable. When the polymer (I)/vinyl monomer ratio is smaller than 0.1/99.9 or larger than 9515, the amount added when the resulting polymer (II) is used as a polymer additive for electrorheological fluids. The dispersion stabilizing effect commensurate with that may not be obtained.

重合体(II)は、重合体(I)の存在下にビニル単量
体を重合して得られるものである。重合方法としては特
に制限はなく、例えば(1)重合体<1)とビニル単量
体の混合物をトルエン等の溶媒に溶かし、ここにアゾビ
スイソブチロニトリル等の重合開始剤を添加し所定の温
度で撹拌して行う溶液重合、(2)重合体(1)とビニ
ル単量体の混合物に重合開始剤を添加し所定の温度で加
熱して行う塊状重合、(3)重合体(I)とビニル単量
体の混合物に重合開始剤を添加し必要に応じて分散安定
剤や乳化剤等の存在下で水やアルコールなどの分散媒中
で撹拌して、懸濁あるいは乳化し加熱して行う懸濁重合
や乳化重合等の公知の方法で行えばよい。
Polymer (II) is obtained by polymerizing vinyl monomers in the presence of polymer (I). There are no particular restrictions on the polymerization method; for example, a mixture of (1) polymer <1) and a vinyl monomer is dissolved in a solvent such as toluene, and a polymerization initiator such as azobisisobutyronitrile is added thereto. (2) Bulk polymerization by adding a polymerization initiator to a mixture of polymer (1) and vinyl monomer and heating at a predetermined temperature; ) and vinyl monomer, and if necessary, in the presence of a dispersion stabilizer or emulsifier, stir in a dispersion medium such as water or alcohol to suspend or emulsify and heat. It may be carried out by a known method such as suspension polymerization or emulsion polymerization.

重合体(I[)は平均分子量が5000〜500万の範
囲であることが好ましい。平均分子量が5000未満あ
るいは500万より大きい場合には、得られる電気粘性
流体の分散安定性か良くない場合がある。
The average molecular weight of the polymer (I[) is preferably in the range of 5,000 to 5,000,000. If the average molecular weight is less than 5,000 or greater than 5,000,000, the resulting electrorheological fluid may have poor dispersion stability.

本発明の電気粘性流体において分散相を構成する陽イオ
ン交換能を有する有機重合体粒子としては、水等の極性
溶媒の存在下において陽イオンを解離し自らは陰イオン
となる官能基を有する重合体の粒子であれば特に制限な
く、例えば分子中にスルホン酸基、カルボン酸基、リン
酸基などの解離基を有する有m重合体の粒子か挙げられ
る。中でも、スルホン酸基を有する有機重合体粒子か好
ましく、さらに中でもスルホン酸基含有ポリスチレン系
重合体からなる粒子が、せん断応力や電流密度の点で優
れた電気粘性流体が得られるので好ましい。
The organic polymer particles having cation exchange ability constituting the dispersed phase in the electrorheological fluid of the present invention include polymer particles having a functional group that dissociates cations and becomes anions themselves in the presence of a polar solvent such as water. There are no particular limitations as long as the particles are agglomerated particles, and examples include particles of m-polymer having a dissociative group such as a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group in the molecule. Among these, organic polymer particles having sulfonic acid groups are preferable, and particles made of polystyrene polymers containing sulfonic acid groups are particularly preferable because they provide an electrorheological fluid with excellent shear stress and current density.

有機重合体粒子が極性溶媒中で解離する陽イオンの種類
としては、特に制限はなく、例えば水素陽イオン;リチ
ウムイオン、ナトリウムイオン、カリウムイオン、カル
シウムイオン、アルミニウムイオン、第一銅イオン、第
二銅イオン等の金属陽イオン;テトラメチルアンモニウ
ムイオン、ピリジニウムイオン等の有機物陽イオン等を
挙げることかできる。
There are no particular restrictions on the types of cations that organic polymer particles dissociate in polar solvents, such as hydrogen cations; lithium ions, sodium ions, potassium ions, calcium ions, aluminum ions, cuprous ions, and sulfur ions. Examples include metal cations such as copper ions; organic cations such as tetramethylammonium ions and pyridinium ions.

本発明において分散相として用いることかできる陽イオ
ン交換能を有する有機重合体粒子を得るには、例えばス
ルホン酸基やカルボン酸基等のイオン解離基を有するビ
ニル化合物を単独あるいは必要に応じてその他のビニル
モノマーを加えた単量体混合物として公知の方法で重合
し必要に応じて所定の粒子径に粉砕してもよく、また重
合体に公知の方法でスルホン酸基等のイオン解離基を導
入してもよく、またエステル基等を有する重合体を公知
の方法で加水分解してイオン解離基を導入してもよい。
In order to obtain organic polymer particles having cation exchange ability that can be used as a dispersed phase in the present invention, for example, a vinyl compound having an ion dissociative group such as a sulfonic acid group or a carboxylic acid group may be used alone or in other forms as necessary. A monomer mixture containing a vinyl monomer may be polymerized by a known method and pulverized to a predetermined particle size if necessary, or an ionic dissociative group such as a sulfonic acid group may be introduced into the polymer by a known method. Alternatively, an ion dissociative group may be introduced by hydrolyzing a polymer having an ester group or the like by a known method.

さらに市販のポリスチレン系イオン交換樹脂(例えば東
京有機化学工業■製のアンバーライト■なと)を適当な
粒子径に粉砕したものを用いてもよい。
Furthermore, a commercially available polystyrene-based ion exchange resin (for example, Amberlite ■Nato manufactured by Tokyo Organic Chemical Industry ■) pulverized to an appropriate particle size may be used.

本発明において分散相を構成する有機重合体粒子の平均
粒子径は、0.1〜50μmの範囲にあることが好まし
い。有機重合体粒子の平均粒子径が0.1μm未満の場
合には、調製した電気粘性流体に電場を印加した際に大
きなせん断応力か得られないことかある。また、有機重
合体粒子の平均粒子径か50μmを越える場合には、電
場を印加していない状態での分散安定性に優れた電気粘
性流体か得られないことかある。
In the present invention, the average particle diameter of the organic polymer particles constituting the dispersed phase is preferably in the range of 0.1 to 50 μm. If the average particle diameter of the organic polymer particles is less than 0.1 μm, a large shear stress may not be obtained when an electric field is applied to the prepared electrorheological fluid. Furthermore, if the average particle diameter of the organic polymer particles exceeds 50 μm, it may not be possible to obtain an electrorheological fluid with excellent dispersion stability when no electric field is applied.

本発明の電気粘性流体において分散媒の主成分を構成す
る炭化水素系化合物としては、実質的に炭化水素からな
る絶縁性液体であれば特に制限なく、例えば、ドデカン
、ヘキサテカン、オクタデカン等の脂肪族炭化水素;ベ
ンゼン、ナフタレン、アントラセン、フェナントレン等
の芳香族炭化水素;トルエン、エチルベンセン、キシレ
ン等のアルキル置換芳香族炭化水素;サームエス■30
0、サームエス 700、サームエス■800、サー■ ムエス■900 (以上新日鉄化学■製)や、日石ハイ
ゾール■5AS−296<日本石油化学■製)等の炭化
水素系熱媒等を挙げることかてさ、これらの中から一種
あるいは二種以上を用いることができる。また、これら
の炭化水素系化合物に対して、必要に応じ、例えばジア
ルキルエーテル、アルキルアリールエーテル、ジアリー
ルエーテル、ハロゲン化アルキル、ハロゲン化アリール
等のその他の絶縁性液体を添加混合、して分散媒として
用いることもできる。
The hydrocarbon compound constituting the main component of the dispersion medium in the electrorheological fluid of the present invention is not particularly limited as long as it is an insulating liquid consisting essentially of hydrocarbons, and examples include aliphatic compounds such as dodecane, hexatecane, and octadecane. Hydrocarbons; Aromatic hydrocarbons such as benzene, naphthalene, anthracene, and phenanthrene; Alkyl-substituted aromatic hydrocarbons such as toluene, ethylbenzene, and xylene; Therm-S ■30
0. Can you name hydrocarbon heating mediums such as THERM-S 700, THERM-S 800, THERM-S 900 (manufactured by Nippon Steel Chemical), and Nisseki Hysol 5AS-296 (made by Nippon Petrochemical)? One or more of these can be used. Additionally, other insulating liquids such as dialkyl ethers, alkylaryl ethers, diaryl ethers, alkyl halides, and aryl halides may be added and mixed to these hydrocarbon compounds to serve as a dispersion medium. It can also be used.

本発明の電気粘性流体は、前記した特定の分散相を重合
体(II)からなる高分子添加剤の存在下に分散媒に混
合分散して得られるものである。
The electrorheological fluid of the present invention is obtained by mixing and dispersing the specific dispersed phase described above in a dispersion medium in the presence of a polymeric additive consisting of polymer (II).

本発明の電気粘性流体における分散相と分散媒との比は
、前者100重量部に対して後者50〜500重量部の
範囲であることが好ましい。分散媒の量が500重量部
を越える場合、調製された電気粘性流体に電場を印加し
た際に得られるせん断応力が十分大きくならないことか
ある。また、分散媒の量が50重量部未満の場合、調製
された電気粘性流体自体の流動性か低下して、電気粘性
流体としての使用が難しくなることがある。
The ratio of the dispersed phase to the dispersion medium in the electrorheological fluid of the present invention is preferably in the range of 50 to 500 parts by weight to 100 parts by weight of the former. If the amount of the dispersion medium exceeds 500 parts by weight, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid may not be sufficiently large. Furthermore, if the amount of the dispersion medium is less than 50 parts by weight, the fluidity of the prepared electrorheological fluid itself may be reduced, making it difficult to use it as an electrorheological fluid.

また、本発明の電気粘性流体における重合体(II)か
らなる高分子添加剤の使用量は、分散相100重量部に
対して0.1〜60重量部の範囲か好ましい。高分子添
加剤の量が0.1:I置部未満では、電場を印加してい
ない状態での分散安定性に優れた電気粘性流体か得られ
ないことがある。
Further, the amount of the polymer additive made of polymer (II) in the electrorheological fluid of the present invention is preferably in the range of 0.1 to 60 parts by weight based on 100 parts by weight of the dispersed phase. If the amount of the polymer additive is less than 0.1:1, an electrorheological fluid with excellent dispersion stability in the absence of an applied electric field may not be obtained.

また、高分子添加剤の量が60重量部を越えると、添加
量増大にみあった分散安定性の向上がみちれないだけで
なく、電気粘性流体としての他の性能を損なうことがあ
るなめ好ましくない。
Furthermore, if the amount of the polymer additive exceeds 60 parts by weight, not only will the dispersion stability not improve as much as the amount added, but other performances as an electrorheological fluid may be impaired. Undesirable.

本発明の電気粘性流体には、その粘度調節あるいはせん
断応力向上のために、例えば界面活性剤、重合体(II
)以外の高分子分散剤、高分子増粘剤等の従来公知の各
種添加物を必要に応じて添加することができる。
The electrorheological fluid of the present invention may contain, for example, a surfactant, a polymer (II
) Other conventionally known additives such as polymeric dispersants and polymeric thickeners can be added as necessary.

〈発明の効果) 本発明の電気粘性流体は、比較的弱い電場を印加するこ
とによっても大きいせん断応力を発生し、その際に流れ
る電流密度が小さいという電流特性に優れ、かつ発生し
なせん断応力及び電流密度の経時安定性に優れ、さらに
電場を印加していない状態での粘度が低く流動性に優れ
、しかも分散相が沈降あるいは浮上しにくいという分散
安定性に特に優れているため、クラッチ、ダンパー、ブ
レーキ、ショックアブソーバ−、アクチュエーターバル
ブ等へ有効に利用できる。
<Effects of the Invention> The electrorheological fluid of the present invention has excellent current characteristics in that it generates a large shear stress even when a relatively weak electric field is applied, and the current density flowing at that time is small, and the electrorheological fluid can generate a large shear stress even when a relatively weak electric field is applied. Clutches, It can be effectively used for dampers, brakes, shock absorbers, actuator valves, etc.

(実施例) 以下、実施例により本発明を説明するが、本発明の範囲
がこれら実施例のみに限定されるものではない6 参考例1 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにキシレン150g、メト
キシポリエチレングリコールメタクリレート(新中村化
学工業■製のNKエステルM230G、重量平均分子量
をスーパーシステムコントローラー〇PCデータ処理装
置(東ソー■I!りにより測定したところ、1,400
であった)1gおよびメタクリル酸ドデシル149gを
仕込み、そこへアゾビスイソブチロニトリル0,7gを
添加し窒素を導入しながら室温で30分撹拌した。その
後70°Cで10時間加熱した後さらに90°Cで2時
間加熱することにより重合を行った。
(Example) The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.6 Reference Example 1 A stirrer, a reflux condenser, a thermometer, and a nitrogen introduction tube 150 g of xylene, methoxypolyethylene glycol methacrylate (NK Ester M230G manufactured by Shin-Nakamura Chemical Co., Ltd.) was placed in a 500 m1 four-bottle flask, and the weight average molecular weight was measured using a Super System Controller PC data processing device (Tosoh I!). 1,400
) and 149 g of dodecyl methacrylate were charged, 0.7 g of azobisisobutyronitrile was added thereto, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen. Thereafter, polymerization was carried out by heating at 70°C for 10 hours and then further heating at 90°C for 2 hours.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(1)という、)の固形分含有率を測定したところ5
0重量%であった。モノマーの残存率から重合率を測定
しなところ、メタクリル酸ドデシルの重合率100%で
あった0、tな、重合体の重量平均分子量はスーパーシ
ステムコントローラー〇PCデータ処理装置(東ソー■
製)により測定したところ、520,000であった。
The solid content of the resulting xylene solution of the polymer (hereinafter referred to as polymer solution (1)) was 5.
It was 0% by weight. When the polymerization rate was measured from the residual rate of the monomer, the polymerization rate of dodecyl methacrylate was 100%.
It was 520,000.

参考例2 撹拌機、還流冷却器、温度計および窒素導入管を倫えた
5 00 mlの四つ目フラスコにキシレン150g、
片末端にメタクリル基を持つポリスチレン(東亜合成化
学工業■製のAs−6、重量平均分子量を参考例1と同
様に測定したところ16゜000であった)135zr
およびN、N′−ジメチルアクリルアミド15gを仕込
み、そこへアゾビスイソブチロニトリル0,5gを添加
し窒素を導入しながら室温で30分撹拌した。その後7
0℃で10時間加熱した後さらに90℃で2時間加熱す
ることにより重合を行った。
Reference Example 2 150 g of xylene was placed in a 500 ml four-eye flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube.
Polystyrene with a methacrylic group at one end (As-6 manufactured by Toagosei Kagaku Kogyo ■, whose weight average molecular weight was measured in the same manner as Reference Example 1 and found to be 16°000) 135zr
and 15 g of N,N'-dimethylacrylamide were charged, and 0.5 g of azobisisobutyronitrile was added thereto, followed by stirring at room temperature for 30 minutes while introducing nitrogen. then 7
Polymerization was carried out by heating at 0°C for 10 hours and then further heating at 90°C for 2 hours.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(2)という。)の固形分含有率を測定したところ5
0重量%であった。参考例1と同様に重合率を測定した
ところ、N、N′−ジメチルアクリルアミドの重合率は
100%であった。
The solid content of the resulting xylene solution of the polymer (hereinafter referred to as polymer solution (2)) was 5.
It was 0% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of N,N'-dimethylacrylamide was 100%.

重合体の重量平均分子量を参考例1と同様に測定したと
ころ、29,000であった。
The weight average molecular weight of the polymer was measured in the same manner as in Reference Example 1 and was found to be 29,000.

参考例3 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにキシレン150g、片末
端にメタクリル基を持つポリアクリル酸ブチル(東亜合
成化学工業■製のAB−6;重量平均分子量を参考例1
と同様に測定したところ13.OOOであった)120
g、メタクリル酸ドデシル15gおよび4−ビニルピリ
ジン15gを仕込み、そこへアゾビスイソブチロニトリ
ル0.9gを添加し窒素を導入しながら室温で30分撹
拌した。その後75℃で10時間加熱しな後さらに90
℃で2時間加熱して重合を行った。
Reference Example 3 150 g of xylene was placed in a 500 ml four-bottle flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen inlet tube, and polybutyl acrylate having a methacrylic group at one end (AB-6 manufactured by Toagosei Chemical Co., Ltd.) ;Weight average molecular weight as Reference Example 1
Measured in the same manner as 13. OOO) 120
g, 15 g of dodecyl methacrylate and 15 g of 4-vinylpyridine were charged, and 0.9 g of azobisisobutyronitrile was added thereto, followed by stirring at room temperature for 30 minutes while introducing nitrogen. After heating at 75℃ for 10 hours,
Polymerization was carried out by heating at °C for 2 hours.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(3)という。)の固形分含有率を測定したところ5
0重量%であった。参考例1と同機に重合率を測定した
ところ、メタクリル酸ドデシルの重合率は100%、4
−ビニルピリジンの重合率は99%であった0重合体の
重量平均分子量を参考例1と同様に測定しなところ、1
8.。
The solid content of the resulting xylene solution of the polymer (hereinafter referred to as polymer solution (3)) was 5.
It was 0% by weight. When the polymerization rate was measured using the same machine as in Reference Example 1, the polymerization rate of dodecyl methacrylate was 100%.
-The polymerization rate of vinylpyridine was 99%.The weight average molecular weight of the 0 polymer was measured in the same manner as in Reference Example 1.
8. .

00であった。It was 00.

参考例4 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにキシレン150g、片末
端にメタクリル基を持つスチレンとアクリロニトリルの
共重合体(東亜合成化学工業■製のAN−6,重量平均
分子量を参考例1と同様に測定しなところ13,000
であった)10gおよびスチレン140gを仕込み、そ
こへアゾビスイソブチロニトリル055gを添加し窒素
を導入しながら室温で30分撹拌した。その後65℃で
20時間加熱した後さらに90℃で2時間加熱すること
により重合を行った。
Reference Example 4 In a 500 ml four-bottle flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, 150 g of xylene was added, and a copolymer of styrene and acrylonitrile having a methacrylic group at one end (manufactured by Toagosei Chemical Industry Co., Ltd.) AN-6, the weight average molecular weight was measured in the same manner as Reference Example 1 and was 13,000.
) and 140 g of styrene were charged, 055 g of azobisisobutyronitrile was added thereto, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen. Thereafter, the mixture was heated at 65°C for 20 hours and then further heated at 90°C for 2 hours to perform polymerization.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(4)という。)の固形分含有率を測定しなところ4
931量%であった。参考例1と同様に重合率を測定し
たところ、スチレンの重合率は98%であった。重合体
の重量平均分子量を参考例1と同様に測定したところ、
190,000であった。
Step 4: The solid content of the obtained xylene solution of the polymer (hereinafter referred to as polymer solution (4)) was measured.
It was 931% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of styrene was 98%. When the weight average molecular weight of the polymer was measured in the same manner as in Reference Example 1,
It was 190,000.

参考例5 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つ目フラスコにキシレン150g、メト
キシポリエチレングリコールメタクリレート(新中村化
学工業■製のNKエステルM−90G、重量平均分子量
を参考例1と同様に測定しなところ500であった)1
gおよびメタクリル酸ヘキサデシル149gを仕込み、
そこへアゾビスイソブチロニトリル0.8gを添加し窒
素を導入しながら室温で30分撹拌した。その後70℃
で10時間加熱した後さらに90℃で2時間加熱するこ
とにより重合を行った。
Reference Example 5 In a 500 ml fourth flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube, 150 g of xylene, methoxypolyethylene glycol methacrylate (NK Ester M-90G manufactured by Shin Nakamura Chemical Industry ■, weight average molecular weight was measured in the same manner as Reference Example 1 and found to be 500)1
g and 149 g of hexadecyl methacrylate,
0.8 g of azobisisobutyronitrile was added thereto, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen. Then 70℃
After heating at 90° C. for 10 hours, polymerization was carried out by further heating at 90° C. for 2 hours.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(5)という。)の固形分含有率を測定しなところ5
0重量%であった。参考例1と同様に重合率を測定した
ところ、メタクリル酸ヘキサデシルの重合率は100%
であった。重合体の重量平均分子量を参考例1と同様に
測定したところ、320,000であった。
Step 5: The solid content of the obtained xylene solution of the polymer (hereinafter referred to as polymer solution (5)) was measured.
It was 0% by weight. When the polymerization rate was measured in the same manner as in Reference Example 1, the polymerization rate of hexadecyl methacrylate was 100%.
Met. The weight average molecular weight of the polymer was measured in the same manner as in Reference Example 1 and was found to be 320,000.

参考例6 撹拌機、還流冷却器、温度計および窒素導入管を備えた
3 00 mlの四つ目フラスコにイソプロピルアルコ
ール200gおよびN−ビニルピロリドン50gを仕込
み、そこへ2.2′−アゾビス(2−(2−イミダシリ
ン−2−イル)プロパン)(和光紬薬■製のVA−06
1)2gを添加し窒素を導入しながら室温で30分撹拌
した。その後70℃で8時間加熱した後さらに90℃で
4時間加熱して重合を行った。この溶液をジイソプロピ
ルエーテル中に滴加・撹拌し沈澱物をろ過して取り出し
た後、沈澱物を減圧乾燥器にて50℃で24時間加熱し
乾燥して、粉体を入手した。
Reference Example 6 200 g of isopropyl alcohol and 50 g of N-vinylpyrrolidone were charged into a 300 ml fourth flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube, and 2.2'-azobis(2 -(2-imidacillin-2-yl)propane) (VA-06 manufactured by Wako Tsumugi
1) 2 g was added and stirred at room temperature for 30 minutes while introducing nitrogen. Thereafter, the mixture was heated at 70°C for 8 hours and then further heated at 90°C for 4 hours to perform polymerization. This solution was added dropwise to diisopropyl ether and stirred, and the precipitate was filtered and taken out. The precipitate was dried by heating at 50° C. for 24 hours in a vacuum dryer to obtain a powder.

この粉体30Kを撹拌機、還流冷却器、温度計および窒
素導入管を備えた300m1の四つロフラスコ中に入れ
、ここにジオキサン40g、イソプロピルアルコール1
0g、メタクリル酸りリシジル10Eを加え60℃で6
時間加熱・撹拌しな。
This powder (30K) was placed in a 300ml four-bottle flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen inlet tube, and the mixture was filled with 40g of dioxane and 1 liter of isopropyl alcohol.
0g, add lysidyl methacrylate 10E and heat at 60°C.
Do not heat or stir for hours.

得られた反応液をジイソプロピルエーテル中に滴加・撹
拌し沈澱物をろ過して取り出した後、沈澱物を減圧乾燥
器にて50℃で24時間加熱し、乾燥して、片末端にビ
ニル基を有する重合体を得た。
The obtained reaction solution was added dropwise to diisopropyl ether and stirred, and the precipitate was filtered and taken out. The precipitate was heated in a vacuum dryer at 50°C for 24 hours, dried, and a vinyl group was added to one end. A polymer having the following was obtained.

得られた片末端にビニル基を有する重合体の重量平均分
子量を参考例1と同様に測定したところ、21.000
であった。
The weight average molecular weight of the obtained polymer having a vinyl group at one end was measured in the same manner as in Reference Example 1, and found to be 21.000.
Met.

次に、撹拌機、還流冷却器、温度計および窒素導入管を
備えた5 00 mlの四つロフラスコにキシレン15
0+r、上記片末端にビニル基を有する重合体9gおよ
びスチレン141「を仕込み、そこへアゾビスイソブチ
ロニトリル1.2gを添加し窒素を導入しながら室温で
30分撹拌しな。その後70℃で10時間加熱した後さ
らに90℃で2時間加熱することにより重合を行った。
Next, 15 mL of xylene was added to a 500 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen inlet tube.
0+r, 9g of the above polymer having a vinyl group at one end and 141" of styrene were charged, 1.2g of azobisisobutyronitrile was added thereto, and the mixture was stirred at room temperature for 30 minutes while introducing nitrogen.Then, the mixture was stirred at 70°C. After heating at 90° C. for 10 hours, polymerization was carried out by further heating at 90° C. for 2 hours.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(6)という。)の固形分含有率を測定しなところ4
8重量%であった。#考例1と同様に重合率を測定した
ところ、スチレンの重合率は97%であった。重合体の
重量平均分子量を参考例1と同機に測定したところ、1
90,000であった。
Step 4: The solid content of the obtained xylene solution of the polymer (hereinafter referred to as polymer solution (6)) was measured.
It was 8% by weight. # When the polymerization rate was measured in the same manner as Example 1, the polymerization rate of styrene was 97%. When the weight average molecular weight of the polymer was measured using the same machine as Reference Example 1, it was found to be 1.
It was 90,000.

参考例7 撹拌機、還流冷却器、温度計および窒素導入管を備えた
500m1の四つロフラスコにキシレン150gおよび
メタクリル酸ドデシル150gを仕込み、そこへアゾビ
スイソブチロニトリル0.7gを添加し窒素を導入しな
がら室温で30分撹拌した。その後70℃で10時間加
熱した後さらに90℃で2時間加熱することにより重合
を行った。
Reference Example 7 150 g of xylene and 150 g of dodecyl methacrylate were placed in a 500 ml four-bottle flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, and 0.7 g of azobisisobutyronitrile was added thereto, and nitrogen was introduced into the flask. The mixture was stirred at room temperature for 30 minutes while introducing . Thereafter, the mixture was heated at 70°C for 10 hours and then further heated at 90°C for 2 hours to perform polymerization.

得られた重合体のキシレン溶液(以下、これを重合体溶
液(7)という。)の固形分含有率を測定したところ5
0重量%であった。モノマーの残存率から重合率を測定
したところ、メタクリル酸ドデシルの重合率は100%
であった。また、重合体の重量平均分子量をスーパーシ
ステムコントローラー〇PCデータ処理装置(東ソー■
製)により測定したところ、470,000であった。
The solid content of the resulting xylene solution of the polymer (hereinafter referred to as polymer solution (7)) was 5.
It was 0% by weight. When the polymerization rate was measured from the residual rate of monomer, the polymerization rate of dodecyl methacrylate was 100%.
Met. In addition, the weight average molecular weight of the polymer was measured using a super system controller PC data processing device (Tosoh Corporation).
It was 470,000.

実施例1 撹拌機、還流冷却器、温度計および窒素導入管を備えた
3 000 mlの四つロフラスコにイオン交換水i2
oogおよびクラレボバール■PVA−205(#クラ
レ製、ポリビニルアルコール)16.0gを添加・溶解
させた後、さらにスチレン250g、工業用ジビニルベ
ンゼン(和光紬薬工業■製、ジビニルベンゼン55重量
%、エチルスチレン35重量%等の混合物)50gおよ
び過酸化ベンゾイル5gからなる混合物を加えた。その
後、分散機(回転数: 2000Orpm)を用いてフ
ラスコの内容物を分散させ、70℃で8時間加熱した。
Example 1 Ion-exchanged water i2 was added to a 3 000 ml four-loaf flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube.
After adding and dissolving 16.0 g of Oog and Kuraray Bobal PVA-205 (manufactured by Kuraray, polyvinyl alcohol), 250 g of styrene, industrial divinylbenzene (manufactured by Wako Tsumugi Kogyo, 55% by weight of divinylbenzene, ethylstyrene) A mixture consisting of 50 g of 35% by weight mixture) and 5 g of benzoyl peroxide was added. Thereafter, the contents of the flask were dispersed using a disperser (rotation speed: 2000 rpm) and heated at 70° C. for 8 hours.

得られた固形物を濾別し、十分にアセトンと水で洗浄し
た後、熱風乾燥器を用いて80℃で12時間乾燥し、重
合架橋体(以下これを重合架橋体(1)という、)29
1gを得た。
The obtained solid substance was filtered, thoroughly washed with acetone and water, and then dried at 80°C for 12 hours using a hot air drier to obtain a polymerized crosslinked product (hereinafter referred to as polymerized crosslinked product (1)). 29
1g was obtained.

次いで、この重合架橋体(1)100gを撹拌機、還流
冷却器および温度計を備えた1 000 mlの三つロ
フラスコに投入し、水冷下98重量%の硫D 500 
gを滴加し、撹拌下80℃で24時間加熱しスルホン化
反応を行った。その後、フラスコの内容物を0℃の水中
に注ぎ、濾別・水洗を行った。
Next, 100 g of this polymerized crosslinked product (1) was placed in a 1,000 ml three-bottle flask equipped with a stirrer, a reflux condenser, and a thermometer, and 98% by weight of sulfur D 500 was added under water cooling.
g was added dropwise, and the mixture was heated at 80° C. for 24 hours with stirring to carry out a sulfonation reaction. Thereafter, the contents of the flask were poured into 0°C water, filtered and washed with water.

得られた固形物を10重量%水酸化ナトリウム水溶液3
80 mlで中和したのち、十分に水洗した。
The obtained solid was dissolved in a 10% by weight aqueous sodium hydroxide solution 3
After neutralizing with 80 ml, the solution was thoroughly washed with water.

その後、真空乾燥器を用いて、80℃で10時間乾燥し
、平均粒子径2.5μmの有機重合体粒子(以下、これ
を分散相粒子(1)という、)184gを得た。なお、
分散相粒子(1)の陰イオン性解離基密度は4.2■当
量/gであった。
Thereafter, it was dried at 80° C. for 10 hours using a vacuum dryer to obtain 184 g of organic polymer particles (hereinafter referred to as dispersed phase particles (1)) having an average particle diameter of 2.5 μm. In addition,
The anionic dissociative group density of the dispersed phase particles (1) was 4.2 equivalents/g.

分散相粒子(1)30gを150℃で3時間乾燥後、温
度20℃で相対湿度60%の室内に40分間放置して吸
湿させた後、参考例1で得られた重合体溶液(1)”z
rをサームエス■900 (新日鉄化学■製の部分水添
されたトリフェニル)65gに添加して得た分散媒中に
分散し、本発明の電気粘性流体(1)を得た。
After drying 30 g of dispersed phase particles (1) at 150°C for 3 hours, the polymer solution obtained in Reference Example 1 (1) was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture. ”z
The electrorheological fluid (1) of the present invention was obtained by adding r to 65 g of Therm-S ■900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical ■) and dispersing it in a dispersion medium.

実施例2 実施例1における重合体溶液(1)の代わりに参考例2
で得られた重合体溶液(2)3gを用い、サームエス■
900(新日鉄化学■製の部分水添されたトリフェニル
)の使用量を67gとした以外は、実施例1と同様の方
法により、本発明の電気粘性流体(2)を得た。
Example 2 Reference Example 2 was used instead of the polymer solution (1) in Example 1.
Using 3 g of the polymer solution (2) obtained in
Electrorheological fluid (2) of the present invention was obtained in the same manner as in Example 1, except that the amount of 900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical Co., Ltd.) was 67 g.

実施例3 実施例1における重合体溶液(1)の代わりに参考例3
で得られた重合体溶液(3)2gを用い、サームエス■
900(新日鉄化学■製の部分水添されたトリフェニル
)の使用量を68gとした以外は、実施例1と同様の方
法により、本発明の電気粘性流体(3)を得た。
Example 3 Reference Example 3 was used instead of the polymer solution (1) in Example 1.
Using 2 g of the polymer solution (3) obtained in
Electrorheological fluid (3) of the present invention was obtained in the same manner as in Example 1, except that the amount of 900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical Co., Ltd.) was changed to 68 g.

実施例4 環流冷却器、温度計および窒素導入管を備えた5 00
 mlの三つロセバラブルフラスコにスチレンスルホン
酸ナトリウム72g、N、N’−メチレンビスアクリル
アミド8g、過硫酸ナトリウム1gおよびイオン交換水
320gを投入し70’Cで8時間加熱して重合を行っ
た。得られた重合体を150℃で3時間乾燥後、粉砕・
分級して、平均粒子径3.5μmの有機重合体粒子(以
下、これを分散相粒子(2)という、)46gを得た。
Example 4 500 equipped with reflux condenser, thermometer and nitrogen inlet tube
72 g of sodium styrene sulfonate, 8 g of N,N'-methylenebisacrylamide, 1 g of sodium persulfate, and 320 g of ion-exchanged water were placed in a three-ml adjustable flask, and polymerization was carried out by heating at 70'C for 8 hours. . After drying the obtained polymer at 150°C for 3 hours, it was crushed and
The mixture was classified to obtain 46 g of organic polymer particles (hereinafter referred to as dispersed phase particles (2)) having an average particle diameter of 3.5 μm.

なお、分散相粒子(2)の陰イオン性解離基密度は4.
0■当量/「であった。
The anionic dissociative group density of the dispersed phase particles (2) is 4.
0 ■equivalent/"was.

得られた分散相粒子(2)30gを150’Cで3時間
乾燥後、温度20℃で相対湿度60%の室内に45分間
放置して吸湿させた後、参考例4で得られた重合体溶液
(4)5gをサームエス■900(新日鉄化学■製の部
分水添されたトリフェニル)65gに添加して得た分散
媒中に分散し、本発明の電気粘性流体(4)を得た。
After drying 30 g of the obtained dispersed phase particles (2) at 150'C for 3 hours, the polymer obtained in Reference Example 4 was left in a room at a temperature of 20°C and a relative humidity of 60% for 45 minutes to absorb moisture. The electrorheological fluid (4) of the present invention was obtained by adding 5 g of the solution (4) to 65 g of Therm-S ■900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical Company) and dispersing it in a dispersion medium.

実施例5 実施例4における重合体溶液(4)の代わりに参考例5
で得られた重合体溶液(5)Logを用い、サームエス
■900(新日鉄化学■製の部分水添されたトリフェニ
ル)の代わりにドデシルベンゼン50tとジフェニルエ
ーテル10gの混合物を使用した以外は、実施例4と同
様の方法により、本発明の電気粘性流体(5)を得た。
Example 5 Reference Example 5 was used instead of the polymer solution (4) in Example 4.
Example 1 except that the polymer solution (5) Log obtained in Example 1 was used, and a mixture of 50 t of dodecylbenzene and 10 g of diphenyl ether was used instead of THERM-S 900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical). Electrorheological fluid (5) of the present invention was obtained by the same method as in Example 4.

実施例6 実施例4における重合体溶液(4)の代わりに参考例6
で得られた重合体温Kg、(6) 3 irを用い、サ
ームエス■900(新日鉄化学■製の部分水添されたト
リフェニル)の使用量を67gとした以外は、実施例4
と同様の方法により、本発明の電気粘性流体(6)を得
た6 比較例1 実施例1における分散相粒子(1)30gを工50°C
で3時間乾燥後、温度20℃で相対湿度60%の室内に
40分間放置して吸湿させた後、70gのサームエス■
900(新日鉄化学■製の部分水添されたトリフェニル
)中に混合分散し、比較用の電気粘性流体(以下、これ
を比較流#(1)という。)を得た。
Example 6 Reference Example 6 was used instead of the polymer solution (4) in Example 4.
Example 4 except that the polymerization temperature Kg and (6) 3 ir obtained in Example 4 was used, and the amount of Therm-S ■900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical ■) was 67 g.
The electrorheological fluid (6) of the present invention was obtained in the same manner as in Example 1. Comparative Example 1 30 g of dispersed phase particles (1) in Example 1 were heated at 50°C.
After drying for 3 hours in a room with a temperature of 20℃ and a relative humidity of 60% for 40 minutes to absorb moisture, 70g of Therm-S ■
900 (partially hydrogenated triphenyl manufactured by Nippon Steel Chemical Company) to obtain a comparative electrorheological fluid (hereinafter referred to as comparative flow #(1)).

比較例2 実施例1における重合体溶液(1)の代わりに参考例7
で得られた重合体溶液(7)5gを用いた以外は、実施
例1と同様の方法により、比較用の電気粘性流体(以下
、これを比較流体(2)という。)を得た。
Comparative Example 2 Reference Example 7 was used instead of the polymer solution (1) in Example 1.
A comparative electrorheological fluid (hereinafter referred to as comparative fluid (2)) was obtained in the same manner as in Example 1, except that 5 g of the polymer solution (7) obtained in Example 1 was used.

比較例3 実施例2における重合体溶液(2)の代わりに参考例2
で用いたのと同じ片末端にメタクリル基を持つポリスチ
レン(東亜合成化学工業■製のAS−6)3gを用いた
以外は、実施例2と同様の方法により、比較用の電気粘
性流体(以下、これを比較流体(3)という。)を得た
Comparative Example 3 Reference Example 2 was used instead of the polymer solution (2) in Example 2.
A comparative electrorheological fluid (hereinafter referred to as "AS-6" manufactured by Toagosei Chemical Industry Co., Ltd.) was used in the same manner as in Example 2, except that 3 g of polystyrene having a methacrylic group at one end (AS-6 manufactured by Toagosei Chemical Industry Co., Ltd.) was used. , this was called comparative fluid (3)).

比較例4 実施例1における分散相粒子(1)30gを150℃で
3時間乾燥後、温度20゛Cで相対湿度60%の室内に
40分間放置して吸湿させた後、リシノール酸5gを6
5gのサームエス■900中に添加して得た分散媒中に
混合分散し、比較用の電気粘性流体(以下、これを比較
流体(4)という、)を得た。
Comparative Example 4 After drying 30 g of the dispersed phase particles (1) in Example 1 at 150°C for 3 hours, it was left in a room at a temperature of 20°C and a relative humidity of 60% for 40 minutes to absorb moisture, and then 5 g of ricinoleic acid was dried at 60%.
The mixture was mixed and dispersed in a dispersion medium obtained by adding it to 5 g of Therm-S ■900 to obtain a comparative electrorheological fluid (hereinafter referred to as comparative fluid (4)).

比較例5 市販のシリカゲル(関東化学■製)を粉砕・分級して得
な平均粒子径2.5μmの粒子30gを150’Cで3
時間乾燥後、温度20℃で相対湿度60%の室内に1時
間放置して吸湿させた後、7atのサームエス■900
中に混合分散し、比較用の電気粘性流体(以下、これを
比較流体(5)という、)を得な。
Comparative Example 5 30 g of particles with an average particle diameter of 2.5 μm obtained by crushing and classifying commercially available silica gel (manufactured by Kanto Kagaku ■) were heated at 150'C for 30 minutes.
After drying for an hour, leave it in a room with a temperature of 20°C and a relative humidity of 60% for 1 hour to absorb moisture, and then apply 7at Therm-S ■900.
to obtain an electrorheological fluid for comparison (hereinafter referred to as comparison fluid (5)).

実施例7 実施例1〜6および比較例1〜5で得られた本発明の電
気粘性流体(1)〜(6)および比較流体(1)〜(5
)の各々について、23℃にて電場無印加時の粘度を測
定しな。次いで各々の電気粘性流体を、高さ15011
IfI、直径151]の試験管の底から1001111
1のところまで充填して密閉した。
Example 7 Electrorheological fluids (1) to (6) and comparative fluids (1) to (5) of the present invention obtained in Examples 1 to 6 and Comparative Examples 1 to 5
), measure the viscosity at 23°C with no electric field applied. Then each electrorheological fluid is heated to a height of 15011
IfI, diameter 151] from the bottom of the test tube 1001111
It was filled up to 1 and sealed.

その後10日間静置して、分散相粒子の沈降の程度を観
察し、電気粘性流体の分散安定性を調べた。
Thereafter, it was allowed to stand for 10 days, and the degree of sedimentation of the dispersed phase particles was observed to examine the dispersion stability of the electrorheological fluid.

その結果を第1表に示す。The results are shown in Table 1.

また、電気粘性流体の各々を共軸電場付二重円筒形回転
粘度計に入れ、内/外筒間隙1.Omrn、せん断速度
400s−’、温度25℃の巣作で交流外部電場400
0V/酊(周波数:50Hz)を印加したときのせん断
路力値(初期値)およびその際に流れる電流密度(初期
値)を測定した。
In addition, each of the electrorheological fluids was put into a double cylindrical rotational viscometer with a coaxial electric field, and the inner/outer cylinder gap 1. Omrn, shear rate 400 s-', nesting temperature 25°C, AC external electric field 400
The shear road force value (initial value) when 0 V/drudge (frequency: 50 Hz) was applied and the current density (initial value) flowing at that time were measured.

さらに、4000 V / m+nの外部電場を印加し
た状態で粘度計25℃にて3日間連続運転した後のせん
断路力値(3日後の値)および電流密度(3日後の値)
を測定し、電気粘性流体の経時安定性を調べた。その結
果を第1表に示す。
Furthermore, the shear road force value (value after 3 days) and current density (value after 3 days) after continuous operation of the viscometer at 25°C for 3 days with an external electric field of 4000 V/m+n applied.
We measured the stability of electrorheological fluids over time. The results are shown in Table 1.

(注1)分散安定性 ×  : はぼ均一な分散状態を保った 分散相かほとんど沈降した 第1表から明らかなように、本発明の電気粘性流体(1
)〜(6)は、比較的弱い電場を印加することによって
も大きいせん断路力を発生し、その際に流れる電流密度
が小さいという電流特性に優れ、かつ発生しなせん断路
力および電流密度の経時安定性に優れ、さらに電場を印
加していない状態での粘度が低いだけでなく分散安定性
に特に優れていた。
(Note 1) Dispersion stability
) to (6) have excellent current characteristics in that they generate large shear path force even when a relatively weak electric field is applied, and the current density flowing at that time is small, and they have excellent current characteristics such that the shear path force and current density are low even when a relatively weak electric field is applied. It had excellent stability over time, and not only had a low viscosity when no electric field was applied, but also had particularly excellent dispersion stability.

一方、比較流体(1)、〈2)、(3)および(4)は
、比較的弱い電場の印加によって大きなせん断路力か得
られたが、電流特性が悪く、また電場無印加時の分散安
定性にも劣っていた。また、比較流体(4)は電場印加
時の経時安定性にも劣っていた。比較流体(5)は比較
的弱い電場の印加によって大きなせん断路力が得られず
、且つその経時安定性および電場無印加時の分散安定性
も悪かった。
On the other hand, comparative fluids (1), (2), (3), and (4) obtained large shear path forces by applying a relatively weak electric field, but had poor current characteristics and dispersion when no electric field was applied. It was also less stable. Comparative fluid (4) was also inferior in stability over time when an electric field was applied. Comparative fluid (5) could not obtain a large shear path force by applying a relatively weak electric field, and its stability over time and dispersion stability when no electric field was applied were also poor.

Claims (1)

【特許請求の範囲】 1、陽イオン交換能を持つ有機重合体粒子からなる分散
相、炭化水素系化合物を主成分とする絶縁性液体からな
る分散媒および高分子添加剤を含有してなる電気粘性流
体であって、高分子添加剤として、片末端にビニル基を
有する重合体( I )の存在下にビニル単量体を重合し
て得られる重合体(II)を使用することを特徴とする電
気粘性流体。 2、高分子添加剤となる重合体(II)の平均分子量が5
000〜500万の範囲にある請求項1記載の電気粘性
流体。 3、片末端にビニル基を有する重合体( I )が、主鎖
の主成分に一般式 ▲数式、化学式、表等があります▼ (但し、式中R^1、R^2はそれぞれ独立に水素また
はメチル基である。) で表される構造単位(A)および/または一般式▲数式
、化学式、表等があります▼ (但し、式中R^3は水素またはメチル基であり、Xは
芳香族炭化水素基または窒素原子もしくは酸素原子を有
する置換基である。)で表される構造単位(B)を有し
てなる平均分子量が300〜10万の範囲にある重合体
である請求項1〜2のいずれかに記載の電気粘性流体。 4、片末端にビニル基を有する重合体( I )およびビ
ニル単量体の使用割合が重合体( I )/ビニル単量体
=0.1/99.9〜95/5(重量比)の範囲である
請求項1〜3のいずれかに記載の電気粘性流体。 5、陽イオン交換能を持つ有機重合体が、スルホン酸基
を有する有機重合体である請求項1〜4のいずれかに記
載の電気粘性流体。 6、陽イオン交換能を持つ有機重合体がスルホン酸基含
有ポリスチレン系重合体である請求項1〜5のいずれか
に記載の電気粘性流体。 7、分散相、分散媒および高分子添加剤の使用割合が、
分散相100重量部に対して分散媒50〜500重量部
の範囲であり且つ高分子添加剤0.1〜60重量部の範
囲である請求項1〜6のいずれかに記載の電気粘性流体
。 8、陽イオン交換能を持つ有機重合体粒子の平均粒子径
が0.1〜50μmの範囲である請求項1〜7のいずれ
かに記載の電気粘性流体。
[Scope of Claims] 1. An electric device containing a dispersed phase made of organic polymer particles having cation exchange ability, a dispersion medium made of an insulating liquid mainly composed of a hydrocarbon compound, and a polymer additive. A viscous fluid characterized by using a polymer (II) obtained by polymerizing a vinyl monomer in the presence of a polymer (I) having a vinyl group at one end as a polymer additive. electrorheological fluid. 2. The average molecular weight of the polymer (II) serving as the polymer additive is 5.
2. The electrorheological fluid of claim 1, wherein the electrorheological fluid has a molecular weight in the range of 0.000 to 5.0 million. 3. A polymer (I) having a vinyl group at one end has a general formula ▲ mathematical formula, chemical formula, table, etc. as the main component of the main chain ▼ (However, in the formula, R^1 and R^2 each independently (Hydrogen or methyl group.) Structural unit (A) and/or general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (However, in the formula, R^3 is hydrogen or methyl group, and X is A polymer having a structural unit (B) represented by (an aromatic hydrocarbon group or a substituent having a nitrogen atom or an oxygen atom) and having an average molecular weight in the range of 300 to 100,000. The electrorheological fluid according to any one of 1 to 2. 4. The ratio of the polymer (I) having a vinyl group at one end and the vinyl monomer is polymer (I)/vinyl monomer = 0.1/99.9 to 95/5 (weight ratio). The electrorheological fluid according to any one of claims 1 to 3, wherein the electrorheological fluid is within the range of 5. The electrorheological fluid according to any one of claims 1 to 4, wherein the organic polymer having cation exchange ability is an organic polymer having a sulfonic acid group. 6. The electrorheological fluid according to any one of claims 1 to 5, wherein the organic polymer having cation exchange ability is a sulfonic acid group-containing polystyrene polymer. 7. The proportions of the dispersed phase, dispersion medium and polymer additive are
The electrorheological fluid according to any one of claims 1 to 6, wherein the dispersion medium is in the range of 50 to 500 parts by weight and the polymer additive is in the range of 0.1 to 60 parts by weight based on 100 parts by weight of the dispersed phase. 8. The electrorheological fluid according to any one of claims 1 to 7, wherein the organic polymer particles having cation exchange ability have an average particle diameter in the range of 0.1 to 50 μm.
JP21439290A 1990-08-15 1990-08-15 Electric viscous fluid Pending JPH0496997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21439290A JPH0496997A (en) 1990-08-15 1990-08-15 Electric viscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21439290A JPH0496997A (en) 1990-08-15 1990-08-15 Electric viscous fluid

Publications (1)

Publication Number Publication Date
JPH0496997A true JPH0496997A (en) 1992-03-30

Family

ID=16655032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21439290A Pending JPH0496997A (en) 1990-08-15 1990-08-15 Electric viscous fluid

Country Status (1)

Country Link
JP (1) JPH0496997A (en)

Similar Documents

Publication Publication Date Title
US3996180A (en) High shear mixing of latex polymers
US4385164A (en) Block copolymer dispersion stabilizer and aqueous dispersion polymerization therewith
Bourgeat‐Lami et al. High solids content, soap‐free, film‐forming latexes stabilized by Laponite clay platelets
JPS61259752A (en) Electric viscous fluid
EP0453614A1 (en) Electrorheological fluids
US4990279A (en) Electrorheological fluids
JPH06509603A (en) Polymer salts as dispersed particles in electrorheological fluids
JPS61215602A (en) Production of polymer particle
Lim et al. Rheological properties of a new rubbery nanocomposite: Polyepichlorohydrin/organoclay nanocomposites
JPH0496997A (en) Electric viscous fluid
JPS61215604A (en) Production of polymer particle
Wu et al. Preparation and characterization of transparent poly (methyl methacrylate)/Na+‐MMT nanocomposite films by solution casting
Kim et al. Physical and electroresponsive characteristics of the intercalated styrene‐acrylonitrile copolymer/clay nanocomposite under applied electric fields
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
JPH047397A (en) Electroviscous fluid
JPH01262942A (en) Electrical viscous fluid composition
Jun et al. Preparation and electrorheological characterization of suspensions of poly (urethane acrylate)/clay nanocomposite particles
JPH0559385A (en) Electric viscous fluid
Greesh et al. The Effect of Clay Loading on the Morphology and Properties of Poly (styrene‐co‐butyl acrylate)/Clay Nanocomposites
JPH04275398A (en) Electroviscous fluid
JPH07224292A (en) Electroviscous fluid composition
Xie et al. One‐step preparation of electrorheological suspension containing poly (lithium acrylate) via inverse emulsion polymerization and study of its electrorheological effect
JP2636446B2 (en) Electrorheological fluid composition
EP0529166A1 (en) Electrorheological fluids
JP2905562B2 (en) Electrorheological fluid composition