JPH06104825B2 - Liquid crystal electro-optical device - Google Patents

Liquid crystal electro-optical device

Info

Publication number
JPH06104825B2
JPH06104825B2 JP25317887A JP25317887A JPH06104825B2 JP H06104825 B2 JPH06104825 B2 JP H06104825B2 JP 25317887 A JP25317887 A JP 25317887A JP 25317887 A JP25317887 A JP 25317887A JP H06104825 B2 JPH06104825 B2 JP H06104825B2
Authority
JP
Japan
Prior art keywords
liquid crystal
optical device
alignment
state
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25317887A
Other languages
Japanese (ja)
Other versions
JPH0195187A (en
Inventor
正彦 佐藤
敏次 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP25317887A priority Critical patent/JPH06104825B2/en
Priority to US07/250,411 priority patent/US4906074A/en
Priority to EP19880309073 priority patent/EP0310403B1/en
Priority to DE3853976T priority patent/DE3853976T2/en
Publication of JPH0195187A publication Critical patent/JPH0195187A/en
Priority to US07/470,725 priority patent/US5023013A/en
Priority to US07/489,348 priority patent/US5011270A/en
Priority to US07/489,106 priority patent/US5046831A/en
Priority to US07/823,623 priority patent/US5155611A/en
Publication of JPH06104825B2 publication Critical patent/JPH06104825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2021Compounds containing at least one asymmetric carbon atom
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示素子や液晶光シャッタ−アレイ等の
液晶電気光学装置に関し、更に詳しくは、液晶分子の初
期配向状態を改善することにより表示ならびに駆動特性
を改善した液晶電気光学装置に関するものである。
TECHNICAL FIELD The present invention relates to a liquid crystal electro-optical device such as a liquid crystal display element or a liquid crystal optical shutter array, and more specifically, by improving the initial alignment state of liquid crystal molecules. The present invention relates to a liquid crystal electro-optical device having improved display and driving characteristics.

〔従来の技術〕[Conventional technology]

従来の液晶電気光学装置としてはツイステッド・ネマチ
ック(twisted nemetic)液晶を用いたものが知られて
いる。このTN液晶は、画素密度を高くしたマトリクス電
極構造を用いた時分割駆動の際、クロストークを発生す
る問題点があるため、画素数が制限されていた。
As a conventional liquid crystal electro-optical device, a device using a twisted nematic liquid crystal is known. The TN liquid crystal has a problem that crosstalk occurs during time-division driving using a matrix electrode structure having a high pixel density, and thus the number of pixels is limited.

また、各画素に薄膜トランジスタによるスイッチング素
子を接続し、各画素毎にスイッチングするアクティブマ
トリクス方式の表示素子が知られているが、基板上に薄
膜トランジスタを形成する工程が極めて煩雑な上、その
製造コスト製造歩留り等の要因により大面積の表示素子
を作成することが難しい問題点がある。
In addition, an active matrix type display element in which a switching element using a thin film transistor is connected to each pixel and switching is performed for each pixel is known, but the process of forming a thin film transistor on a substrate is extremely complicated, and its manufacturing cost is low. There is a problem that it is difficult to manufacture a large-area display device due to factors such as yield.

これらの問題点を解決するものとして、クラークにより
米国特許第4367924号公報で強誘電性液晶素子が提案さ
れている。
As a solution to these problems, Clark proposed a ferroelectric liquid crystal device in US Pat. No. 4,367,924.

第3図は強誘電性液晶の動作説明のために、セルの例を
模式的に描いたものである。11と11′は、In2O2あるい
はITO(Indium-Tin-Oxide)等の薄膜からなる透明電極
で被覆された基板(ガラス板)であり、その間に液晶分
子層12がガラス面に垂直になるよう配向したSmC相又
は、他の強誘電性を示す液晶相が封入されている。この
液晶電気光学装置において強誘電性液晶分子が第4図に
示すように、スメクチック層の層の法線方向に対して+
θ傾いた第1の状態(I)と−θ傾いた第2の状態(I
I)を取る。
FIG. 3 schematically shows an example of a cell for explaining the operation of the ferroelectric liquid crystal. 11 and 11 'are substrates (glass plates) covered with a transparent electrode composed of a thin film such as In 2 O 2 or ITO (Indium-Tin-Oxide), between which the liquid crystal molecular layer 12 is perpendicular to the glass surface. The SmC * phase orientated in such a manner or another liquid crystal phase exhibiting ferroelectricity is encapsulated. In this liquid crystal electro-optical device, as shown in FIG. 4, the ferroelectric liquid crystal molecules are + with respect to the normal direction of the smectic layer.
The first state (I) tilted by θ and the second state (I
I) take.

この二つの状態間を外部より電界を加えて、強誘電性液
晶分子をスイッチさせることにより発生する複屈折効果
の違いにより表示を行うものであった。
An electric field is externally applied between these two states to switch the ferroelectric liquid crystal molecules, and display is performed by a difference in birefringence effect.

この時強誘電性液晶分子を第1の状態(I)より第2の
状態(II)へかえる為にスメクチック層に対して垂直方
向に例えば正の電界を加えることにより成される。また
逆に第2の状態(II)より第1の状態(I)へ反転させ
る為には、逆に負の電界を加えることにより成されるも
のであった。すなわち外部より印加される電界の向きを
かえることにより強誘電性液晶分子の取る2状態を変化
させそれに伴って生じる電気光学効果の違いを利用する
ものであった。
At this time, in order to change the ferroelectric liquid crystal molecules from the first state (I) to the second state (II), for example, a positive electric field is applied to the smectic layer in the vertical direction. On the contrary, in order to reverse the state from the second state (II) to the first state (I), conversely, a negative electric field was applied. That is, the two states taken by the ferroelectric liquid crystal molecules are changed by changing the direction of the electric field applied from the outside, and the difference in the electro-optical effect caused by the change is utilized.

さらにこの外部より印加する電界を除去しても強誘電性
液晶分子はその状態を安定に保っており第1と第2の双
安定なメモリー性を持っていた。
Further, even if the electric field applied from the outside was removed, the ferroelectric liquid crystal molecules kept their state in a stable state and had the first and second bistable memory properties.

その為、この強誘電性液晶を用いた液晶電気光学装置を
駆動する信号波形としては両極性パルス列となってお
り、パルス極性の切り替わる方向により強誘電性液晶分
子の取る2状態間をスイッチングしていた。
Therefore, a bipolar pulse train is used as a signal waveform for driving the liquid crystal electro-optical device using the ferroelectric liquid crystal, and the two states taken by the ferroelectric liquid crystal molecules are switched depending on the switching direction of the pulse polarities. It was

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような強誘電性液晶を用いた電気光学装置において
は、装置全体において均一な駆動特性が当然ながら要求
される。そのために、液晶電気光学装置全体にわたって
欠陥のない、均一な液晶相すなわちモノドメインを全体
に形成することを、目標として従来より技術開発がなさ
れてきた。
In an electro-optical device using such a ferroelectric liquid crystal, uniform driving characteristics are naturally required in the entire device. For this reason, technical development has been conventionally made with the goal of forming a uniform liquid crystal phase, that is, a monodomain, in the entire liquid crystal electro-optical device without defects.

しかしながら、液晶材料特にスメクチックの層構造を持
つ強誘電性液晶は配向膜についた微少なキズや液晶駆動
用の電極の凹凸段差や、液晶装置の基板間隔を一定に保
持するためのスペーサーその他種々の原因により層構造
に欠陥が発生し、均一なモノドメインが得られないその
為に従来は液晶電気光学装置セルの端部より、液晶を一
次元結晶成長させる方法(温度勾配)によりセル全体に
モノドメインを成長させることが試みられていた。
However, a liquid crystal material, especially a ferroelectric liquid crystal having a smectic layer structure, is used for various scratches on an alignment film, unevenness of electrodes for driving a liquid crystal, spacers for keeping a constant space between substrates of a liquid crystal device, and various other types. Due to a defect in the layer structure due to the cause, a uniform monodomain cannot be obtained. Therefore, conventionally, a method of growing a liquid crystal one-dimensionally from the edge of the liquid crystal electro-optical device cell (temperature gradient) is used to cover the entire cell. Attempts were made to grow the domain.

しかしながら液晶電気光学装置が大面積化した場合この
方法は適用不可能であった。すなわちこの方法によって
実現されるモノドメインの大きさは最大数十ミリ角程度
であり大面積化して工業的に使用することは不可能であ
った。
However, this method cannot be applied when the liquid crystal electro-optical device has a large area. That is, the maximum size of the monodomain realized by this method is about several tens of millimeters square, and it was impossible to industrially use it with a large area.

また仮に使用可能な大きさのモノドメインが実現された
としても、強誘電性液晶材料が持つ性質として液晶材料
が基板に平行に配列せず、一定の傾きを持つ配列(プレ
チルト)するため強誘電性液晶の層構造が曲がったり、
折れたりする。そのためにジグザグ欠陥がドメイン中に
発生し、表示性、駆動特性に不均一さが発生する問題が
あった。
Even if a usable monodomain is realized, the ferroelectric liquid crystal material has a property that the liquid crystal material is not aligned parallel to the substrate but is aligned (pretilt) with a certain inclination, so that the ferroelectric liquid crystal is not aligned. The layer structure of the liquid crystal is bent,
It breaks. Therefore, there is a problem that a zigzag defect occurs in the domain, resulting in non-uniformity in display characteristics and driving characteristics.

そして、液晶材料は外部よりの電界によって、その取り
得る状態を変化させる際に、このジグザグ欠陥を境にし
てその反転過程が逆になるという現象が見られる。この
ために、装置全体において、均一な表示及び駆動特性が
得られないという問題があった。
Then, when changing the possible states of the liquid crystal material by an electric field from the outside, it is observed that the inversion process is reversed at the zigzag defect as a boundary. Therefore, there is a problem that uniform display and drive characteristics cannot be obtained in the entire device.

〔問題を解決する手段〕[Means for solving problems]

本願発明は従来の考えであったモノドメインを得るとい
う技術思想とはちがった技術思想によりこれらの均一な
表示及び駆動特性が得られないという問題を解決するも
のであります。本発明者らは、セル中の液晶材料が取り
得る初期配列性に注目しその配列性を従来思想とされて
いた状態とは全くちがう状態とすることにより良好な液
晶電気光学装置の表示又は駆動特性を実現せしめたもの
であります。
The present invention solves the problem that uniform display and driving characteristics cannot be obtained by a technical idea different from the conventional idea of obtaining a monodomain. The present inventors pay attention to the initial alignment property that can be taken by the liquid crystal material in the cell, and make the alignment property completely different from the state considered to be the conventional idea, thereby displaying or driving a good liquid crystal electro-optical device. It is the one that realized the characteristics.

すなわち、本発明は、電極と液晶材料を初期配列させる
配向部が形成された一対の平行基板間に強誘電性液晶を
含む液晶組成物が挟持された、液晶電気光学装置におい
てその液晶組成物の取る初期配向状態をモノドメインで
はなく、微小なドメインが存在するマルチドメイン状態
とすることを特徴とするものであります。
That is, the present invention provides a liquid crystal electro-optical device in which a liquid crystal composition containing a ferroelectric liquid crystal is sandwiched between a pair of parallel substrates in which an alignment portion for initial alignment of an electrode and a liquid crystal material is formed. The feature is that the initial orientation state to be taken is not a mono domain but a multi-domain state in which minute domains are present.

本発明者らは、この新しい思想のもとに鋭意努力した結
果液晶材料組成物中に特別な物質が含まれている際に必
ずマイクロドメイン配列を行うことを発見し、それを液
晶電気光学装置に用いたものである。
As a result of earnest efforts based on this new idea, the present inventors have discovered that microdomain alignment is always performed when a special substance is contained in the liquid crystal material composition. Used for.

この特別な物質とは、液晶組成物を構成しかつその分子
内に少なくとも2つ以上の不斉炭素を有するものであ
り、 一般式 (ただしR1は炭化水素基、R2は分子鎖中に少なくとも2
つの不斉炭素を有する炭化水素基を示す。) で示される液晶組成物であます。
This special substance is a substance that constitutes a liquid crystal composition and has at least two or more asymmetric carbon atoms in its molecule. (However, R 1 is a hydrocarbon group and R 2 is at least 2 in the molecular chain.
A hydrocarbon group having two asymmetric carbons is shown. ) Is a liquid crystal composition.

この一般式中R2の分子中の炭素数は6〜12の範囲内であ
れば、液晶性を有し、スメクチックC相を発現すること
ができ、その範囲外においては液晶組成物を構成し得る
ものであった。
If the number of carbon atoms in the molecule of R 2 in this general formula is within the range of 6 to 12, it has liquid crystallinity and can develop a smectic C phase, and outside this range, a liquid crystal composition is formed. It was a reward.

このような物質を含む液晶材料を第1図に示すような液
晶セル内に注入し、その配向状態について顕微鏡観察を
行ったところ第2図に示されるようなマルチドメイン配
向状態をとっていた。
When a liquid crystal material containing such a substance was injected into a liquid crystal cell as shown in FIG. 1 and its alignment state was observed with a microscope, the multi-domain alignment state as shown in FIG. 2 was obtained.

このマルチドメインの大きさは数μm〜数100μmであ
り、長径/短径の比率が5〜500程度の値の範囲であっ
た。
The size of the multi-domain was several μm to several hundred μm, and the ratio of major axis / minor axis was in the range of about 5 to 500.

このドメインの大きさは基板上の配向制御部の条件を変
更することにより制御可能であった。
The size of this domain could be controlled by changing the conditions of the orientation control unit on the substrate.

このような物質を含むことによってなぜこのようなマル
チドメイン配向状態をとるかは不明である。
It is unknown why such a multi-domain orientation state is achieved by including such a substance.

このようなマルチドメイン状態においては、液晶の配向
欠陥はそのドメインの境界によって、緩和されるために
液晶電気光学装置セル全体において、ジグザグ欠陥等が
発生しないものである。
In such a multi-domain state, the alignment defect of the liquid crystal is relaxed by the boundary of the domain, so that the zigzag defect or the like does not occur in the entire liquid crystal electro-optical device cell.

又、この微少なドメイン内部は良好なモノドメイン状態
となっているため、各々の微少なドメインにおける液晶
の表示又は駆動特性に差がなく、装置全体としては、均
一な表示又は駆動特性を実現することができるものであ
ります。
Further, since the inside of these minute domains is in a good mono-domain state, there is no difference in the display or drive characteristics of the liquid crystal in each minute domain, and the device as a whole realizes uniform display or drive characteristics. Is something you can do.

以下に実施例を示します。An example is shown below.

〔実施例〕〔Example〕

第1図に本実施例にて使用した液晶電気光学装置のセル
概略断面図を示す。同図は行方向と列方向のマトリスク
状に配置された電極部の端部の1部分を示している。
FIG. 1 shows a schematic cross-sectional view of the cell of the liquid crystal electro-optical device used in this example. The figure shows a part of the end portion of the electrode portions arranged in a matrix in the row and column directions.

また概略図であるためその寸法は任意となっている。本
実施例で用いられたセルは従来より使用されているもの
と全く同様のものである。すなわち、透明の基板(例え
ばガラス)2,2′上に液晶駆動用の電極3,3′が行方向と
列方向にマトリクス状になるようパターニングされ形成
されている。また該電極上には、配向制御4,4′が設け
られており、その片側は、液晶分子が並べるように公知
のラビング処理が施されている。この配向制御膜4,4′
は両方とも同じ材料を用いてもまた片側づつ異なった材
料を用いてもよいが本実施例においては、4の配向制御
膜をポリイミド膜を用い、もう一方の配向制御膜4′に
SiO2膜を使用した。
Since it is a schematic diagram, its dimensions are arbitrary. The cell used in this embodiment is exactly the same as that used conventionally. That is, liquid crystal driving electrodes 3, 3'are patterned and formed on a transparent substrate (for example, glass) 2, 2'in a matrix in the row and column directions. Further, alignment controls 4, 4'are provided on the electrodes, and one side thereof is subjected to a known rubbing treatment so that liquid crystal molecules are aligned. This orientation control film 4, 4 '
Both may use the same material or different materials on each side, but in the present embodiment, the alignment control film of 4 is a polyimide film and the other alignment control film 4'is used.
A SiO 2 film was used.

このように、配向制御膜の種類を変えた場合、液晶分子
を外部信号により駆動させる際に、比較的大きなしきい
値を得ることができ、マトリクス状の液晶電気光学装置
では、有利であった。
As described above, when the type of the orientation control film is changed, a relatively large threshold value can be obtained when driving the liquid crystal molecules by an external signal, which is advantageous in the liquid crystal electro-optical device in the matrix form. .

このような基板に2,2′を互いに重ね合わせ間にスペー
サ(図示せず)をはさんで一定間隔に保って液晶セルを
形成している。
A liquid crystal cell is formed by sandwiching a spacer (not shown) between two substrates 2 and 2'which are superposed on each other and sandwiching a spacer (not shown).

このようなセルにおいて、配向制御膜のポリイミド膜4
に対し、ラビング処理を行う際に下記に示すような条件
下で行った。
In such a cell, the polyimide film 4 of the orientation control film
On the other hand, the rubbing treatment was performed under the following conditions.

この条件はCase2を基準として相対比較値として記載し
ている。
This condition is described as a relative comparison value based on Case 2.

このような処理を行ったセルに対し公知の真空注入法に
て液晶材料を注入した。
A liquid crystal material was injected into the cell thus treated by a known vacuum injection method.

この注入される材料中には 一般式 (ただしR1は炭化水素基、R2は分子鎖中に少なくとも2
つの不斉炭素を有する炭化水素基を示す。) で示される液晶組成物を含んでいる。
This injected material contains the general formula (However, R 1 is a hydrocarbon group and R 2 is at least 2 in the molecular chain.
A hydrocarbon group having two asymmetric carbons is shown. ) The liquid crystal composition represented by

本実施例においてはR1として−C8H18をR2としては の炭化水素基を用い特にR2はその分子中に2つの不斉炭
素を有している物質を液晶組成物に加えている。
In the present embodiment, R 1 is -C 8 H 18 and R 2 is In particular, R 2 uses a hydrocarbon group of 1) and a substance having two asymmetric carbon atoms in its molecule is added to the liquid crystal composition.

本発明はとくに上記の構造のみに限定されることはなく
巾広い組合せが可能である。またR2の不斉炭素の位置も
上記例に限定されることはなく別の位置においても可能
で、特に上記物質が強誘電性液相の場合、自発分極の大
きさに影響を与えるのみで分子の配列状態に影響は与え
てはいなかった。
The present invention is not particularly limited to the above structure, and a wide range of combinations are possible. Further, the position of the asymmetric carbon of R 2 is not limited to the above example and can be at another position, and particularly when the above substance is a ferroelectric liquid phase, it only affects the magnitude of spontaneous polarization. It did not affect the molecular alignment.

本実施例のR1として−C8H18,R2として を有する物質は単体でも強誘電性を示す液晶であった
が、その液晶組成物を示す温度が狭いため数種類の液晶
組成物を混ぜ混合液晶として使用した。
As R 1 in this example, as −C 8 H 18 , R 2. The substance having a is a liquid crystal exhibiting ferroelectricity even by itself, but since the temperature showing the liquid crystal composition is narrow, several kinds of liquid crystal compositions were mixed and used as a mixed liquid crystal.

この混合液晶の転移温度は次のような物であります。The transition temperature of this mixed liquid crystal is as follows.

このような混合液晶を公知の注入法によりセル内に注入
した。注入時は、混合液晶を等方性液体状態にして注入
するので、除冷を行ってゆくと一部液晶状態の部分と等
方性液体状態の部分が存在する。この時液晶状態の部分
は、配向制御膜4に施されたラビング処理にそって、並
びマイクロドメインを形成する。さらに温度を下げて行
くとさらに液体状態の部分より新たに液晶部分が発生し
同様にマイクロドメインを形成する。
Such a mixed liquid crystal was injected into the cell by a known injection method. At the time of injection, since the mixed liquid crystal is injected in an isotropic liquid state, when cooling is performed, a part of the liquid crystal state and a part of the isotropic liquid state exist. At this time, the liquid crystal portion is aligned with the rubbing treatment applied to the alignment control film 4 to form microdomains. When the temperature is further lowered, a liquid crystal portion is newly generated from the liquid state portion, and similarly a micro domain is formed.

このようにしてセル全体がマイクロドメインで埋めるこ
とができるこのマイクロドメインの大きさは巾数μm長
さ数100μmの細長いものであった。
In this way, the entire cell can be filled with microdomains. The size of the microdomains was an elongated one with a width of several μm and a length of several hundred μm.

そして、各Caseの液晶の配向状態を偏光顕微鏡によって
観察を行った。液晶材料はラビング処理によって配向膜
4に発生したひずみエネルギーを緩和する方向に配向し
そのドメインの大きさは、そのひずみエネルギーの大き
さとつり合っている。
Then, the alignment state of the liquid crystal of each case was observed with a polarization microscope. The liquid crystal material is oriented in a direction in which strain energy generated in the alignment film 4 is relaxed by the rubbing treatment, and the size of its domain is balanced with the magnitude of the strain energy.

ドメインの大きさの実測値は、Case1で10μm×200μ
m、Case2で8μm×200μm程度が主な大きさであり、
ほぼセル全面にマルチドメインが発生しており、基板内
での部分的な配向の片寄りは存在しなかった。
The actual measurement of domain size is 10μm x 200μ in Case 1.
m, Case2 is 8μm × 200μm and the main size is
Multi-domains were generated on almost the entire surface of the cell, and there was no partial deviation of orientation within the substrate.

又、これらの表示特性を調べてみると、1つの画素(40
0μm角)に対し、20以上の微小なドメインが存在し、
1つの画素の表示の反転も片寄りがなく均一な反転特性
を得られた。
Also, when examining these display characteristics, one pixel (40
(0 μm square), there are 20 or more minute domains,
Even when reversing the display of one pixel, there was no deviation and a uniform reversal characteristic was obtained.

Case2のようなマルチドメイン配向状態を光学顕微鏡に
て観察を行ったところ、第2図に見られるように、従来
見られたジグザグ欠陥等は存在せずむしろ各ドメイン8
領域の境界9がすべて欠陥を含んだ状態であり、その欠
陥が小さいため、セル全体では均一な配向が得られてい
るように見られた。このような液晶に対し、室温付近の
温度状態で、上下の電極3,3′間に外部より電圧を加え
液晶を駆動した±10Vの三角波を加えその反転の様子を
観察したところ液晶はマイクロドメイン8単位で反転を
行い、従来のようにモノドメイン内で舟型ドメインを形
成して反転することはなかった。また各ドメインの反転
もほぼ同時に行われており、セル全体で見ると、全体が
同時に反転しているように観察された。
When the multi-domain alignment state as in Case 2 was observed with an optical microscope, as shown in FIG.
The boundary 9 between the regions was in a state where all the defects were included, and the defects were small, so it seemed that uniform alignment was obtained in the entire cell. To such a liquid crystal, at a temperature near room temperature, a ± 10 V triangular wave that drives the liquid crystal by externally applying a voltage between the upper and lower electrodes 3 and 3'is applied and the inversion state is observed. The reversal was carried out in 8 units, and the reversal was not performed by forming the boat-shaped domain within the monodomain as in the conventional case. Moreover, the inversion of each domain was also performed almost at the same time, and it was observed that the entire cell was inverted at the same time when viewed in the whole cell.

又、セルの中央付近と、端部と液晶の反転はほぼ同じで
場所による反転状態の違いも見られなかった。
Further, the inversion of the liquid crystal in the vicinity of the center of the cell was almost the same as the inversion of the liquid crystal at the edge, and no difference in the inversion state was observed depending on the place.

〔効 果〕[Effect]

本発明により、従来の技術的進歩の方向とは逆の方向で
あるマルチドメイン配向を行うことができその結果全体
として均一な配向状態を得ることができた。
According to the present invention, it is possible to carry out multi-domain alignment which is the opposite direction of the conventional technological progress, and as a result it is possible to obtain a uniform alignment state as a whole.

ジグザグ欠陥等光学的に大きな影響の出る欠陥が発生せ
ず均一な表示特性と高いコントラスト比を実現できた。
さらにマルチドメイン各々の反転特性が揃っているので
全体で均一な液晶駆動が可能となった。
We were able to achieve uniform display characteristics and a high contrast ratio without the occurrence of defects such as zigzag defects that have a large optical effect.
Furthermore, since the inversion characteristics of each multi-domain are uniform, it is possible to drive the liquid crystal uniformly over the whole area.

また、モノドメインを形成させるための複雑な技術工程
が不要であり工業的にも生産しやすくなった。
In addition, a complicated technical process for forming a mono domain is not required, which facilitates industrial production.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明で用いた液晶電気光学装置セルの概略を
示す。 第2図は本発明の液晶の配向状態を示す。 第3図は強誘電性液晶を模式的に現した図を示す。 第4図は液晶の取り得る状態を現す。 2,2′……基板 3,3′……電極 4,4′……配向制御膜 5……液晶 8……マイクロドメイン
FIG. 1 shows an outline of a liquid crystal electro-optical device cell used in the present invention. FIG. 2 shows the alignment state of the liquid crystal of the present invention. FIG. 3 shows a diagram schematically showing the ferroelectric liquid crystal. FIG. 4 shows possible states of liquid crystal. 2,2 '... Substrate 3,3' ... Electrode 4,4 '... Alignment control film 5 ... Liquid crystal 8 ... Microdomain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/137 101 9315−2K ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G02F 1/137 101 9315-2K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電極と液晶材料を初期配列させる配向部が
形成された一対の平行基板間に、強誘電性を示す液晶を
含む液晶組成物が狭持された液晶電気光学装置におい
て、前記液晶組成物中には一般式 (ただしR1は炭化水素基、R2は分子鎖中に少なくとも2
つの不斉炭素を有する炭化水素基を示す。) で示される物質が含まれていることにより前記平行基板
間において、マルチドメイン配向を形成していることを
特徴とする液晶電気光学装置。
1. A liquid crystal electro-optical device in which a liquid crystal composition containing a liquid crystal exhibiting ferroelectricity is sandwiched between a pair of parallel substrates on which an alignment portion for initial alignment of an electrode and a liquid crystal material is formed. General formula in the composition (However, R 1 is a hydrocarbon group and R 2 is at least 2 in the molecular chain.
A hydrocarbon group having two asymmetric carbons is shown. ) A liquid crystal electro-optical device, characterized in that a multi-domain alignment is formed between the parallel substrates by containing the substance shown in (4).
【請求項2】特許請求の範囲第1項において、前記一般
式中R2は2つの不斉炭素を有し、その分子中の炭素の数
は6〜12であることを特徴とする液晶電気光学装置。
2. A liquid crystal electrical device according to claim 1, wherein R 2 in the general formula has two asymmetric carbon atoms and the number of carbon atoms in the molecule is 6 to 12. Optical device.
JP25317887A 1987-09-28 1987-10-07 Liquid crystal electro-optical device Expired - Lifetime JPH06104825B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP25317887A JPH06104825B2 (en) 1987-10-07 1987-10-07 Liquid crystal electro-optical device
US07/250,411 US4906074A (en) 1987-09-28 1988-09-28 FLC liquid crystal electro-optical device having microdomains within pixels
EP19880309073 EP0310403B1 (en) 1987-09-29 1988-09-29 Liquid crystal electro-optical device
DE3853976T DE3853976T2 (en) 1987-09-29 1988-09-29 Electro-optical liquid crystal device.
US07/470,725 US5023013A (en) 1987-09-29 1990-01-26 Liquid crystal electro-optical device and manufacturing method therefor
US07/489,348 US5011270A (en) 1987-09-29 1990-03-06 Liquid crystal electro-optical device and manufacturing method therefor
US07/489,106 US5046831A (en) 1987-09-29 1990-03-06 Liquid crystal electro-optical device having micro-domains
US07/823,623 US5155611A (en) 1987-09-29 1992-01-21 Liquid crystal electro-optical device having a plurality of micro-domains formed in the chiral smectic liquid crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25317887A JPH06104825B2 (en) 1987-10-07 1987-10-07 Liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPH0195187A JPH0195187A (en) 1989-04-13
JPH06104825B2 true JPH06104825B2 (en) 1994-12-21

Family

ID=17247626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25317887A Expired - Lifetime JPH06104825B2 (en) 1987-09-28 1987-10-07 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JPH06104825B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478818A (en) * 1990-07-21 1992-03-12 Semiconductor Energy Lab Co Ltd Information output device
US5730240A (en) * 1995-11-07 1998-03-24 Navistar International Transportation Corp. Hood control apparatus

Also Published As

Publication number Publication date
JPH0195187A (en) 1989-04-13

Similar Documents

Publication Publication Date Title
KR100251216B1 (en) Ferroelectric liquid crystal display device
JPH06347796A (en) Liquid crystal device
JPH0437406B2 (en)
US5646754A (en) Ferroelectric liquid crystal display device including a ferroelectric liquid crystal material capable of exhibiting the smectic A phase and the chiral smectic C phase
JP3078573B2 (en) Liquid crystal electro-optical device
JP2564567B2 (en) Liquid crystal electro-optical device
JPH0768521B2 (en) Liquid crystal electro-optical device
JPH06104825B2 (en) Liquid crystal electro-optical device
JPH0768520B2 (en) Liquid crystal electro-optical device
JP2627926B2 (en) Liquid crystal electro-optical device
JP2620635B2 (en) Liquid crystal electro-optical device manufacturing method
JPH0414766B2 (en)
JP2681267B2 (en) Manufacturing method of liquid crystal element
JP2550054B2 (en) Ferroelectric smectic liquid crystal electro-optical device
JPH08254716A (en) Liquid crystal panel body and method for driving liquid crystal panel body
JP3076085B2 (en) Liquid crystal electro-optical device
JP2905030B2 (en) Ferroelectric liquid crystal display
JPH04140723A (en) Liquid crystal electrooptical device
JP2719527B2 (en) Liquid crystal electro-optical device
JP2505744B2 (en) Method for manufacturing electrode substrate and optical modulation element
JP3254204B2 (en) Cell with smectic liquid crystal
JP2505751B2 (en) Optical modulator
JP3182405B2 (en) Ferroelectric liquid crystal display
JP3094013B2 (en) Ferroelectric liquid crystal display
JPH01284834A (en) Liquid crystal electrooptical device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term