JPH04275398A - Electroviscous fluid - Google Patents

Electroviscous fluid

Info

Publication number
JPH04275398A
JPH04275398A JP3592391A JP3592391A JPH04275398A JP H04275398 A JPH04275398 A JP H04275398A JP 3592391 A JP3592391 A JP 3592391A JP 3592391 A JP3592391 A JP 3592391A JP H04275398 A JPH04275398 A JP H04275398A
Authority
JP
Japan
Prior art keywords
fluid
manufactured
dispersed phase
electrorheological fluid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3592391A
Other languages
Japanese (ja)
Inventor
Izuho Okada
出穂 岡田
Yoshinobu Asako
佳延 浅子
Kiyomi Arimatsu
有松 きよみ
Minoru Kobayashi
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3592391A priority Critical patent/JPH04275398A/en
Publication of JPH04275398A publication Critical patent/JPH04275398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the title fluid capable of generating high shear stress, excellent in current characteristics, stability with time, dispersion stability and redispersibility. CONSTITUTION:The objective fluid excellent in good balance among various performances, comprising (A) disperse phase consisting of organic polymer particles with cation exchange ability, (B) dispersion medium consisting of electrical insulating liquid and (C) 0.01-20 pts.wt., based on 100 pts.wt. of the component A, of an additive, i.e., fine particles 0.05-0.1mum in average size consisting of a metallic oxide. The present electric viscous fluid can be applied to various kinds of device such as clutches, dampers, brakes, shock absorbers, actuators, valves and engine mounts.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電気粘性流体に関するも
のである。更に詳しくは、比較的弱い電場を印加するこ
とによっても大きいせん断応力を発生し、その際に流れ
る電流密度が小さいという電流特性に優れ、発生したせ
ん断応力および電流密度の経時安定性に優れ、かつ電場
を印加していない状態での分散安定性(分散相を沈降あ
るいは浮上させずに電気粘性流体を長時間均一状態に保
持できる性能)と再分散性(分散相が沈降あるいは浮上
して不均一になったあと簡単な外力で元の分散状態を再
現する性能)に特に優れた電気粘性流体に関するもので
ある。
FIELD OF THE INVENTION This invention relates to electrorheological fluids. More specifically, it has excellent current characteristics in that it generates large shear stress even by applying a relatively weak electric field, and the current density that flows at that time is small, and it has excellent stability over time of the generated shear stress and current density. Dispersion stability (the ability to maintain an electrorheological fluid in a homogeneous state for a long time without causing the dispersed phase to settle or float) and redispersibility (the ability to maintain non-uniformity due to the dispersed phase settling or floating) when no electric field is applied This relates to electrorheological fluids that are particularly excellent in their ability to reproduce the original dispersion state with a simple external force.

【0002】0002

【従来の技術】電気粘性流体とは、例えば絶縁性の分散
媒中に固体粒子を分散・懸濁して得られる流体であって
、そのレオロジ−的あるいは流れ性質が電場変化を加え
ることにより粘塑性型の性質に変わる流体であり、一般
に外部電場を印加した時に粘度が著しく上昇し大きいせ
ん断応力を誘起する、いわゆるウィンズロ−効果を示す
流体として知られている。このウィンズロ−効果は応答
性が速いという特徴を有するため、電気粘性流体はクラ
ッチ、ダンパ−、ブレ−キ、ショックアブソ−バ−、ア
クチュエ−タ−、バルブ等への応用が試みられている。
[Prior Art] An electrorheological fluid is a fluid obtained by dispersing or suspending solid particles in an insulating dispersion medium, and its rheological or flow properties can be changed to viscoplastic by applying an electric field change. It is a fluid whose properties change depending on the mold, and is generally known as a fluid exhibiting the so-called Winslow effect, in which the viscosity increases significantly and a large shear stress is induced when an external electric field is applied. Since the Winslow effect is characterized by quick response, attempts have been made to apply electrorheological fluids to clutches, dampers, brakes, shock absorbers, actuators, valves, and the like.

【0003】従来、電気粘性流体としては、シリコン油
、塩化ジフェニル、トランス油等の絶縁油中に、セルロ
−ス、でんぷん、大豆カゼイン、シリカゲル等の固体粒
子を分散させたものが知られている。しかしながら、セ
ルロース、でんぷん、大豆カゼイン、シリカゲル等を用
いたものは、発生するせん断応力が小さいという問題点
があった。
Conventionally, known electrorheological fluids include solid particles such as cellulose, starch, soybean casein, and silica gel dispersed in insulating oil such as silicone oil, diphenyl chloride, and transformer oil. . However, those using cellulose, starch, soybean casein, silica gel, etc. have a problem in that the shear stress generated is small.

【0004】一方、高いせん断応力を発生する電気粘性
流体として、例えばイオン交換樹脂の粉状体を芳香族カ
ルボン酸の高級アルキルエステル中に懸濁したもの(特
開昭50−92278)や、3つの結晶軸の1つのみに
沿って電流を伝導する結晶性物質と誘電性液体および立
体安定剤からなる組成物(特開平1−170693)等
が提案されている。しかしながら、これらの電気粘性流
体は、電場無印加時の分散安定性や、いったん沈降ある
いは浮上した後の再分散性に劣っていたり、また分散相
が分離しないように分散相の濃度を高くした場合には流
動性に乏しくなるという問題点を有していた。
On the other hand, electrorheological fluids that generate high shear stress include, for example, powdered ion exchange resins suspended in higher alkyl esters of aromatic carboxylic acids (Japanese Unexamined Patent Publication No. 50-92278), A composition comprising a crystalline material, a dielectric liquid, and a steric stabilizer that conducts current along only one of the crystal axes (Japanese Patent Application Laid-open No. 1-170693) has been proposed. However, these electrorheological fluids have poor dispersion stability when no electric field is applied, poor redispersibility after settling or floating, and when the concentration of the dispersed phase is increased to prevent separation of the dispersed phase. had the problem of poor liquidity.

【0005】そこで、本発明者らは、せん断応力特性や
電流特性を劣化させることなく電気粘性流体の分散安定
性を改良するために、各種添加剤を探索し検討してきた
。その結果、添加剤として特定の高分子分散剤を使用す
ることにより、電気粘性流体の分散安定性が改良される
ことが解った(特願平2−107427)。しかし、高
分子分散剤を添加剤とする電気粘性流体は、分散相がい
ったん沈降した後の再分散性に問題があり、分散安定性
と再分散性を両立するものでなかった。
[0005] Therefore, the present inventors have searched and studied various additives in order to improve the dispersion stability of electrorheological fluids without deteriorating the shear stress characteristics and current characteristics. As a result, it was found that the use of a specific polymeric dispersant as an additive improves the dispersion stability of electrorheological fluids (Japanese Patent Application No. 2-107427). However, electrorheological fluids containing polymeric dispersants as additives have a problem with redispersibility after the dispersed phase has settled, and have not been able to achieve both dispersion stability and redispersibility.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の電気
粘性流体が有していた上記の問題点を解決するものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of conventional electrorheological fluids.

【0007】したがって、本発明の目的は、比較的弱い
電場を印加することによっても大きいせん断応力を発生
し、その際に流れる電流密度が小さいという電流特性に
優れ、発生したせん断応力および電流密度の経時安定性
に優れ、かつ電場を印加していない状態での分散安定性
(分散相を沈降あるいは浮上させずに電気粘性流体を長
時間均一状態に保持できる性能)と再分散性(分散相が
沈降あるいは浮上して不均一になったあと簡単な外力で
元の分散状態を再現する性能)に特に優れた電気粘性流
体を提供することにある。
Therefore, an object of the present invention is to generate a large shear stress even by applying a relatively weak electric field, and to have excellent current characteristics such that the current density flowing at that time is small, and to reduce the generated shear stress and current density. It has excellent stability over time, and has excellent dispersion stability (ability to maintain the electrorheological fluid in a homogeneous state for a long time without causing the dispersed phase to settle or float) and redispersibility (the ability to maintain the dispersed phase in a uniform state without an applied electric field). The object of the present invention is to provide an electrorheological fluid that is particularly excellent in its ability to reproduce the original dispersion state by a simple external force after becoming uneven due to sedimentation or floating.

【0008】[0008]

【課題を解決するための手段】本発明は、陽イオン交換
能を有する有機重合体粒子からなる分散相、絶縁性液体
からなる分散媒および添加剤を含有してなる電気粘性流
体であって、添加剤として、平均粒子径が0.005μ
m〜0.1μmの金属酸化物からなる微粒子を分散相1
00重量部に対して0.01〜20重量部使用すること
を特徴とする電気粘性流体に関するものである。
[Means for Solving the Problems] The present invention provides an electrorheological fluid comprising a dispersed phase made of organic polymer particles having cation exchange ability, a dispersion medium made of an insulating liquid, and an additive, As an additive, the average particle size is 0.005μ
Fine particles made of metal oxide with a diameter of 0.1 μm are dispersed in the dispersed phase 1.
The present invention relates to an electrorheological fluid characterized in that it is used in an amount of 0.01 to 20 parts by weight per 00 parts by weight.

【0009】[0009]

【作用】本発明で使用し得る添加剤となる微粒子は、平
均粒子径が0.005μm〜0.1μmの範囲にあるこ
とが必要である。平均粒子径がこの範囲から外れる場合
は、分散安定性や再分散性の改良効果が不十分となる。 添加剤として使用する微粒子は金属酸化物であるが、本
発明における金属酸化物とは、アルカリ土類金属、遷移
金属および珪素のうち1種あるいは2種以上と酸素より
なる化合物のことであり、必要に応じてアルカリ金属、
ハロゲン、水素など他の元素を含んでいても良い。これ
らの金属酸化物としては、例えばMgO,CaO,Al
2O3,TiO2,MnO2,Fe2O3,Fe3O4
,FeO,CoO,Co3O4,NiO,CuO,Cu
2O,ZnO,SiO2,SiO2−TiO2、TiO
2−ZrO2,Fe2O3−ZnO,SiO2−ZnO
,MgO・SiO2,CaO・SiO2等を挙げること
ができ、これらの中から一種あるいは二種以上を使用す
ることができる。
[Operation] The fine particles that can be used as an additive in the present invention must have an average particle diameter in the range of 0.005 μm to 0.1 μm. If the average particle diameter is outside this range, the effect of improving dispersion stability and redispersibility will be insufficient. The fine particles used as additives are metal oxides, and the metal oxides in the present invention are compounds consisting of one or more of alkaline earth metals, transition metals, and silicon and oxygen. Alkali metals, if necessary
It may also contain other elements such as halogen and hydrogen. Examples of these metal oxides include MgO, CaO, Al
2O3, TiO2, MnO2, Fe2O3, Fe3O4
, FeO, CoO, Co3O4, NiO, CuO, Cu
2O, ZnO, SiO2, SiO2-TiO2, TiO
2-ZrO2, Fe2O3-ZnO, SiO2-ZnO
, MgO.SiO2, CaO.SiO2, etc., and one or more of these can be used.

【0010】本発明で使用する添加剤を得る方法は特に
制限なく、市販のもの(例えば日本アエロジル(株)製
の粉末状無水シリカ)を使用することができる。また、
上記の金属酸化物を構成する金属の水酸化物や塩化物や
炭酸塩やアルコキシド等を高温で加熱し焼成あるいは分
解する乾式法、溶液中で加熱あるいはpH調整する湿式
法、所定の組成のゾルより得られたヒドロゲルを乾燥す
るゾル−ゲル法、塩化物を高温で加水分解する気相加水
分解法など公知の方法により合成してもよく、必要に応
じて粉砕、熱処理、試薬による修飾処理等を行って使用
することができる。
The method for obtaining the additive used in the present invention is not particularly limited, and commercially available additives (for example, powdered anhydrous silica manufactured by Nippon Aerosil Co., Ltd.) can be used. Also,
A dry method in which metal hydroxides, chlorides, carbonates, alkoxides, etc. constituting the above metal oxides are heated at high temperature and calcined or decomposed, a wet method in which they are heated or pH adjusted in a solution, and a sol with a predetermined composition. The resulting hydrogel may be synthesized by a known method such as a sol-gel method in which the resulting hydrogel is dried, or a gas phase hydrolysis method in which chloride is hydrolyzed at high temperature, and if necessary, pulverization, heat treatment, modification treatment with a reagent, etc. You can go and use it.

【0011】本発明の電気粘性流体において分散相を構
成する陽イオン交換能を有する有機重合体粒子としては
、水等の極性溶媒の存在下において陽イオンを解離し自
らは陰イオンとなる官能基を有する重合体の粒子であれ
ば特に制限なく、例えば分子中にスルホン酸基、カルボ
ン酸基、リン酸基などのイオン解離基を有する有機重合
体の粒子が挙げられる。中でも、スルホン酸基を有する
有機重合体粒子が好ましく、さらに中でもスルホン酸基
含有ポリスチレン系重合体からなる粒子が、せん断応力
や電流密度の点で優れた電気粘性流体が得られるので好
ましい。
The organic polymer particles having cation exchange ability constituting the dispersed phase in the electrorheological fluid of the present invention include functional groups that dissociate cations and become anions themselves in the presence of a polar solvent such as water. There are no particular limitations on the particles as long as they are particles of a polymer having the following, and examples thereof include particles of organic polymers having ionic dissociative groups such as sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups in the molecule. Among these, organic polymer particles having sulfonic acid groups are preferable, and particles made of polystyrene polymers containing sulfonic acid groups are particularly preferable because they provide an electrorheological fluid with excellent shear stress and current density.

【0012】有機重合体粒子が極性溶媒中で解離する陽
イオンの種類としては、特に制限はなく、例えば水素陽
イオン;リチウムイオン、ナトリウムイオン、カリウム
イオン、カルシウムイオン、アルミニウムイオン、第一
銅イオン、第二銅イオン等の金属陽イオン;アンモニウ
ムイオン;テトラメチルアンモニウムイオン、ピリジニ
ウムイオン等の有機物陽イオン等を挙げることができる
There are no particular restrictions on the type of cations that the organic polymer particles dissociate in the polar solvent, such as hydrogen cations; lithium ions, sodium ions, potassium ions, calcium ions, aluminum ions, cuprous ions. , metal cations such as cupric ions; ammonium ions; organic cations such as tetramethylammonium ions and pyridinium ions.

【0013】本発明において分散相として用いることが
できる陽イオン交換能を有する有機重合体粒子を得るに
は、例えばスルホン酸基やカルボン酸基等を有するビニ
ル化合物を単独あるいは必要に応じてその他のビニルモ
ノマーを加えた単量体混合物を公知の方法で重合し必要
に応じて所定の粒子径に粉砕してもよく、また重合体に
公知の方法でスルホン酸基等のイオン解離基を導入して
もよく、またエステル基等を有する重合体を公知の方法
で加水分解してイオン解離基を導入してもよい。さらに
市販の陽イオン交換樹脂を適当な粒子径に粉砕したもの
を用いてもよい。
In order to obtain organic polymer particles having cation exchange ability that can be used as a dispersed phase in the present invention, for example, a vinyl compound having a sulfonic acid group or a carboxylic acid group may be used alone or, if necessary, in combination with other A monomer mixture to which a vinyl monomer has been added may be polymerized by a known method and pulverized to a predetermined particle size if necessary, or an ionic dissociative group such as a sulfonic acid group may be introduced into the polymer by a known method. Alternatively, an ion dissociative group may be introduced by hydrolyzing a polymer having an ester group or the like by a known method. Furthermore, a commercially available cation exchange resin pulverized to an appropriate particle size may be used.

【0014】本発明において分散相を構成する有機重合
体粒子の平均粒子径は、0.5μm〜30μmの範囲に
あることが好ましい。有機重合体粒子の平均粒子径が0
.5μm未満の場合には、調製した電気粘性流体に電場
を印加した際に大きなせん断応力が得られないことがあ
る。また、有機重合体粒子の平均粒子径が30μmを越
える場合には、電場を印加していない状態での分散安定
性に優れた電気粘性流体が得られないことがある。
In the present invention, the average particle diameter of the organic polymer particles constituting the dispersed phase is preferably in the range of 0.5 μm to 30 μm. The average particle diameter of the organic polymer particles is 0
.. If it is less than 5 μm, a large shear stress may not be obtained when an electric field is applied to the prepared electrorheological fluid. Furthermore, if the average particle diameter of the organic polymer particles exceeds 30 μm, an electrorheological fluid with excellent dispersion stability in the absence of an applied electric field may not be obtained.

【0015】本発明の電気粘性流体において分散媒を構
成する絶縁性液体としては、電気絶縁性を示す油状物質
なら特に制限なく、例えばドデカン、ヘキサデカン、オ
クタデカン等の脂肪族炭化水素;ベンゼン、ナフタレン
、アントラセン、フェナントレン等の芳香族炭化水素;
トルエン、エチルベンゼン、プロピルベンゼン、ブチル
ベンゼン、ペンチルベンゼン、オクチルベンゼン、ドデ
シルベンゼン、キシレン、トリメチルベンゼン等のアル
キル置換芳香族炭化水素;サームエス(登録商標)30
0、サームエス(登録商標)700、サームエス(登録
商標)800、サームエス(登録商標)900(以上新
日鉄化学(株)製)や、日石ハイゾール(登録商標)S
AS−296(日本石油化学(株)製)等の炭化水素系
熱媒;フタル酸ジデシル、トリメリット酸トリオクチル
等の芳香族ポリカルボン酸の高級アルキルエステル;フ
ッ化ベンゼン、塩化ベンゼン、臭化ベンゼン、フッ素化
ナフタレン、塩素化ナフタレン、臭素化ナフタレン、塩
素化ジフェニル等のハロゲン化炭化水素;ポリジメチル
シロキサン、ポリジフェニルシロキサン等のシリコーン
オイル;流動パラフィンなどを挙げることができ、これ
らの中から一種あるいは二種以上を用いることができる
The insulating liquid constituting the dispersion medium in the electrorheological fluid of the present invention is not particularly limited as long as it is an oily substance that exhibits electrical insulation, and examples include aliphatic hydrocarbons such as dodecane, hexadecane, and octadecane; benzene, naphthalene, Aromatic hydrocarbons such as anthracene and phenanthrene;
Alkyl-substituted aromatic hydrocarbons such as toluene, ethylbenzene, propylbenzene, butylbenzene, pentylbenzene, octylbenzene, dodecylbenzene, xylene, trimethylbenzene; THERM-S (registered trademark) 30
0, THERM-S (registered trademark) 700, THERM-S (registered trademark) 800, THERM-S (registered trademark) 900 (manufactured by Nippon Steel Chemical Co., Ltd.), and Nisseki Hysol (registered trademark) S
Hydrocarbon heating medium such as AS-296 (manufactured by Nippon Petrochemical Co., Ltd.); Higher alkyl esters of aromatic polycarboxylic acids such as didecyl phthalate and trioctyl trimellitate; benzene fluoride, benzene chloride, benzene bromide , halogenated hydrocarbons such as fluorinated naphthalene, chlorinated naphthalene, brominated naphthalene, and chlorinated diphenyl; silicone oils such as polydimethylsiloxane and polydiphenylsiloxane; and liquid paraffin. Two or more types can be used.

【0016】本発明の電気粘性流体は、前記した特定の
分散相を添加剤の存在下に分散媒に混合分散して得られ
るものである。
The electrorheological fluid of the present invention is obtained by mixing and dispersing the specific dispersed phase described above in a dispersion medium in the presence of additives.

【0017】本発明の電気粘性流体における分散相と分
散媒との比は、前者100重量部に対して後者50〜5
00重量部の範囲であることが好ましい。分散媒の量が
500重量部を越える場合、調製された電気粘性流体に
電場を印加した際に得られるせん断応力が十分大きくな
らないことがある。また、分散媒の量が50重量部未満
の場合、調製された電気粘性流体自体の流動性が低下し
て、電気粘性流体としての使用が難しくなることがある
The ratio of the dispersed phase to the dispersion medium in the electrorheological fluid of the present invention is 100 parts by weight of the former to 50 to 5 parts by weight of the latter.
The amount is preferably in the range of 0.00 parts by weight. If the amount of the dispersion medium exceeds 500 parts by weight, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid may not be sufficiently large. Furthermore, if the amount of the dispersion medium is less than 50 parts by weight, the fluidity of the prepared electrorheological fluid itself may decrease, making it difficult to use it as an electrorheological fluid.

【0018】また、本発明の電気粘性流体における添加
剤である金属酸化物からなる微粒子の使用量は、分散相
100重量部に対して0.01〜20重量部の範囲であ
る。添加剤の量が0.01重量部未満では、電場を印加
していない状態での分散安定性や再分散性に優れた電気
粘性流体が得られない。また、添加剤の量が20重量部
を越えると、添加量増大にみあった分散安定性の向上が
みられないだけでなく、せん断応力特性や電流特性が劣
化するため電気粘性流体としての使用が難しくなる。
Further, the amount of fine particles made of metal oxide as an additive in the electrorheological fluid of the present invention is in the range of 0.01 to 20 parts by weight based on 100 parts by weight of the dispersed phase. If the amount of the additive is less than 0.01 part by weight, an electrorheological fluid with excellent dispersion stability and redispersibility in the absence of an applied electric field cannot be obtained. Furthermore, if the amount of additive exceeds 20 parts by weight, not only will the dispersion stability not improve commensurately with the increase in the amount added, but also the shear stress characteristics and current characteristics will deteriorate, making it difficult to use as an electrorheological fluid. becomes difficult.

【0019】本発明の電気粘性流体には、その粘度調節
あるいはせん断応力向上のために、例えば界面活性剤、
高分子分散剤、高分子増粘剤等の従来公知の各種添加物
を添加することができる。
The electrorheological fluid of the present invention may contain, for example, a surfactant, in order to adjust its viscosity or improve its shear stress.
Various conventionally known additives such as polymeric dispersants and polymeric thickeners can be added.

【0020】[0020]

【発明の効果】本発明の電気粘性流体は、比較的弱い電
場を印加することによっても大きいせん断応力を発生し
、その際に流れる電流密度が小さいという電流特性に優
れ、発生したせん断応力および電流密度の経時安定性に
優れ、かつ電場を印加していない状態での分散安定性(
分散相を沈降あるいは浮上させずに電気粘性流体を長時
間均一状態に保持できる性能)と再分散性(分散相が沈
降あるいは浮上して不均一になったあと簡単な外力で元
の均一状態を再現する性能)に特に優れているため、ク
ラッチ、ダンパ−、ブレ−キ、ショックアブソ−バ−、
アクチュエ−タ−、バルブ、エンジンマウント等へ有効
に利用できる。
Effects of the Invention The electrorheological fluid of the present invention generates large shear stress even when a relatively weak electric field is applied, and has excellent current characteristics such that the current density flowing at that time is small, and the generated shear stress and current Excellent density stability over time, and dispersion stability when no electric field is applied (
The ability to maintain the electrorheological fluid in a homogeneous state for a long time without causing the dispersed phase to settle or float) and redispersibility (the ability to restore the original uniform state by a simple external force after the dispersed phase settles or floats and becomes non-uniform) Because it is particularly excellent in reproducing performance), it is suitable for clutches, dampers, brakes, shock absorbers,
It can be effectively used for actuators, valves, engine mounts, etc.

【0021】[0021]

【実施例】以下、実施例により本発明を説明するが、本
発明の範囲がこれら実施例のみに限定されるものではな
い。
[Examples] The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.

【0022】[0022]

【実施例1】攪拌機、還流冷却器、温度計および窒素導
入管を備えた3000mlの四つ口フラスコにイオン交
換水1200gおよびポリビニルアルコール((株)ク
ラレ製クラレポバールPVA−205)16.0gを添
加・溶解させた後、さらにスチレン250g、工業用ジ
ビニルベンゼン(和光純薬工業(株)製、ジビニルベン
ゼン55重量%、エチルスチレン35重量%等の混合物
)50gおよび過酸化ベンゾイル5gからなる混合物を
加えた。その後、分散機(回転数:6000rpm)を
用いてフラスコの内容物を分散させ、70℃で8時間加
熱した。得られた固形物を濾別し、十分にアセトンと水
で洗浄した後、熱風乾燥器を用いて80℃で12時間乾
燥し、重合架橋体(以下、これを重合架橋体(1)とい
う。)293gを得た。
[Example 1] 1200 g of ion-exchanged water and 16.0 g of polyvinyl alcohol (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd.) were placed in a 3000 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen inlet tube. After addition and dissolution, a mixture consisting of 250 g of styrene, 50 g of industrial divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., a mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) and 5g of benzoyl peroxide was added. added. Thereafter, the contents of the flask were dispersed using a disperser (rotation speed: 6000 rpm) and heated at 70° C. for 8 hours. The obtained solid was filtered, thoroughly washed with acetone and water, and then dried at 80° C. for 12 hours using a hot air drier to obtain a polymerized crosslinked product (hereinafter referred to as polymerized crosslinked product (1)). ) 293g was obtained.

【0023】次いで、この重合架橋体(1)100gを
攪拌機、還流冷却器および温度計を備えた1000ml
の三つ口フラスコに投入し、氷冷下98重量%の硫酸5
00gを滴加し、攪拌下80℃で24時間加熱しスルホ
ン化反応を行った。その後、フラスコの内容物を0℃の
水中に注ぎ、濾別・水洗を行った。
Next, 100 g of this polymerized crosslinked product (1) was placed in a 1000 ml container equipped with a stirrer, a reflux condenser, and a thermometer.
into a three-necked flask, add 98% by weight sulfuric acid 5 under ice cooling.
00g was added dropwise and heated at 80°C for 24 hours with stirring to carry out a sulfonation reaction. Thereafter, the contents of the flask were poured into 0°C water, filtered and washed with water.

【0024】得られた固形物を10重量%水酸化ナトリ
ウム水溶液390mlで中和したのち、十分に水洗した
。その後、真空乾燥器を用いて、80℃で10時間乾燥
し、平均粒子径6.1μmの有機重合体粒子{以下、こ
れを分散相粒子(1)という。}184gを得た。なお
、分散相粒子(1)の陰イオン性解離基密度は4.4m
g当量/gであった。
The obtained solid was neutralized with 390 ml of a 10% by weight aqueous sodium hydroxide solution, and then thoroughly washed with water. Thereafter, the organic polymer particles (hereinafter referred to as dispersed phase particles (1)) having an average particle diameter of 6.1 μm were dried at 80° C. for 10 hours using a vacuum dryer. }184g was obtained. In addition, the anionic dissociative group density of the dispersed phase particles (1) is 4.4 m
g equivalent/g.

【0025】分散相粒子(1)30gを150℃で3時
間乾燥後、温度20℃、相対湿度60%の室内に30分
間放置して吸湿させた後、平均粒子径0.007μmの
粉末状シリカ(日本アエロジル(株)製のAEROSI
L(登録商標)380)1.4gをシリコンオイル(信
越化学工業(株)製の信越シリコーン(登録商標)KF
96−20cs)68.6gに添加して得た分散媒中に
均一に分散し、本発明の電気粘性流体(1)を得た。
After drying 30 g of dispersed phase particles (1) at 150° C. for 3 hours, the particles were left in a room at a temperature of 20° C. and a relative humidity of 60% for 30 minutes to absorb moisture. (AEROSI manufactured by Nippon Aerosil Co., Ltd.)
1.4 g of L (registered trademark) 380) was added to silicone oil (Shin-Etsu Silicone (registered trademark) KF manufactured by Shin-Etsu Chemical Co., Ltd.).
The electrorheological fluid (1) of the present invention was obtained by uniformly dispersing it in a dispersion medium obtained by adding it to 68.6 g of 96-20cs).

【0026】[0026]

【実施例2】実施例1における粉末状シリカ(日本アエ
ロジル(株)製のAEROSIL(登録商標)380)
の代わりに平均粒子径0.012μmの粉末状シリカ(
日本アエロジル(株)製のAEROSIL(登録商標)
R805)0.03gを用い、シリコーンオイルの使用
量を69.97gに変更した以外は実施例1と同様の方
法により、本発明の電気粘性流体(2)を得た。
[Example 2] Powdered silica in Example 1 (AEROSIL (registered trademark) 380 manufactured by Nippon Aerosil Co., Ltd.)
Powdered silica with an average particle size of 0.012 μm (
AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.
Electrorheological fluid (2) of the present invention was obtained in the same manner as in Example 1 except that 0.03 g of R805) was used and the amount of silicone oil used was changed to 69.97 g.

【0027】[0027]

【実施例3】実施例1における粉末状シリカ(日本アエ
ロジル(株)製のAEROSIL(登録商標)380)
の代わりに平均粒子径0.012μmの粉末状シリカ(
日本アエロジル(株)製のAEROSIL(登録商標)
R974)2gを用い、シリコーンオイルの使用量を6
8gに変更した以外は実施例1と同様の方法により、本
発明の電気粘性流体(3)を得た。
[Example 3] Powdered silica in Example 1 (AEROSIL (registered trademark) 380 manufactured by Nippon Aerosil Co., Ltd.)
Powdered silica with an average particle size of 0.012 μm (
AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.
Using 2g of R974), the amount of silicone oil used was 6
Electrorheological fluid (3) of the present invention was obtained in the same manner as in Example 1 except that the amount was changed to 8 g.

【0028】[0028]

【実施例4】実施例1における粉末状シリカ(日本アエ
ロジル(株)製のAEROSIL(登録商標)380)
の代わりに平均粒子径0.08μmの粉末状酸化チタン
4gを用い、シリコーンオイルの使用量を66gに変更
した以外は実施例1と同様の方法により、本発明の電気
粘性流体(4)を得た。
[Example 4] Powdered silica in Example 1 (AEROSIL (registered trademark) 380 manufactured by Nippon Aerosil Co., Ltd.)
The electrorheological fluid (4) of the present invention was obtained in the same manner as in Example 1, except that 4 g of powdered titanium oxide with an average particle size of 0.08 μm was used instead of 1, and the amount of silicone oil used was changed to 66 g. Ta.

【0029】[0029]

【実施例5】実施例1における粉末状シリカ(日本アエ
ロジル(株)製のAEROSIL(登録商標)380)
の代わりに平均粒子径0.016μmの粉末状シリカ(
日本アエロジル(株)製のAEROSIL(登録商標)
R972)0.7gを用い、シリコーンオイルの代わり
に水素化トリフェニル(新日鉄化学(株)製のサームエ
ス(登録商標)900)69.3gを使用した以外は実
施例1と同様の方法により、本発明の電気粘性流体(5
)を得た。
[Example 5] Powdered silica in Example 1 (AEROSIL (registered trademark) 380 manufactured by Nippon Aerosil Co., Ltd.)
Powdered silica with an average particle size of 0.016 μm (
AEROSIL (registered trademark) manufactured by Nippon Aerosil Co., Ltd.
This product was prepared in the same manner as in Example 1, except that 0.7 g of R972) was used and 69.3 g of hydrogenated triphenyl (Therm-S (registered trademark) 900 manufactured by Nippon Steel Chemical Co., Ltd.) was used instead of silicone oil. Electrorheological fluid of the invention (5
) was obtained.

【0030】[0030]

【実施例6】攪拌機、還流冷却器、温度計および窒素導
入管を備えた3000mlの四つ口フラスコにイオン交
換水1200gおよびポリビニルアルコール((株)ク
ラレ製クラレポバールPVA−205)20.0gを添
加・溶解させた後、さらにスチレン250g、工業用ジ
ビニルベンゼン(和光純薬工業(株)製、ジビニルベン
ゼン55重量%、エチルスチレン35重量%等の混合物
)50gおよび過酸化ベンゾイル5gからなる混合物を
加えた。その後、分散機(回転数:22000rpm)
を用いてフラスコの内容物を分散させ、70℃で8時間
加熱した。得られた固形物を濾別し、十分にアセトンと
水で洗浄した後、熱風乾燥器を用いて80℃で12時間
乾燥し、重合架橋体(以下、これを重合架橋体(2)と
いう。)261gを得た。
[Example 6] 1200 g of ion-exchanged water and 20.0 g of polyvinyl alcohol (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd.) were placed in a 3000 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer, and nitrogen inlet tube. After addition and dissolution, a mixture consisting of 250 g of styrene, 50 g of industrial divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., a mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) and 5g of benzoyl peroxide was added. added. After that, disperser (rotation speed: 22000 rpm)
The contents of the flask were dispersed using a water bottle and heated at 70°C for 8 hours. The obtained solid was filtered, thoroughly washed with acetone and water, and then dried at 80° C. for 12 hours using a hot air drier to obtain a polymerized crosslinked product (hereinafter referred to as polymerized crosslinked product (2)). ) 261g was obtained.

【0031】次いで、この重合架橋体(2)100gを
攪拌機、還流冷却器および温度計を備えた1000ml
の三つ口フラスコに投入し、氷冷下98重量%の硫酸5
00gを滴加し、攪拌下80℃で24時間加熱しスルホ
ン化反応を行った。その後、フラスコの内容物を0℃の
水中に注ぎ、濾別・水洗を行った。
Next, 100 g of this polymerized crosslinked product (2) was poured into a 1000 ml container equipped with a stirrer, a reflux condenser, and a thermometer.
into a three-necked flask, add 98% by weight sulfuric acid 5 under ice cooling.
00g was added dropwise and heated at 80°C for 24 hours with stirring to carry out a sulfonation reaction. Thereafter, the contents of the flask were poured into 0°C water, filtered and washed with water.

【0032】得られた固形物を10重量%水酸化ナトリ
ウム水溶液400mlで中和したのち、十分に水洗した
。その後、真空乾燥器を用いて、80℃で10時間乾燥
し、平均粒子径1.5μmの有機重合体粒子{以下、こ
れを分散相粒子(2)という。}168gを得た。なお
、分散相粒子(2)の陰イオン性解離基密度は4.5m
g当量/gであった。
The obtained solid was neutralized with 400 ml of a 10% by weight aqueous sodium hydroxide solution, and then thoroughly washed with water. Thereafter, the organic polymer particles (hereinafter referred to as dispersed phase particles (2)) having an average particle diameter of 1.5 μm were dried at 80° C. for 10 hours using a vacuum dryer. }168g was obtained. In addition, the anionic dissociative group density of the dispersed phase particles (2) is 4.5 m
g equivalent/g.

【0033】分散相粒子(2)30gを150℃で3時
間乾燥後、温度20℃、相対湿度60%の室内に25分
間放置して吸湿させた後、平均粒子径0.007μmの
粉末状シリカ(日本アエロジル(株)製のAEROSI
L(登録商標)380)1.2gをシリコンオイル(信
越化学工業(株)製の信越シリコーン(登録商標)KF
96−10cs)68.8gに添加して得た分散媒中に
均一に分散し、本発明の電気粘性流体(6)を得た。
After drying 30 g of dispersed phase particles (2) at 150° C. for 3 hours, the particles were left in a room at a temperature of 20° C. and a relative humidity of 60% for 25 minutes to absorb moisture. (AEROSI manufactured by Nippon Aerosil Co., Ltd.)
1.2 g of L (registered trademark) 380) was added to silicone oil (Shin-Etsu Silicone (registered trademark) KF manufactured by Shin-Etsu Chemical Co., Ltd.).
The electrorheological fluid (6) of the present invention was obtained by uniformly dispersing it in a dispersion medium obtained by adding it to 68.8 g of 96-10cs).

【0034】[0034]

【実施例7】攪拌機、還流冷却器、温度計および窒素導
入管を備えた3000mlの四つ口フラスコにイオン交
換水1200gおよびポリビニルアルコール((株)ク
ラレ製クラレポバールPVA−205)16.0gを添
加・溶解させた後、さらにスチレン250g、工業用ジ
ビニルベンゼン(和光純薬工業(株)製、ジビニルベン
ゼン55重量%、エチルスチレン35重量%等の混合物
)50gおよび過酸化ベンゾイル5gからなる混合物を
加えた。その後、分散機(回転数:4000rpm)を
用いてフラスコの内容物を分散させ、70℃で8時間加
熱した。得られた固形物を濾別し、十分にアセトンと水
で洗浄した後、熱風乾燥器を用いて80℃で12時間乾
燥し、重合架橋体(以下、これを重合架橋体(3)とい
う。)292gを得た。
[Example 7] 1200 g of ion-exchanged water and 16.0 g of polyvinyl alcohol (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd.) were placed in a 3000 ml four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube. After addition and dissolution, a mixture consisting of 250 g of styrene, 50 g of industrial divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., a mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) and 5g of benzoyl peroxide was added. added. Thereafter, the contents of the flask were dispersed using a disperser (rotation speed: 4000 rpm) and heated at 70° C. for 8 hours. The obtained solid was filtered, thoroughly washed with acetone and water, and then dried at 80° C. for 12 hours using a hot air drier to obtain a polymerized crosslinked product (hereinafter referred to as polymerized crosslinked product (3)). ) 292g was obtained.

【0035】次いで、この重合架橋体(3)100gを
攪拌機、還流冷却器および温度計を備えた1000ml
の三つ口フラスコに投入し、氷冷下98重量%の硫酸5
00gを滴加し、攪拌下80℃で24時間加熱しスルホ
ン化反応を行った。その後、フラスコの内容物を0℃の
水中に注ぎ、濾別・水洗を行った。
Next, 100 g of this polymerized crosslinked product (3) was poured into a 1000 ml container equipped with a stirrer, a reflux condenser, and a thermometer.
into a three-necked flask, add 98% by weight sulfuric acid 5 under ice cooling.
00g was added dropwise and heated at 80°C for 24 hours with stirring to carry out a sulfonation reaction. Thereafter, the contents of the flask were poured into 0°C water, filtered and washed with water.

【0036】得られた固形物を10重量%水酸化ナトリ
ウム水溶液400mlで中和したのち、十分に水洗した
。その後、真空乾燥器を用いて、80℃で10時間乾燥
し、平均粒子径14μmの有機重合体粒子{以下、これ
を分散相粒子(3)という。}187gを得た。なお、
分散相粒子(3)の陰イオン性解離基密度は4.4mg
当量/gであった。
The obtained solid was neutralized with 400 ml of a 10% by weight aqueous sodium hydroxide solution, and then thoroughly washed with water. Thereafter, the organic polymer particles (hereinafter referred to as dispersed phase particles (3)) having an average particle diameter of 14 μm were dried at 80° C. for 10 hours using a vacuum dryer. }187g was obtained. In addition,
The anionic dissociative group density of the dispersed phase particles (3) is 4.4 mg
equivalent/g.

【0037】分散相粒子(3)30gを150℃で3時
間乾燥後、温度20℃、相対湿度60%の室内に40分
間放置して吸湿させた後、平均粒子径0.012μmの
粉末状シリカ(日本アエロジル(株)製のAEROSI
L(登録商標)R974)0.6gをシリコンオイル(
信越化学工業(株)製の信越シリコーン(登録商標)K
F96−20cs)69.4gに添加して得た分散媒中
に均一に分散し、本発明の電気粘性流体(7)を得た。
After drying 30 g of dispersed phase particles (3) at 150° C. for 3 hours, the particles were left in a room at a temperature of 20° C. and a relative humidity of 60% for 40 minutes to absorb moisture. (AEROSI manufactured by Nippon Aerosil Co., Ltd.)
L (registered trademark) R974) 0.6g with silicone oil (
Shin-Etsu Silicone (registered trademark) K manufactured by Shin-Etsu Chemical Co., Ltd.
The electrorheological fluid (7) of the present invention was obtained by uniformly dispersing it in a dispersion medium obtained by adding it to 69.4 g of F96-20cs).

【0038】[0038]

【比較例1】実施例1における分散相粒子(1)30g
を150℃で3時間乾燥後、温度20℃、相対湿度60
%の室内に30分間放置して吸湿させた後、70gのシ
リコンオイル(信越化学工業(株)製の信越シリコーン
(登録商標)KF96−20cs)に混合分散し、比較
用の電気粘性流体{以下、これを比較流体(1)という
。}を得た。
[Comparative Example 1] 30 g of dispersed phase particles (1) in Example 1
After drying at 150℃ for 3 hours, the temperature was 20℃ and the relative humidity was 60℃.
% for 30 minutes to absorb moisture, and then mixed and dispersed in 70 g of silicone oil (Shin-Etsu Silicone (registered trademark) KF96-20cs, manufactured by Shin-Etsu Chemical Co., Ltd.), and mixed with a comparative electrorheological fluid (see below). , this is called comparison fluid (1). } was obtained.

【0039】[0039]

【比較例2】実施例1における分散相粒子(1)30g
を150℃で3時間乾燥後、温度20℃、相対湿度60
%の室内に30分間放置して吸湿させた後、70gの水
素化トリフェニル(新日鉄化学(株)製のサームエス(
登録商標)900)に混合分散し、比較用の電気粘性流
体{以下、これを比較流体(2)という。}を得た。
[Comparative Example 2] 30 g of dispersed phase particles (1) in Example 1
After drying at 150℃ for 3 hours, the temperature was 20℃ and the relative humidity was 60℃.
% in a room for 30 minutes to absorb moisture, then add 70 g of triphenyl hydride (Therm-S manufactured by Nippon Steel Chemical Co., Ltd.).
(Registered Trademark) 900) and mixed and dispersed into a comparative electrorheological fluid (hereinafter referred to as comparative fluid (2)). } was obtained.

【0040】[0040]

【比較例3】攪拌機、還流冷却器、温度計および窒素導
入管を備えた500mlの四つ口フラスコにキシレン1
50g、メトキシポリエチレングリコールメタクリレー
ト(新中村化学(株)製のNKエステルM−230G;
重量平均分子量をスーパーシステムコントローラーGP
Cデータ処理装置(東ソー(株)製)により測定したと
ころ、1,400であった)1gおよびメタクリル酸ド
デシル149gを仕込み、そこへアゾビスイソブチロニ
トリル0.7gを添加し窒素を導入しながら室温で30
分攪拌した。その後70℃で10時間加熱した後さらに
90℃で2時間加熱することにより重合を行った。
[Comparative Example 3] A 500ml four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen inlet tube was filled with xylene.
50g, methoxypolyethylene glycol methacrylate (NK ester M-230G manufactured by Shin-Nakamura Chemical Co., Ltd.;
Weight average molecular weight super system controller GP
1 g of C data processing device (manufactured by Tosoh Corporation) was 1,400) and 149 g of dodecyl methacrylate, 0.7 g of azobisisobutyronitrile was added thereto, and nitrogen was introduced. 30 minutes at room temperature while
The mixture was stirred for a minute. Thereafter, the mixture was heated at 70°C for 10 hours and then further heated at 90°C for 2 hours to perform polymerization.

【0041】得られた重合体のキシレン溶液(以下、こ
れを重合体溶液(1)という。)の固形分含有率を測定
したところ50重量%であった。モノマーの残存率から
重合率を測定したところ、メタクリル酸ドデシルの重合
率は100%であった。また、重合体の重量平均分子量
はスーパーシステムコントローラーGPCデータ処理装
置(東ソー(株)製)により測定したところ、29,0
00であった。
The solid content of the resulting xylene solution of the polymer (hereinafter referred to as polymer solution (1)) was 50% by weight. When the polymerization rate was measured from the residual rate of the monomer, the polymerization rate of dodecyl methacrylate was 100%. The weight average molecular weight of the polymer was measured using a Super System Controller GPC data processing device (manufactured by Tosoh Corporation) and was found to be 29.0.
It was 00.

【0042】実施例1における粉末状シリカの代わりに
重合体溶液(1)5gを用い、シリコーンオイルの代わ
りに水素化トリフェニル(新日鉄化学(株)製のサーム
エス(登録商標)900)65gを使用した以外は実施
例1と同様の方法により、比較用の電気粘性流体{以下
、これを比較流体(3)という。}を得た。
In Example 1, 5 g of polymer solution (1) was used instead of powdered silica, and 65 g of hydrogenated triphenyl (Therm-S (registered trademark) 900 manufactured by Nippon Steel Chemical Co., Ltd.) was used instead of silicone oil. A comparative electrorheological fluid (hereinafter referred to as comparative fluid (3)) was prepared in the same manner as in Example 1 except for the following steps. } was obtained.

【0043】[0043]

【比較例4】実施例7における分散相粒子(3)30g
を150℃で3時間乾燥後、温度20℃、相対湿度60
%の室内に40分間放置して吸湿させた後、70gのシ
リコンオイル(信越化学工業(株)製の信越シリコーン
(登録商標)KF96−20cs)に混合分散し、比較
用の電気粘性流体{以下、これを比較流体(4)という
。}を得た。
[Comparative Example 4] 30 g of dispersed phase particles (3) in Example 7
After drying at 150℃ for 3 hours, the temperature was 20℃ and the relative humidity was 60℃.
% for 40 minutes to absorb moisture, then mixed and dispersed in 70 g of silicone oil (Shin-Etsu Silicone (registered trademark) KF96-20cs, manufactured by Shin-Etsu Chemical Co., Ltd.), and mixed with electrorheological fluid for comparison (see below). , this is called comparison fluid (4). } was obtained.

【0044】[0044]

【比較例5】実施例1において添加剤として使用した粉
末状シリカ(日本アエロジル(株)製のAEROSIL
(登録商標)380)1.4gを150℃で3時間乾燥
後、温度20℃、相対湿度60%の室内に30分間放置
した後、68.6gのシリコンオイル(信越化学工業(
株)製の信越シリコーン(登録商標)KF96−20c
s)に混合分散し、比較用の電気粘性流体{以下、これ
を比較流体(5)という。}を得た。
[Comparative Example 5] Powdered silica used as an additive in Example 1 (AEROSIL manufactured by Nippon Aerosil Co., Ltd.)
After drying 1.4 g of (registered trademark) 380 at 150°C for 3 hours, and leaving it in a room at a temperature of 20°C and relative humidity of 60% for 30 minutes, 68.6 g of silicone oil (Shin-Etsu Chemical Co., Ltd.
Shin-Etsu Silicone (registered trademark) KF96-20c manufactured by Co., Ltd.
s) and mixed and dispersed into a comparative electrorheological fluid (hereinafter referred to as comparative fluid (5)). } was obtained.

【0045】[0045]

【比較例6】実施例1において添加剤として使用した粉
末状シリカ(日本アエロジル(株)製のAEROSIL
(登録商標)380)30gを150℃で3時間乾燥後
、温度20℃、相対湿度60%の室内に30分間放置し
て吸湿させた後、70gのシリコンオイル(信越化学工
業(株)製の信越シリコーン(登録商標)KF96−2
0cs)に混合したが、均一に分散せず均一な流体は得
られなかった。
[Comparative Example 6] Powdered silica used as an additive in Example 1 (AEROSIL manufactured by Nippon Aerosil Co., Ltd.)
After drying 30g of (registered trademark) 380 at 150℃ for 3 hours, leave it in a room at 20℃ and 60% relative humidity for 30 minutes to absorb moisture. Shin-Etsu Silicone (registered trademark) KF96-2
0 cs), but it was not uniformly dispersed and a uniform fluid could not be obtained.

【0046】[0046]

【実施例8】実施例1〜7および比較例1〜5で得られ
た本発明の電気粘性流体(1)〜(7)および比較流体
(1)〜(5)の各々を、高さ150mm、直径15m
mの試験管の底から100mmのところまで充填して密
閉した。その後、室温で分散相粒子の沈降速度を追跡し
、分散相粒子が試験管に充填された電気粘性流体の液面
から5mm沈降するのに要する時間(単位は日)を測定
し、分散安定性を評価した。その結果を表1に示す。 また、一週間静置後に沈降した電気粘性流体を試験用分
散機((株)東洋精機製作所製)を用いて再分散し、○
:すばやく分散する、△:分散するのに数分かかる、×
:分散しにくいの3段階で再分散性を評価した。その結
果を表1に示す。
[Example 8] Each of the electrorheological fluids (1) to (7) and comparative fluids (1) to (5) of the present invention obtained in Examples 1 to 7 and Comparative Examples 1 to 5 was heated to a height of 150 mm. , diameter 15m
The test tube was filled to a depth of 100 mm from the bottom and sealed. After that, we tracked the sedimentation speed of the dispersed phase particles at room temperature, measured the time (in days) required for the dispersed phase particles to settle 5 mm from the liquid level of the electrorheological fluid filled in the test tube, and determined the dispersion stability. was evaluated. The results are shown in Table 1. In addition, the electrorheological fluid that had settled after being left standing for one week was redispersed using a test dispersion machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
: Disperses quickly, △: Takes several minutes to disperse, ×
: Redispersibility was evaluated in three stages: difficult to disperse. The results are shown in Table 1.

【0047】また、電気粘性流体の各々を共軸電場付二
重円筒形回転粘度計に入れ、内/外筒間隙1.0mm、
せん断速度400s ̄1、温度25℃の条件で交流外部
電場4000V/mm(周波数:50Hz)を印加した
ときのせん断応力値(初期値)およびその際に流れる電
流密度(初期値)を測定した。さらに、4000V/m
mの外部電場を印加した状態で粘度計を25℃にて3日
間連続運転した後のせん断応力値(3日後の値)および
電流密度(3日後の値)を測定し、電気粘性流体の経時
安定性を調べた。その結果を表1に示す。
Each of the electrorheological fluids was placed in a double cylindrical rotational viscometer with a coaxial electric field, and the inner/outer cylinder gap was 1.0 mm.
The shear stress value (initial value) and the current density (initial value) flowing at that time were measured when an AC external electric field of 4000 V/mm (frequency: 50 Hz) was applied at a shear rate of 400 s 1 and a temperature of 25°C. Furthermore, 4000V/m
The shear stress value (value after 3 days) and current density (value after 3 days) after continuous operation of the viscometer at 25°C for 3 days with an external electric field of m Stability was investigated. The results are shown in Table 1.

【0048】[0048]

【表1】[Table 1]

【0049】表1から明らかなように、比較流体(1)
および(2)は、比較的弱い電場の印加によって大きな
せん断応力が得られたが、電場無印加時の分散安定性に
劣っていた。比較流体(3)は比較的弱い電場の印加に
よって大きなせん断応力が得られ、電場無印加時の分散
安定性にも優れていたが、再分散性が悪かった。
As is clear from Table 1, comparative fluid (1)
and (2), a large shear stress was obtained by applying a relatively weak electric field, but the dispersion stability was poor when no electric field was applied. Comparative fluid (3) obtained a large shear stress by applying a relatively weak electric field and had excellent dispersion stability when no electric field was applied, but had poor redispersibility.

【0050】一方、本発明の電気粘性流体(1)〜(5
)は比較的弱い電場を印加することによっても大きいせ
ん断応力を発生し、その際に流れる電流密度が小さいと
いう電流特性に優れ、かつ発生したせん断応力および電
流密度の経時安定性に優れ、さらに電場を印加していな
い状態での分散安定性および再分散性に優れていた。
On the other hand, the electrorheological fluids (1) to (5) of the present invention
) generates large shear stress even when a relatively weak electric field is applied, and has excellent current characteristics such that the current density flowing at that time is small. The dispersion stability and redispersibility were excellent even in the absence of application.

【0051】また、本発明の電気粘性流体(7)は、対
応する比較流体(4)に比べ更に高レベルの分散安定性
を示し、せん断応力、電流特性、経時安定性および再分
散性にもすぐれていた。
Furthermore, the electrorheological fluid (7) of the present invention exhibits a higher level of dispersion stability than the corresponding comparative fluid (4), and has excellent shear stress, current characteristics, stability over time, and redispersibility. It was excellent.

【0052】比較流体(5)は、せん断応力をほとんど
発生せず、電気粘性流体としての価値のないことがわか
った。
Comparative fluid (5) was found to generate almost no shear stress and was of no value as an electrorheological fluid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  陽イオン交換能を有する有機重合体粒
子からなる分散相、絶縁性液体からなる分散媒および添
加剤を含有してなる電気粘性流体であって、添加剤とし
て、平均粒子径が0.005μm〜0.1μmの金属酸
化物からなる微粒子を分散相100重量部に対して0.
01〜20重量部使用することを特徴とする電気粘性流
体。
1. An electrorheological fluid comprising a dispersed phase made of organic polymer particles having cation exchange ability, a dispersion medium made of an insulating liquid, and an additive, the additive having an average particle diameter of 0.005 μm to 0.1 μm fine particles made of metal oxide per 100 parts by weight of the dispersed phase.
An electrorheological fluid characterized in that 01 to 20 parts by weight are used.
JP3592391A 1991-03-01 1991-03-01 Electroviscous fluid Pending JPH04275398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592391A JPH04275398A (en) 1991-03-01 1991-03-01 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592391A JPH04275398A (en) 1991-03-01 1991-03-01 Electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH04275398A true JPH04275398A (en) 1992-09-30

Family

ID=12455556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592391A Pending JPH04275398A (en) 1991-03-01 1991-03-01 Electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH04275398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070447A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070447A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device

Similar Documents

Publication Publication Date Title
JPH01198696A (en) Electric flowable fluid
JPH04275398A (en) Electroviscous fluid
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
JPH07108989B2 (en) Electrorheological fluid
US5320770A (en) Electrorheological (ER) fluid based on amino acid containing metal polyoxo-salts
US5164105A (en) Electroviscous fluid
JP3095868B2 (en) Electrorheological fluid composition
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition
JPH01262942A (en) Electrical viscous fluid composition
JP3093831B2 (en) Electrorheological fluid
EP0529166A1 (en) Electrorheological fluids
JP3091778B2 (en) Electrorheological fluid composition
JPH03181597A (en) Electric viscous fluid
JP2636446B2 (en) Electrorheological fluid composition
JPH02284991A (en) Electrorheological fluid composition, granular material used therein and its manufacture
JPH06172772A (en) Electroviscous fluid
JPH04164996A (en) Electroviscous fluid
JPH0496997A (en) Electric viscous fluid
JP2971909B2 (en) Electrorheological fluid
JP2875911B2 (en) Electrorheological fluid composition
JP3231420B2 (en) Electrorheological fluid
JPH02150494A (en) Electroviscous liquid
JP2905562B2 (en) Electrorheological fluid composition
JPH0411695A (en) Electroviscous fluid
JP3071002B2 (en) Electrorheological fluid composition