JPH0473847B2 - - Google Patents

Info

Publication number
JPH0473847B2
JPH0473847B2 JP59142944A JP14294484A JPH0473847B2 JP H0473847 B2 JPH0473847 B2 JP H0473847B2 JP 59142944 A JP59142944 A JP 59142944A JP 14294484 A JP14294484 A JP 14294484A JP H0473847 B2 JPH0473847 B2 JP H0473847B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
ferroelectric liquid
optical device
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59142944A
Other languages
Japanese (ja)
Other versions
JPS6120930A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14294484A priority Critical patent/JPS6120930A/en
Priority to US06/750,092 priority patent/US4662721A/en
Priority to DE8585304896T priority patent/DE3584326D1/en
Priority to EP85304896A priority patent/EP0168242B1/en
Publication of JPS6120930A publication Critical patent/JPS6120930A/en
Publication of JPH0473847B2 publication Critical patent/JPH0473847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はカイラルスメクチツク液晶を用いた強
誘電性液晶電気光学装置に関する。 〔従来の技術〕 液晶は、色々のデイスプレイに使われている。
液晶パネルは小型で薄くさらに消費電力が少ない
等の優れた特性がある。 それ故時計や計算機の表示に多使われている。
これらのデイスプレイにく利用されている液晶は
サーモトロピツク液晶である。所定の温度範囲で
各種の液晶相をとる。この液晶相は層構造を持た
ないネマチツク相(以後N)と層構造をもつスメ
クチツク相に(以後Sm)大別される。 Smはさらに一軸性のスメクチツクA相(以後
SmA)と二軸性のスメクチツクC相(以後SmC
に分類される。 層の厚みはだいたい液晶分子1分子の長さに相
当する。 第2図にN、SmA、SmCの分子配列を模式的
に示した。第2図aはN、第2図bはSmA、第
2図cはSmCを示す。 さらに液晶分子が不斉炭素をもち、かつラセミ
体でなければ、らせん構造をとるようになる。 Nの場合薄い層内で液晶分子の長軸が層内にあ
り、かつ一方向に向かつて配列するようになる。
そして層内の分子の方向が各層ごとに少しづつね
じれたカイラルネマチツクとなる。第3図は、カ
イラルネマチツクの分子配列を模式的に示した図
である。Smの場合、層の法線方向をらせん軸と
して分子がらせん状に配列し、カイラルスメクチ
ツクC相(以後SmC*)となる。 SmC*についてもう少し説明を加える。 一つの層内の液晶分子の長軸方向(以後分子軸
と呼ぶ)は、層の法線方向と角度θだけ傾きこの
角度はどの層でも一定である。 第4図のbは分子軸と法線方向との関係を示し
ている。 一方、層の法線方向からSmC*の分子配列を見
た場合、方位角は一定の値づつ(第4図のaで
は45゜づつ変化する場合を示している)層毎に回
転し、分子配列はらせん構造を生じる。 また一般にSmC*は、らせん構造をとるだけで
はなく分子軸に垂直な方向に電気双極子を持ち強
誘電性を示す。 強誘電性液晶は、1975年Meyer(J.de.Phys,
36,69,1975)らにより合成されその存在が証明
された。 その時合成された液晶は通称DOBAMSB(2−
メチルブチルP−〔(P−n−デシロキシベンジリ
デン)アミノ〕) と呼ばれ現在でも強誘電性液晶の研究に盛んに使
われている。 SmC*は前述のようにらせん構造をとるが、そ
のらせんの周期は液晶をらせんの周期よりも薄い
1μm程度の間隙を有するセルに注入すると、ら
せん構造が消失する。 らせん構造が消失した後の分子配列構造は、第
5図にセル基板との幾可学的な関係とともに示さ
れている。 液晶分子は、セル基板に対して平行になる。 すなわち、分子軸が基板と平行になり、かつ層
の法線方向からθ傾いて液晶分子が配列する。 ここで層の法線方向は基板と平行になつてい
る。それ故層は基板に対して垂直に形成する。層
の法線方向からθ傾く場合、法線から時計回りに
θ傾いているドメインと反時計回りに傾いている
ドメインが混在する。 SmC*液晶分子は、一般に分子軸に垂直な電気
双極子を持つ。一方のドメインではセル基板に対
して電子双極子が上向きに揃つているとすると、
他方ドメインでは下向きに電気双極子が揃う。 このセル基板間に電界を印加すると、セル全体
の液晶分子が層の法線方向から+θまたは−θ
(+,−は電気双極子のついている方向により決定
される)傾いた位置に揃う。以後これらを+θ位
置及び−θ位置と呼ぶ。 電界を上記と逆に印加すると、液晶分子は+θ
位置から−θ位置へ動くか、または−θ位置から
+θ位置へ動く。セル全体の分子が+θ位置かま
たは−θ位置に配列するからこの相構造はSmC
である。セルの間隙を薄くする事によりらせん構
造が消失してSmC相ができたことになる。 しかし、このSmCはらせん構造を持つていた
なごりとして、±θ位置から反対の位置に移動す
る際、第4図のbに示した円椎に沿つて移動す
る。この二つの状態は非常に安定であり、又二つ
の状態を電界で交互に切りかえる速さは、通常の
TNがmsecオーダであるのに対して、数μsecオ
ーダーである。 すなわち、SmC*を挾持しかつ電極を付した二
枚の基板からなるセルは、メモリー性を有しかつ
非常に高速で二つの状態をとりえる。 これらの性質をカイラルスメクチツク液晶が有
している事を、ClarkとLagerwall(Appl,Phys.
lett.36,899、1980)らが初めて発表した。 また、彼らはもう一つの特性をカイラルスメク
チツク液晶が有している事を主張した。 すなわち、“望ましいしきい値特性”である。
この場合しきい値特性は、TN型液晶における実
効電圧に対するしきい値特性とは異なり、印加さ
れた電圧値のみにする。 しかし、我々の実験でもまた世の中のその他の
研究機関においても、望ましいしきい値特性の存
在を示すデータは出ていない。 そこで、我々は選択的に所望のパルス間を有す
る選択電圧±Vapにより点灯。非点灯を選択し、
該Vapよりも小なる正負の振幅が等しい交流パル
スにより点灯。非点灯状態をメモリーさせる駆動
方法を開発した。 第6図のa,bに上記駆動方法による駆動波形
の一実施例を示した。 第6図のa,bは、それぞれ選択時に、走査電
極からの電位が+Vap、及び−Vapである駆動波
形である。 該駆動波形でカイラルスメクチツク液晶を駆動
した場合、液晶の配向状態により表示の良し悪し
が大きく影響される。 その理由は、一軸配向処理による分子配向が安
定であり、電圧印加されて基板に分子が平行にな
る状態は、大きな歪を持つているからと考えられ
る。 第7図は、二枚の基板表面に一軸配向処理した
時の、分子配列を示した。 層は、基板の厚み方向に傾いていると考えられ
また分子一つに着目すると、第4図の仮想的なコ
ーンを考えた場合、第8図に示したコーンの頂点
の位置にあると考えられる。 基板に対して平行であり、かつ仮想的なコーン
の頂点の位置にあると考えられる。 基板に対して平行であり、かつ仮想的なコーン
についてもコーンの中心面上の二つの分子位置の
どちらかに分子が初期配向状態から安定して位置
させる事が必要である。 従来この状態を得るには、東工大福田教授が主
張するスペーサ等により分子を横から配向させ、
基板に平行でかつ仮想的コーンの中心面上の位置
をとる方法が知られていた。 しかし、この方法は横配向力を有するスペーサ
をセルの中に多数配置せねばならず工業的に量産
するには困難であつた。 〔問題を解決するための手段〕 基板に平行な安定な二つの位置を分子にもたら
しめ、かつ我々が開発した駆動方法にも適合する
配向方向として次の方法がある。 すなわち、一方の基板は一軸配向性を有する配
向処理を施し、他方の基板は、方向性のないラン
ダムな水平配向処理を施す。 〔作用〕 方向性のないランダムな水平配向処理をした膜
には、文字通りランダムに液晶分子が水平に付着
していると考えられる。 一方もう一枚の基板の一軸配向処理は、分子を
一方向で水平に固定する。 これらの配向によるセル内の分子の配向状態は
次のように考えられる。 第1図はセル内の分子の配向状態を示した模式
図である。図は、一軸配向方向から見た図であ
る。液晶分子は、一軸配向膜上では、ほとんど動
かない。一軸配向膜に付着した分子から数分子層
も全く動かないかまたは極くわずかしか動かない
と考えられる。一方、ランダム水平配向の規制を
受ける分子も、同じく数分子層と考えられ、あま
り動かない。前記一軸配向した領域を一軸配向領
域、ランダム水平配向した領域をランダム水平配
向領域と呼ぶ。 前者は、カイラルスメクチツク液晶を方向の揃
つた均一なドメインを形成するように、分子の配
列方向を規定する。 一方、後者は、一軸配向領域の影響を受けて成
長して来たドメインとの界面をフリーな界面とす
るために役立つている。フリーとは、界面を境と
して、上下の分子間の相互作用が少ないという事
である。よつて、一軸配向膜から成長してきた液
晶分子は、本来最も安定な位置に強制されずに居
る事ができる。その位置は、来板に対して水平
で、仮想的コーンと中心面との交線上に位置す
る。この位置は、±θ位置である。 実施例 1 一軸配向処理の一実施例として、ポリイミド薄
膜を印刷又はデイツピング等により形成し、その
後一方向にラビング処理である。一方ランダム水
平配向処理の一実施例として、次の処理がある。
すなわちSiO2スパツタ→有機シラン垂直配向化
合物、0.01〜5.0重量%水溶液浸せき→洗浄→乾
燥その後、300℃前後で約30分熱処理する。 前記駆動方法の適合性は、最終の熱処理温度に
大きく依存する。250℃〜350℃が最も適合性が良
い。 有機シラン垂直配向化合物については、 (CH3O)3−(CH23−N+(CH32 −(CH217CH3Cl-(DMOAP) 等の化合物がある。 実施例 2 一軸配向処理は実施例1と同等とする。ランダ
ム水平配向処理には、有機シラン化合物を用い
る。有機シラン化合物による配向処理は次のよう
である。 SiO2スパツタ→有機シラン化合物0.01〜5.0重
量%の水溶液に浸せき→洗浄→乾燥という処理で
ある。 有機シラン化合物については、 CH3−NH−(CH23−Si(OCH33、 NH2−(CH22−NH−(CH23 −Si(OCH3)、 NH2−(CH23−Si(OC2H53 Si(OC2H54,CH3−Si(OCH33、 CH3−(CH24−Si(OC2H53
[Industrial Field of Application] The present invention relates to a ferroelectric liquid crystal electro-optical device using chiral smectic liquid crystal. [Prior Art] Liquid crystals are used in a variety of displays.
Liquid crystal panels have excellent characteristics such as being small, thin, and consuming less power. Therefore, it is often used to display clocks and calculators.
The most commonly used liquid crystal for these displays is a thermotropic liquid crystal. It assumes various liquid crystal phases within a predetermined temperature range. This liquid crystal phase is roughly divided into a nematic phase (hereinafter referred to as N) without a layered structure and a smectic phase (hereinafter referred to as Sm) having a layered structure. Sm is further uniaxial Smektic A phase (hereinafter
SmA) and the biaxial smectic C phase (hereinafter SmC
are categorized. The thickness of the layer approximately corresponds to the length of one liquid crystal molecule. Figure 2 schematically shows the molecular arrangements of N, SmA, and SmC. Figure 2a shows N, Figure 2b shows SmA, and Figure 2c shows SmC. Furthermore, if the liquid crystal molecule has an asymmetric carbon and is not racemic, it will take on a helical structure. In the case of N, the long axes of liquid crystal molecules are located within the thin layer and are aligned in one direction.
This results in a chiral nematic, in which the direction of the molecules within each layer is slightly twisted in each layer. FIG. 3 is a diagram schematically showing the molecular arrangement of chiral nematics. In the case of Sm, the molecules are arranged in a spiral with the normal direction of the layer as the helical axis, resulting in a chiral smectic C phase (hereinafter referred to as SmC * ). Let me explain a little more about SmC * . The long axis direction (hereinafter referred to as molecular axis) of the liquid crystal molecules within one layer is inclined at an angle θ with respect to the normal direction of the layer, and this angle is constant in all layers. 4b shows the relationship between the molecular axis and the normal direction. On the other hand, when looking at the molecular arrangement of SmC * from the normal direction of the layers, the azimuth rotates by a constant value (a in Figure 4 shows the case where it changes by 45 degrees) for each layer, and the molecules The arrangement results in a helical structure. In general, SmC * not only has a helical structure but also has an electric dipole in the direction perpendicular to the molecular axis and exhibits ferroelectricity. Ferroelectric liquid crystal was developed in 1975 by Meyer (J.de.Phys.
36, 69, 1975) and their existence was demonstrated. The liquid crystal synthesized at that time was commonly known as DOBAMSB (2-
Methylbutyl P-[(P-n-decyloxybenzylidene)amino]) It is still actively used in research on ferroelectric liquid crystals. SmC * has a helical structure as mentioned above, but the period of the helix is thinner than that of the liquid crystal.
When implanted into a cell with a gap of about 1 μm, the helical structure disappears. The molecular arrangement structure after the helical structure disappears is shown in FIG. 5 together with its geometric relationship with the cell substrate. The liquid crystal molecules become parallel to the cell substrate. That is, the liquid crystal molecules are arranged so that the molecular axes are parallel to the substrate and are tilted by θ from the normal direction of the layers. Here, the normal direction of the layer is parallel to the substrate. The layers are therefore formed perpendicular to the substrate. When tilted by θ from the normal direction of the layer, domains that are tilted clockwise by θ and domains that are tilted counterclockwise from the normal coexist. SmC * liquid crystal molecules generally have an electric dipole perpendicular to the molecular axis. Assuming that in one domain the electron dipoles are aligned upward with respect to the cell substrate,
In the other domain, the electric dipoles are aligned downward. When an electric field is applied between the cell substrates, the liquid crystal molecules in the entire cell will move +θ or −θ from the normal direction of the layers.
(+ and - are determined by the direction of the electric dipole) Align at an inclined position. Hereinafter, these will be referred to as the +θ position and the −θ position. When an electric field is applied in the opposite way to the above, the liquid crystal molecules will move +θ
Move from position to -θ position or move from -θ position to +θ position. This phase structure is SmC because the molecules of the entire cell are arranged in the +θ or -θ position.
It is. By thinning the cell gap, the helical structure disappeared and an SmC phase was formed. However, when this SmC moves from the ±θ position to the opposite position as a trace of its helical structure, it moves along the circular vertebrae shown in FIG. 4b. These two states are very stable, and the speed at which the two states can be alternately switched by an electric field is normal.
While TN is on the order of milliseconds, it is on the order of several microseconds. In other words, a cell consisting of two substrates holding SmC * and attached with electrodes has memory properties and can change into two states at extremely high speed. Clark and Lagerwall (Appl, Phys.
lett. 36, 899, 1980) et al. They also claimed that chiral smectic liquid crystals have another property. In other words, it is a "desirable threshold characteristic."
In this case, the threshold characteristic is different from the threshold characteristic for the effective voltage in a TN liquid crystal, and is determined only by the applied voltage value. However, neither our experiments nor any other research institutes in the world have produced data indicating the existence of desirable threshold characteristics. Therefore, we selectively turn on the voltage ±Vap with the desired pulse-to-pulse duration. Select non-lit,
Lights up with an AC pulse with equal positive and negative amplitudes smaller than the Vap. We have developed a driving method that memorizes the non-lighting state. FIGS. 6a and 6b show an example of driving waveforms according to the above driving method. A and b in FIG. 6 are drive waveforms in which the potentials from the scanning electrodes are +Vap and -Vap, respectively, when selected. When a chiral smectic liquid crystal is driven with this driving waveform, the quality of display is greatly influenced by the alignment state of the liquid crystal. The reason for this is thought to be that the molecular orientation due to uniaxial alignment treatment is stable, and the state in which the molecules become parallel to the substrate when a voltage is applied has a large strain. FIG. 7 shows the molecular arrangement when the surfaces of two substrates were subjected to uniaxial alignment treatment. The layer is considered to be tilted in the thickness direction of the substrate, and if we focus on a single molecule, if we consider the virtual cone in Figure 4, we can assume that it is at the apex of the cone shown in Figure 8. It will be done. It is considered to be parallel to the substrate and located at the apex of a virtual cone. For a virtual cone that is parallel to the substrate, it is necessary for the molecules to be stably positioned at one of two molecular positions on the central plane of the cone from the initial orientation state. Conventionally, to obtain this state, the molecules were oriented laterally using spacers, etc., as advocated by Professor Fukuda of Tokyo Tech.
A method of taking a position parallel to the substrate and on the central plane of a virtual cone was known. However, this method requires arranging a large number of spacers having a lateral orientation force in the cell, making it difficult to mass-produce the spacer on an industrial scale. [Means for solving the problem] The following method is an orientation direction that can provide molecules with two stable positions parallel to the substrate and is compatible with the driving method that we have developed. That is, one substrate is subjected to an alignment process with uniaxial alignment, and the other substrate is subjected to a random horizontal alignment process without directionality. [Operation] It is thought that liquid crystal molecules are literally randomly attached horizontally to a film that has been subjected to random horizontal alignment treatment without directionality. On the other hand, the uniaxial alignment treatment of the other substrate fixes the molecules horizontally in one direction. The orientation state of molecules within the cell due to these orientations can be considered as follows. FIG. 1 is a schematic diagram showing the orientation state of molecules within a cell. The figure is a view seen from the uniaxial orientation direction. Liquid crystal molecules hardly move on a uniaxially aligned film. It is thought that the molecules attached to the uniaxially aligned film do not move at all or move only a few molecular layers. On the other hand, molecules subject to random horizontal alignment are also thought to be in a few molecular layers and do not move much. The uniaxially oriented region is called a uniaxially oriented region, and the randomly horizontally oriented region is called a random horizontally oriented region. The former defines the alignment direction of molecules so that the chiral smectic liquid crystal forms uniform domains with aligned directions. On the other hand, the latter serves to make the interface with the domain that has grown under the influence of the uniaxial orientation region a free interface. Free means that there is little interaction between molecules above and below the interface. Therefore, the liquid crystal molecules grown from the uniaxial alignment film can remain in the most stable position without being forced. Its position is horizontal to the board and is located on the line of intersection between the virtual cone and the center plane. This position is the ±θ position. Example 1 As an example of uniaxial alignment treatment, a polyimide thin film is formed by printing or dipping, and then rubbing treatment is performed in one direction. On the other hand, as an example of the random horizontal alignment process, there is the following process.
That is, SiO 2 sputtering → organic silane vertical alignment compound, 0.01 to 5.0% by weight aqueous solution immersion → washing → drying, then heat treatment at around 300°C for about 30 minutes. The suitability of the driving method is highly dependent on the final heat treatment temperature. 250°C to 350°C is most compatible. Examples of organic silane vertically aligned compounds include compounds such as (CH 3 O) 3 −(CH 2 ) 3 −N + (CH 3 ) 2 −(CH 2 ) 17 CH 3 Cl (DMOAP). Example 2 The uniaxial alignment treatment is the same as in Example 1. An organic silane compound is used for the random horizontal alignment treatment. The alignment treatment using an organic silane compound is as follows. The process is as follows: SiO 2 spatter → immersion in an aqueous solution containing 0.01 to 5.0% by weight of an organic silane compound → washing → drying. For organic silane compounds, CH3 -NH-( CH2 ) 3 -Si( OCH3 ) 3 , NH2- ( CH2 ) 2- NH-( CH2 ) 3- Si( OCH3 ), NH 2 −(CH 2 ) 3 −Si(OC 2 H 5 ) 3 Si(OC 2 H 5 ) 4 , CH 3 −Si(OCH 3 ) 3 , CH 3 −(CH 2 ) 4 −Si(OC 2 H 5 ) 3 ,

【式】【formula】

CH3−(CH27−Si(OCH33 等がある。 〔効果〕 二枚の基板上の一方には、従来の一軸配向処理
が施し、もう一方にはランダム水平配向処理を施
す事は、配向処理としては、簡易で量産性に富
む。このような簡易な方法により、基板に平行で
仮想コーンと中心面との交線上に分子の大部分が
位置する。この位置の分子は安定でありオープン
メモリーは、半永久的である。 前記駆動方法との適合性も良く、良好な強誘電
性電気光学装置が得られ、大容量LCDデイスプ
レイが実現できる。
CH3− ( CH2 ) 7 −Si( OCH3 ) 3 , etc. [Effect] Performing the conventional uniaxial alignment process on one of the two substrates and random horizontal alignment process on the other is a simple and mass-producible alignment process. By using such a simple method, most of the molecules are located parallel to the substrate and on the line of intersection between the virtual cone and the central plane. The molecules at this location are stable and the open memory is semi-permanent. It has good compatibility with the driving method described above, and a good ferroelectric electro-optical device can be obtained, and a large-capacity LCD display can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による配向方法を用いた場合
の、分子の配列の模式図である。第2図は、ネマ
チツク相、スメクチツクA相、スメクチツクC相
の分子配列の模式図である。第3図は、カイラル
ネマチツク相の分子配列の模式図である。第4図
は、カイラルスメクチツクC相の分子配列の模式
図である。第5図は、らせん構造を消失した後の
セル内の分子配列の模式図である。第6図は、カ
イラルスメクチツクを駆動する駆動波形の実施例
である。第7図は、二枚の基板両方に一軸配向処
理した場合の分子配列を示した模式図である。第
8図はコーンの拡大図である。 1……基板、2……液晶分子、3……一軸配向
処理膜、4……ランダム水平配向処理膜、5……
電気双極子。
FIG. 1 is a schematic diagram of the arrangement of molecules when the orientation method according to the present invention is used. FIG. 2 is a schematic diagram of the molecular arrangement of the nematic phase, smectic A phase, and smectic C phase. FIG. 3 is a schematic diagram of the molecular arrangement of the chiral nematic phase. FIG. 4 is a schematic diagram of the molecular arrangement of chiral smectic C phase. FIG. 5 is a schematic diagram of the molecular arrangement within the cell after the helical structure has disappeared. FIG. 6 is an example of a driving waveform for driving a chiral smectic. FIG. 7 is a schematic diagram showing the molecular arrangement when both of the two substrates are subjected to uniaxial alignment treatment. FIG. 8 is an enlarged view of the cone. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Liquid crystal molecules, 3...Uniaxially aligned film, 4...Random horizontally aligned film, 5...
electric dipole.

Claims (1)

【特許請求の範囲】 1 表面に電極を設けた少なくとも一方が透明な
基板間に強誘電性液晶を挟持し、前記基板間を前
記強誘電性液晶の螺旋ピツチ以下に制限し、電界
を印加して駆動する強誘電性液晶電気光学装置に
おいて、 一方の基板の内表面は一軸配向特性を有する配
向膜が形成され、他方の基板の内表面はランダム
な水平配向特性を有する配向膜が形成されている
ことを特徴とする強誘電性液晶電気光学装置。 2 前記一軸配向特性を有する配向膜は、ラビン
グ処理された配向膜である特許請求の範囲第1項
記載の強誘電性液晶電気光学装置。 3 前記一軸配向特性を有する配向膜は、ポリイ
ミド薄膜から成る特許請求の範囲第2項記載の強
誘電性電気光学装置。 4 前記ランダムな水平配向特性を有する配向膜
は、垂直配向性を有する配向膜を前記垂直配向性
が消失する温度以上で焼成した配向膜である特許
請求の範囲第1項記載の強誘電性液晶電気光学装
置。 5 前記ランダムな水平配向特性を有する配向膜
は、有機シラン化合物薄膜から成る特許請求の範
囲第1項記載の強誘電性液晶電気光学装置。
[Scope of Claims] 1 A ferroelectric liquid crystal is sandwiched between substrates at least one of which is transparent and has an electrode provided on the surface, and an electric field is applied while limiting the distance between the substrates to a helical pitch of the ferroelectric liquid crystal or less. In a ferroelectric liquid crystal electro-optical device driven by A ferroelectric liquid crystal electro-optical device characterized by: 2. The ferroelectric liquid crystal electro-optical device according to claim 1, wherein the alignment film having uniaxial alignment characteristics is an alignment film subjected to a rubbing treatment. 3. The ferroelectric electro-optical device according to claim 2, wherein the alignment film having uniaxial alignment characteristics is made of a polyimide thin film. 4. The ferroelectric liquid crystal according to claim 1, wherein the alignment film having random horizontal alignment characteristics is an alignment film obtained by firing an alignment film having vertical alignment at a temperature equal to or higher than the temperature at which the vertical alignment disappears. Electro-optical device. 5. The ferroelectric liquid crystal electro-optical device according to claim 1, wherein the alignment film having random horizontal alignment characteristics is made of an organic silane compound thin film.
JP14294484A 1984-07-10 1984-07-10 Liquid crystal display element Granted JPS6120930A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14294484A JPS6120930A (en) 1984-07-10 1984-07-10 Liquid crystal display element
US06/750,092 US4662721A (en) 1984-07-10 1985-06-28 Ferro-electric liquid crystal electro-optical device
DE8585304896T DE3584326D1 (en) 1984-07-10 1985-07-09 ELECTRO-OPTICAL DEVICE WITH A FERROELECTRIC LIQUID CRYSTAL.
EP85304896A EP0168242B1 (en) 1984-07-10 1985-07-09 Ferro-electric liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14294484A JPS6120930A (en) 1984-07-10 1984-07-10 Liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28462687A Division JPS63153522A (en) 1987-11-11 1987-11-11 Electro-optical device using ferroelectric liquid crystal

Publications (2)

Publication Number Publication Date
JPS6120930A JPS6120930A (en) 1986-01-29
JPH0473847B2 true JPH0473847B2 (en) 1992-11-24

Family

ID=15327275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14294484A Granted JPS6120930A (en) 1984-07-10 1984-07-10 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS6120930A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165730A (en) * 1985-01-16 1986-07-26 Seiko Epson Corp Liquid crystal electrooptic device
JPS61232419A (en) * 1985-04-08 1986-10-16 Sharp Corp Optical modulator element
US4664480A (en) * 1985-04-26 1987-05-12 American Telephone And Telegraph Company, At&T Bell Laboratories Alignment technique for liquid crystal devices
JPS63231417A (en) * 1987-03-20 1988-09-27 Fujitsu Ltd Liquid crystal display device
EP0695965B1 (en) * 1994-08-04 2002-04-10 Canon Kabushiki Kaisha Liquid crystal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
JPS58173719A (en) * 1982-04-05 1983-10-12 Hitachi Ltd Liquid crystal display
JPS60156043A (en) * 1984-01-23 1985-08-16 Canon Inc Liquid crystal element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
JPS58173719A (en) * 1982-04-05 1983-10-12 Hitachi Ltd Liquid crystal display
JPS60156043A (en) * 1984-01-23 1985-08-16 Canon Inc Liquid crystal element

Also Published As

Publication number Publication date
JPS6120930A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
JP3596897B2 (en) Bistable nematic liquid crystal device
EP0168242B1 (en) Ferro-electric liquid crystal electro-optical device
JP2562569B2 (en) Liquid crystal device manufacturing method
JPH05134626A (en) Liquid crystal element and driving method therefor
US5323172A (en) Ferroelectric liquid crystal display device
JP3136052B2 (en) Ferroelectric liquid crystal device
JPH0473847B2 (en)
JP2647828B2 (en) Liquid crystal device manufacturing method
JPS6125128A (en) Liquid crystal element
JPH0422489B2 (en)
JPS6194029A (en) Smectic liquid crystal display panel and its manufacture
JP2564567B2 (en) Liquid crystal electro-optical device
JPS59131911A (en) Liquid crystal electrooptic device
JPS63153522A (en) Electro-optical device using ferroelectric liquid crystal
JPH0768521B2 (en) Liquid crystal electro-optical device
JPS61223897A (en) Smectic liquid crystal display unit
JPH0422490B2 (en)
JPS62111236A (en) Liquid crystal element
JP2695262B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPH06104825B2 (en) Liquid crystal electro-optical device
JP2776364B2 (en) Liquid crystal display device and driving method thereof
JP2620635B2 (en) Liquid crystal electro-optical device manufacturing method
JPH0768520B2 (en) Liquid crystal electro-optical device
JPH04316019A (en) Ferroelectric liquid crystal element
JPS61205921A (en) Liquid crystal element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term