JP2550054B2 - Ferroelectric smectic liquid crystal electro-optical device - Google Patents
Ferroelectric smectic liquid crystal electro-optical deviceInfo
- Publication number
- JP2550054B2 JP2550054B2 JP62060109A JP6010987A JP2550054B2 JP 2550054 B2 JP2550054 B2 JP 2550054B2 JP 62060109 A JP62060109 A JP 62060109A JP 6010987 A JP6010987 A JP 6010987A JP 2550054 B2 JP2550054 B2 JP 2550054B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optical device
- control film
- phase
- smectic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、強誘電性スメクチック液晶を用いた電気光
学装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an electro-optical device using a ferroelectric smectic liquid crystal.
[従来の技術] 従来、強誘電性を示すスメクチック液晶を配向させる
手段として実用的なものには、有機高分子膜、特にポリ
イミド系高分子膜を形成し、布で一定方向にラビングし
配向制御膜としたもの、或は、SiO2等の斜方蒸着により
配向制御膜を形成したものを用い、液晶を注入後、コレ
ステリック相又は等方相を示す温度まで加熱した後、徐
冷しつつスメクチックA相をモノドメインとして成長さ
せ、さらに降温させて目的とする強誘電性を示すスメク
チック相のモノドメインを得る方法などがある。[J.S.
Patel,T.M.Leslie and J.W.Goodby;Ferroelectrics,59,
137(1984)]、[竹添秀夫,福田敦夫,久世栄一;工
業材料,第31巻,第10号,22]。これらの方法によって
得られた強誘電性を示すスメクチック相のモノドメイン
には電界の向きに依存した双安定の2つの状態が存在
し、上下基板の透明電極間に電圧を印加する手段によっ
て、電界が印加され、双安定な2つの状態のうち電界の
向きによって一方の状態に制御される。さらに、双安定
な2つの状態のうち一方の状態が明るく、他方が暗くな
るような配置に偏光板を組み合せることによって表示装
置として用いられる。[Prior Art] Conventionally, as a practical means for orienting a smectic liquid crystal exhibiting ferroelectricity, an organic polymer film, particularly a polyimide polymer film is formed, and a cloth is rubbed in a certain direction to control the orientation. Using a film or a film with an orientation control film formed by oblique vapor deposition of SiO 2 etc., after injecting liquid crystal, heating to a temperature showing a cholesteric phase or an isotropic phase, then slowly cooling the smectic There is a method in which the A phase is grown as a monodomain and the temperature is further lowered to obtain a desired smectic phase monodomain exhibiting ferroelectricity. [JS
Patel, TMLeslie and JWGoodby; Ferroelectrics, 59,
137 (1984)], [Hideo Takezoe, Atsuo Fukuda, Eiichi Kuze; Industrial Materials, Volume 31, No. 10, 22]. There are two bistable states depending on the direction of the electric field in the smectic phase monodomain showing ferroelectricity obtained by these methods, and the electric field is applied by means of applying a voltage between the transparent electrodes of the upper and lower substrates. Is applied, and one of the two bistable states is controlled by the direction of the electric field. Further, by combining the polarizing plates in such an arrangement that one of the two bistable states is bright and the other is dark, it is used as a display device.
しかしながら、このような方法によって双安定な2つ
の状態が制御されるのは上基板と下基板の透明電極が対
向する表示画素部分に限られ、表示画素以外の部分では
初期配向で得られた双安定な2つの状態が混在する為
に、表示装置の外観を著しく損う重大な欠点がある。However, the two bistable states are controlled by such a method only in the display pixel portion where the transparent electrodes of the upper substrate and the lower substrate face each other, and in the portion other than the display pixel, the bistable state obtained by the initial alignment is obtained. Since the two stable states are mixed, there is a serious drawback that the appearance of the display device is significantly impaired.
このように、従来の強誘電性スメクチック液晶電気光
学装置の配向制御法には、表示画素以外の部分について
双安定な2つの状態のうち一方の状態に制御する方法は
なく、表示画素以外の部分の均一性の良い外観を持つ表
示装置が得られないという問題点があった。As described above, in the conventional alignment control method for the ferroelectric smectic liquid crystal electro-optical device, there is no method for controlling the portion other than the display pixel to one of the two bistable states, and the portion other than the display pixel is not controlled. However, there is a problem in that a display device having an appearance with good uniformity cannot be obtained.
[発明の解決しようとする問題点] 本発明は従来の方法では解決されなかった表示画素以
外の部分を双安定状態の一方に選択的に制御することを
可能とした強誘電性スメクチック液晶電気光学装置を提
供することを目的とするものである。[Problems to be Solved by the Invention] The present invention makes it possible to selectively control a portion other than a display pixel, which has not been solved by a conventional method, to one of bistable states. The purpose is to provide a device.
[問題点を解決するための手段] 本発明は、前述の問題点を解決すべくなされたもので
あり、それぞれ所望の形状の透明電極が形成された配向
制御膜を有する上基板と下基板の間に、強誘電性を示す
スメクチック液晶が挟持され、該上下基板の透明電極間
に電圧を印加する手段を備えた液晶電気光学装置におい
て、該上下基板の少なくとも一方に表面電位の制御膜を
設け、上下基板の配向制御膜が同一材料で形成され、該
配向制御膜が一軸配向処理され、該表面電位の制御膜に
よって該上下基板間に生ずる表面電位差が50mV以上500m
V以下であることを特徴とする強誘電性スメクチック液
晶電気光学装置を提供するものである。[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes an upper substrate and a lower substrate each having an alignment control film on which a transparent electrode having a desired shape is formed. In a liquid crystal electro-optical device, in which a smectic liquid crystal exhibiting ferroelectricity is sandwiched, and a means for applying a voltage between the transparent electrodes of the upper and lower substrates is provided, a surface potential control film is provided on at least one of the upper and lower substrates. , The alignment control films of the upper and lower substrates are formed of the same material, the alignment control films are uniaxially oriented, and the surface potential difference generated by the surface potential control film is 50 mV or more and 500 m or more.
A ferroelectric smectic liquid crystal electro-optical device characterized by being V or less.
第1図は、本発明の基本的な液晶電気光学装置の断面
図である。2枚の透明基板(1a),(1b)の表面に、そ
れぞれ透明な導電膜(2a),(2b)と配向制御膜(3
a),(3b)を形成する。導電膜(2a),(2b)は、基
板に保持された液晶層(4)に電界を印加するための電
極であり、電気化学的応答を生じさせる目的で設けられ
ているもので、In2O3、SnO2等からなり、所定のパター
ンが形成されている。FIG. 1 is a sectional view of a basic liquid crystal electro-optical device of the present invention. The transparent conductive films (2a) and (2b) and the alignment control film (3) are formed on the surfaces of the two transparent substrates (1a) and (1b), respectively.
Form a) and (3b). Conductive (2a), (2b) is an electrode for applying an electric field to the liquid crystal layer held by the substrate (4), in which are provided for the purpose of causing electrochemical response, an In 2 A predetermined pattern is formed of O 3 , SnO 2 and the like.
配向制御膜(3a),(3b)はスメクチック相で液晶が
示す層構造について、層垂線方向が上下基板にほぼ水平
に配向させるものである。代表的なものとしては、有機
高分子膜を形成し布で一定方向にラビングする方法、あ
るいはSiOの斜め蒸着法等、ネマチック液晶で用いられ
た配向制御法が用いられる。また、使用される強誘電性
スメクチック液晶が、等方相からコレステリック相を経
ずにスメクチック相へ相転移する場合には、上記のラビ
ング又は斜め蒸着を一方の基板のみとし、他方は液晶分
子が基板とほぼ水平であるがラビング等による方位付け
を行なわないことが好ましい場合もある。また、上下基
板ともに同一方向に方位付けることが、配向欠陥を少な
くする点で好ましい。The alignment control films (3a) and (3b) are for aligning the layer structure of the liquid crystal in the smectic phase so that the layer normal direction is substantially horizontal to the upper and lower substrates. As a typical example, a method of forming an organic polymer film and rubbing with a cloth in a certain direction, or a method of controlling orientation used in nematic liquid crystals such as an oblique vapor deposition method of SiO 2 is used. Further, when the ferroelectric smectic liquid crystal used is a phase transition from an isotropic phase to a smectic phase without passing through a cholesteric phase, the above rubbing or oblique vapor deposition is performed on only one substrate, and the other is a liquid crystal molecule. Although it is almost horizontal to the substrate, it may be preferable not to perform orientation by rubbing or the like. Further, it is preferable to orient the upper and lower substrates in the same direction in order to reduce alignment defects.
このようにして形成する配向制御膜を、上下基板とも
同じ材料で構成し、上下基板の両方の基板に表面電位の
制御膜を設けることによって、上下基板間に50mV以上の
表面電位差を付与すると、液晶セルの全面にわたり、強
誘電性を示すスメクチック相で現われる双安定な2つの
状態のうち一方に選択的に制御され、表示画素以外の部
分の均一性の良い外観を持つ液晶電気光学装置が得られ
ることを本発明者らは見出したものである。The orientation control film thus formed is composed of the same material for the upper and lower substrates, and by providing a surface potential control film on both the upper and lower substrates, a surface potential difference of 50 mV or more is applied between the upper and lower substrates, A liquid crystal electro-optical device having a uniform appearance of parts other than display pixels, which is selectively controlled to one of two bistable states that appear in a smectic phase exhibiting ferroelectricity, is obtained over the entire surface of the liquid crystal cell. The present inventors have found that this is possible.
本発明では、表面電位の制御膜を適宜選択することに
より、この上下両基板の配向制御膜を同一の材料で形成
し、上下の基板間に50mVの表面電位差を付与できるた
め、生産性、、信頼性も向上する。表面電位の制御膜は
配向制御膜と透明電極が形成された基板との間に形成す
ることも、配向制御膜の液晶に接する表面に形成するこ
ともできるが、配向制御膜を形成する際の熱等による変
質が避けられる理由から、配向制御膜の液晶に接する表
面に形成することが好ましい。In the present invention, by appropriately selecting the control film of the surface potential, the alignment control films of the upper and lower substrates can be formed of the same material, and a surface potential difference of 50 mV can be imparted between the upper and lower substrates. Reliability is also improved. The surface potential control film can be formed between the alignment control film and the substrate on which the transparent electrode is formed, or can be formed on the surface of the alignment control film in contact with the liquid crystal. It is preferable to form it on the surface of the alignment control film which is in contact with the liquid crystal, because deterioration due to heat or the like can be avoided.
配向制御膜の液晶に接する表面に形成される表面電位
の制御膜としては、真空蒸着、スピンコート等で100Å
以下に各種無機酸化物、有機高分子等をコートした膜や
界面活性剤による吸着膜が用いられるが、配向制御膜が
一軸配向処理がされている場合には、一時配向性を損わ
ないことから界面活性剤の吸着膜が好ましい。なお、こ
の配向制御膜は、両基板とも同一材質で形成しておくこ
とにより、別途形成される表面電位の制御膜の表面電位
の差がそのまま現れるため制御しやすく好ましい。The surface potential control film formed on the surface of the orientation control film that contacts the liquid crystal is 100Å by vacuum deposition, spin coating, etc.
Films coated with various inorganic oxides, organic polymers, etc. and adsorbed films with surfactants are used below, but if the orientation control film is uniaxially oriented, it should not impair temporary orientation. Therefore, a surfactant adsorption film is preferable. It is preferable that the alignment control film is formed of the same material on both substrates, because the difference in the surface potentials of the separately formed surface potential control films appears as it is because it is easy to control.
界面活性剤としては、シランカップリング剤、チタネ
ートカップリング剤等があるが、アミノシラン、エポキ
シシランやこれらの混合物を用いることが、配向の安定
性から好ましい。また、吸着膜の形成の方法としては、
界面活性剤の希薄溶液に基板を浸漬した後、必要に応じ
て熱処理を行う方法などがある。Examples of the surfactant include a silane coupling agent, a titanate coupling agent, and the like, and it is preferable to use aminosilane, epoxysilane, or a mixture thereof in terms of alignment stability. In addition, as a method of forming the adsorption film,
After immersing the substrate in a dilute solution of a surfactant, a heat treatment may be performed if necessary.
表面電位の制御膜を設けた結果付与される上下基板間
の極性の差は50mV以上であれば本発明の効果が得られ
る。しかしながら、強誘電性スメクチック液晶は双安定
な2つの状態において一方から他方へ移る際のエネルギ
ー障壁が小さく、明確なしきい値特性は得られにくい。
従って、上下基板間の極性の差が大きくなると、表示画
素部における双安定が著しく損われる。本発明者らは、
上下基板間の極性の差が50mV以上500mV以下とすること
が双安定の観点から必要であることを見出した。The effect of the present invention can be obtained if the polarity difference between the upper and lower substrates provided as a result of providing the surface potential control film is 50 mV or more. However, the ferroelectric smectic liquid crystal has a small energy barrier when moving from one to the other in the two bistable states, and it is difficult to obtain a clear threshold characteristic.
Therefore, when the difference in polarities between the upper and lower substrates becomes large, the bistability in the display pixel portion is significantly impaired. We have
It was found that the difference in polarity between the upper and lower substrates should be 50 mV or more and 500 mV or less from the viewpoint of bistability.
これは、セル間隙の制御が完全に0にできないため、
50mV未満では十分に一方に制御されないことがあること
及び500mVを越えると、セル間隙のバラツキが電圧マー
ジンにより許される範囲をはずれやすく、50−500mVの
範囲内とされることが必要である。This is because the control of the cell gap cannot be set to 0 completely.
If it is less than 50 mV, it may not be sufficiently controlled to one side, and if it exceeds 500 mV, it is necessary that the variation of the cell gap easily deviates from the range allowed by the voltage margin, and it is necessary to be within the range of 50 to 500 mV.
このような配向処理を行ったのち、該基板が平行、か
つ一定の間隔で保持されるように、スペーサー、例え
ば、有機ビーズ、アルミナ粒子をはさみ、シール剤
(5)で周囲を固定し、セルとする。この際、2枚の基
板の配向制御方向は、お互いに平行になるようにする。After such an alignment treatment, spacers, such as organic beads and alumina particles, are sandwiched and the periphery is fixed with a sealant (5) so that the substrates are held in parallel and at regular intervals. And At this time, the orientation control directions of the two substrates are set to be parallel to each other.
その後、強誘電性液晶組成物をコレステリック相、あ
るいは等方相まで加熱し、セルに注入した後、封止す
る。セルの外側に2枚の偏光板(6a)、(6b)をその偏
光板がお互いに直交し、かつ基板の配向制御方向と一定
角度をなすように配置する。この角度は、液晶材料、装
置の動作温度、駆動方法等によって変わり最もコントラ
スト特性等のよい角度を選べばよく、また場合によって
は2枚の偏光板の偏光軸を直交から僅かにずらして配置
する場合もある。Then, the ferroelectric liquid crystal composition is heated to a cholesteric phase or an isotropic phase, injected into the cell, and then sealed. Two polarizing plates (6a) and (6b) are arranged outside the cell so that the polarizing plates are orthogonal to each other and form a certain angle with the orientation control direction of the substrate. This angle changes depending on the liquid crystal material, the operating temperature of the device, the driving method, etc., and the angle with the best contrast characteristics may be selected. In some cases, the polarization axes of the two polarizing plates are arranged so as to be slightly offset from the orthogonal. In some cases.
基板(1b)側に光源(7)を置き、反対側へ光が透過
するようにする。なお、反射型で用いる場合には、偏光
板(6b)の外側に反射板を設ければよい。The light source (7) is placed on the side of the substrate (1b) so that the light is transmitted to the opposite side. In the case of using the reflection type, a reflection plate may be provided outside the polarizing plate (6b).
第2図は、導電膜(2a)及び(2b)のパターン例を示
し、ドットマトリックス表示素子等に使われるものであ
る。一方の基板には、横方向の縞状の走査電極群C1〜Cn
がパターニグされ、他方の基板には、縦方向の縞状の信
号電極群S1〜Smがパターニングされている。2組の電極
群の交差点A11〜Amnが画素となる。FIG. 2 shows a pattern example of the conductive films (2a) and (2b), which is used for a dot matrix display element and the like. One of the substrates has a horizontal stripe-shaped scan electrode group C 1 to Cn.
Patterning is performed on the other substrate, and vertical striped signal electrode groups S 1 to Sm are patterned on the other substrate. The intersections A 11 to Amn of the two electrode groups are pixels.
本発明で用いられる強誘電性スメクチック液晶として
はカイラルスメクチックC相(以下SmC*と略す)を初
めとしていくつかの種類が知られているが配向制御の容
易さ、あるいは応答の速さ等からSmC*相を有する液晶
を使用することが好ましい。具体的な例としては、4−
(4−n−デシルオキシベンジリデンアミノ)ケイ皮酸
エステル等がある。また、材料単体ではなく、いつかの
材料を混合して特性を実現してもよく、例えば第1表に
示すような混合物が用いられる。As the ferroelectric smectic liquid crystal used in the present invention, several kinds are known including the chiral smectic C phase (hereinafter abbreviated as SmC * ), but SmC is used because of easy alignment control or quick response. * It is preferable to use a liquid crystal having a phase. As a specific example, 4-
(4-n-decyloxybenzylideneamino) cinnamic acid ester and the like. Further, the characteristics may be realized by mixing some materials instead of the single materials, and for example, a mixture as shown in Table 1 is used.
また、本発明で用いる液晶としては、強誘電性を示す
液晶相より高温の温度範囲においてスメクチック相(Sm
A相)をもつ液晶が双安定性の対称性の点で好ましい。
等方相(I相)あるいはネマチック相(Ne相)あるいは
コレステリック相(Ch相)より、SmA相を経由せずに直
接SmC*等の強誘電性液晶相へ変化する液晶を用いた場
合、通常配向制御の方向に対して液晶分子層の方向が異
なる2種類の配向状態をとる。この2種類の配向状態が
混在するとコントラストの低下をまねくため、I相ある
いはNe相あるいはCh相よりSmC*相等の強誘電性液晶相
へ冷却する際に、一方向の極性をもつ直流電界を印加
し、2種類の配向状態のうち1種類のみに配向させる等
の手段をとることが必要となる。このようにして作成し
た素子においてはその安定性において第1の安定状態と
第2の安定状態のうち、冷却する際に印加する電界の極
性と一致する安定状態のほうがより安定となってしま
い、双安定性の低下につながる。これに対し、SmA相を
もつ液晶においては、液晶分子層の方向が1種類しかな
く、電界印加等の手段が必要なく、従って双安定性が電
圧に対して対称的になり双安定性がよい。 The liquid crystal used in the present invention has a smectic phase (Sm) in a temperature range higher than the liquid crystal phase exhibiting ferroelectricity.
A liquid crystal having an (A phase) is preferable in terms of bistable symmetry.
When a liquid crystal that changes directly from an isotropic phase (I phase), a nematic phase (Ne phase) or a cholesteric phase (Ch phase) to a ferroelectric liquid crystal phase such as SmC * without passing through the SmA phase is usually used. There are two types of alignment states in which the direction of the liquid crystal molecular layer is different from the alignment control direction. When these two kinds of orientation states are mixed, the contrast is deteriorated. Therefore, when cooling from I phase, Ne phase or Ch phase to ferroelectric liquid crystal phase such as SmC * phase, a DC electric field with a unidirectional polarity is applied. However, it is necessary to take measures such as aligning only one of the two kinds of alignment states. In the stability of the element thus produced, the stable state, which is the same as the polarity of the electric field applied during cooling, is more stable among the first stable state and the second stable state. This leads to a decrease in bistability. On the other hand, in the liquid crystal having the SmA phase, there is only one direction of the liquid crystal molecular layer and no means for applying an electric field is required, and therefore the bistability is symmetrical with respect to the voltage and the bistability is good. .
また、本発明で用いる液晶としては、強誘電性を示す
液晶相より高温の温度範囲でCh相をもつことが配向の均
一性の点で好ましい。この液晶の配向の作成法について
は、特開昭61−153623号の方法を用いることで極めて良
好な配向に素子が作成できる。Further, the liquid crystal used in the present invention preferably has a Ch phase in a temperature range higher than that of a liquid crystal phase exhibiting ferroelectricity, from the viewpoint of alignment uniformity. With respect to the method for producing the alignment of the liquid crystal, the element can be produced in a very good orientation by using the method disclosed in JP-A-61-153623.
強誘電性液晶組成物としてSmC*相をもち、それより
高い温度においてCh相をもち、かつCh相におけるらせん
ピッチの長さ(p)が基板(1a)と(1b)間の距離
(d)の4倍以上長い液晶を用いる。またCh相とSmC*
相の間にSmA相をもつことが、配向の均一性の点で望ま
しい。このような液晶としては、光学活性物質、スメク
チック液晶化合物、ネマチック液晶化合物を適当な割合
で混合することで得られ、必要に応じて非液晶添加物を
加える場合もある。特に、Ch相におけるピッチを長くす
るには、左らせんを生じさせる光学活性物質と、右らせ
んを生じさせる光学活性物質を、らせんを生じさせる力
の大きさに応じて混合するのが有効である。It has a SmC * phase as a ferroelectric liquid crystal composition, has a Ch phase at a higher temperature, and has a helical pitch length (p) in the Ch phase between the substrates (1a) and (1b) (d). Liquid crystal that is four times longer than Also Ch phase and SmC *
Having an SmA phase between the phases is desirable in terms of orientation uniformity. Such a liquid crystal can be obtained by mixing an optically active substance, a smectic liquid crystal compound and a nematic liquid crystal compound in an appropriate ratio, and a non-liquid crystal additive may be added if necessary. In particular, in order to lengthen the pitch in the Ch phase, it is effective to mix an optically active substance that causes a left helix and an optically active substance that causes a right helix according to the magnitude of the force that causes the helix. .
通常、Ch相におけるらせんピッチの長さは温度ととも
に変化する。均一な配向を得るには、コレステリック−
スメクチック相転移点の直上でp>4dの条件を満たすこ
とが必要である。Usually, the length of the helical pitch in the Ch phase changes with temperature. Cholesteric-
It is necessary to satisfy the condition of p> 4d just above the smectic phase transition point.
しかし、この条件を満たす温度範囲が転移点のごく近
傍に限られる場合は、温度降下速度が速い場合において
は、らせん構造がほどけずにスメクチック相へ転移して
しまう。この場合には均一は配向が得られないので、ら
せん構造がほどけるまでp>4dを満たす温度に保持する
か、温度降下速度を遅くする必要がある。この理由から
らせんピッチpが基板間距離dの4倍以上になる温度範
囲は、コレステリック−スメクチック相転移点より5℃
以上の範囲にわたることが好ましく、さらにCh相全温度
範囲にわたることがより好ましい。However, when the temperature range satisfying this condition is limited to the vicinity of the transition point, the spiral structure unintentionally transitions to the smectic phase when the temperature drop rate is high. In this case, since uniform orientation cannot be obtained, it is necessary to keep the temperature at which p> 4d is satisfied until the helical structure is unwound, or to slow the temperature drop rate. For this reason, the temperature range in which the helical pitch p is four times or more the distance d between the substrates is 5 ° C. from the cholesteric-smectic phase transition point.
It is preferable to cover the above range, and it is more preferable to cover the entire Ch phase temperature range.
なお、ここでいうCh相はネマチック液晶に光学活性物
質を添加して固有のピッチを持つようにされたネマチッ
ク液晶によるNe相も含むものである。It should be noted that the Ch phase referred to here also includes a Ne phase formed by a nematic liquid crystal in which an optically active substance is added to the nematic liquid crystal so as to have a unique pitch.
また、液晶の結晶化、あるいは高電圧印加により配向
不良が生じた時のために、液晶層の温度を上昇させる手
段を備えることが好ましい。この手段としては、外部に
温度上昇のためのヒーターを備えてもよいが、セル内部
又は外部の電極に電流を流し、直接加熱すればより簡単
な装置となる。Further, it is preferable to provide a means for raising the temperature of the liquid crystal layer in case of alignment failure due to crystallization of liquid crystal or application of high voltage. As a means for this, a heater for increasing the temperature may be provided outside, but a simpler device can be obtained by applying a current to the electrode inside or outside the cell and heating directly.
[作用] 本発明は、上下基板に設けられた配向制御膜の表面
を、上下基板の少なくとも一方に表面電位の制御膜を設
けることにより、上下基板間に極性の差が付与され、強
誘電性液晶の配向制御膜表面との相互作用が上基板と下
基板で異なるために、双安定な2つの状態のうち一方の
状態に選択的に制御されるものである。[Operation] According to the present invention, by providing the surface of the alignment control film provided on the upper and lower substrates with the surface potential control film on at least one of the upper and lower substrates, a difference in polarity is imparted between the upper and lower substrates, and the ferroelectric property is improved. Since the interaction of the liquid crystal with the surface of the alignment control film is different between the upper substrate and the lower substrate, it is selectively controlled to one of two bistable states.
[実施例] 次に本発明の一実施例について説明する。Example Next, an example of the present invention will be described.
第2図で、上基板に信号電極群を32本、下基板に走査
電極群を32本設けられた一対の基板表面にポリイミド皮
膜(日立化成社PIX−5400)を形成し、300℃で30分焼成
した後にガーゼで一定方向にラビングし配向制御膜を形
成した。In Fig. 2, a polyimide film (PIX-5400, Hitachi Chemical Co., Ltd.) was formed on the surface of a pair of substrates with 32 signal electrode groups on the upper substrate and 32 scanning electrode groups on the lower substrate. After baking for a minute, rubbing was performed in a certain direction with gauze to form an orientation control film.
次に上基板について、エポキシシラン希薄溶液(信越
化学(株)KBM−402をイソプロピルアルコールで希釈)
に3分間浸漬し、引き上げ後150℃で20分乾燥し、吸着
膜による表面電位の制御膜を形成した。Next, for the upper substrate, dilute epoxysilane solution (Shin-Etsu Chemical Co., Ltd. KBM-402 diluted with isopropyl alcohol)
The sample was immersed in the solution for 3 minutes, pulled up, and dried at 150 ° C. for 20 minutes to form a surface potential control film by an adsorption film.
次いで、上下基板のラビング方向が同一になるように
組合せてセル間隔1.5μmのセルを構成し、第1表に記
載した混合液晶を約100℃に加熱して注入した。次いで
セルをSmC*相を示す55℃に冷却したところ、配向は良
好であり、且つ、セル全面にわたって双安定な2つの状
態のうち一方に制御されていることが観察された。ま
た、上記の吸着膜を下基板についてのみ形成した場合で
は、双安定な2つの状態のうち、上基板にのみ吸着膜を
形成した場合とは異なる状態に制御されていた。さら
に、吸着膜を設けない場合では、配向は良好であるが、
双安定な2つの状態が混在し、電解を印加した場合でも
表示画素部の双安定状態を制御することはできなかっ
た。また、片側の基板のみ吸着膜を形成したセルについ
て、±3V、0.5Hzの三角波を印加し、透過光強度を測定
し、横軸を電圧、縦軸を透過光強度としてヒステリシス
カーブを調べたところ、ヒステリシスループはV=0か
ら120mVだけ片寄っていた。Then, the upper and lower substrates were combined so that the rubbing directions were the same to form a cell having a cell interval of 1.5 μm, and the mixed liquid crystal shown in Table 1 was heated to about 100 ° C. and injected. Then, when the cell was cooled to 55 ° C. showing the SmC * phase, it was observed that the orientation was good and the cell was controlled to one of two bistable states over the entire surface. Further, in the case where the adsorption film is formed only on the lower substrate, the two bistable states are controlled to be different from the state where the adsorption film is formed only on the upper substrate. Furthermore, when the adsorption film is not provided, the orientation is good,
Two bistable states coexist, and even when electrolysis is applied, the bistable state of the display pixel portion cannot be controlled. Also, for cells with an adsorption film formed only on one side of the substrate, applying a ± 3 V, 0.5 Hz triangular wave, the transmitted light intensity was measured, and the hysteresis curve was examined with the horizontal axis as voltage and the vertical axis as transmitted light intensity. , The hysteresis loop was offset from V = 0 by 120 mV.
実施例2 実施例1のエポキシシランに代えアミノシラン希薄溶
液(信越化学(株)KBM−602をイソプロピルアルコール
で希釈)を用いて表面電位の制御膜を形成した外は実施
例1と同様にしてセルを作成したところ、実施例1と同
様にセル全面にわたって双安定な2つの状態のうち一方
に制御されたいた。Example 2 A cell was prepared in the same manner as in Example 1 except that a dilute solution of aminosilane (KBM-602, Shin-Etsu Chemical Co., Ltd., diluted with isopropyl alcohol) was used instead of the epoxysilane of Example 1 to form a surface potential control film. Was prepared, it was controlled to one of two bistable states over the entire cell surface as in Example 1.
このセルのヒステリシスループはV=0から530mVだ
け片寄っており、双安定性が悪化し、駆動する際の電圧
マージンが減少しているため、セル間隙のバラツキが大
きいセルでは良好な表示が得られなかった。The hysteresis loop of this cell is deviated from V = 0 by 530 mV, the bistability deteriorates, and the voltage margin at the time of driving is reduced. Therefore, a good display can be obtained in a cell with a large variation in cell gap. There wasn't.
[発明の効果] 本発明は、従来のネマチック液晶に用いられた配向制
御技術に表面電位の制御技術を加え、外観の優れた強誘
電性スメクチック液晶電気光学装置が得られる如き優れ
た効果を有し、特に大型ドットマトリックス素子に適用
した場合には、表示画素の間の微細な部分や、電極のセ
ル外部への引き回し部分など電極が対向しない部分の双
安定性状態を一方の状態に制御される為に、明るい背景
に黒いドットパターンが表示できるようになる。さら
に、セル外部の静電気等によって双安定性状態が混在化
した場合においても、自然に数秒から数分であらかじめ
制御された双安定性状態になり永久欠陥となることがな
いという効果も認められる。さらに、表示の為の駆動上
必要な双安定性は確保されるが、装置の電源を切った場
合には数秒から数分で、表示内容は自動的に消えるた
め、気密保持上好ましい表示装置が得られるという効果
も認められる。EFFECTS OF THE INVENTION The present invention has an excellent effect that a ferroelectric smectic liquid crystal electro-optical device having an excellent appearance can be obtained by adding a surface potential control technology to the conventional nematic liquid crystal alignment control technology. However, particularly when applied to a large dot matrix device, the bistable state of a fine portion between display pixels or a portion where electrodes do not face each other such as a portion where electrodes are drawn outside the cell is controlled to one state. Therefore, a black dot pattern can be displayed on a bright background. Further, even when bistability states are mixed due to static electricity or the like outside the cell, it is naturally recognized that the bistability state is controlled in advance within a few seconds to a few minutes and no permanent defect occurs. Furthermore, although the bistability necessary for driving for display is secured, when the power of the device is turned off, the display content automatically disappears within a few seconds to a few minutes. The effect of being obtained is also recognized.
本発明はこの外、本発明の効果を損しない範囲内で種
々の応用が可能なものである。In addition to the above, the present invention can be applied in various ways within the range of not impairing the effects of the present invention.
第1図は、本発明で用いられる液晶電気光学装置の断面
図であり、第2図は、本発明で用いられる電極パターン
の例の平面図である。 1a、1b:透明基板 2a、2b:導電膜 3a、3b:配向制御膜 4:液晶層 5:シール剤 6a、6b:偏光板 7:光源FIG. 1 is a sectional view of a liquid crystal electro-optical device used in the present invention, and FIG. 2 is a plan view of an example of an electrode pattern used in the present invention. 1a, 1b: Transparent substrate 2a, 2b: Conductive film 3a, 3b: Alignment control film 4: Liquid crystal layer 5: Sealant 6a, 6b: Polarizing plate 7: Light source
Claims (7)
た配向制御膜を有する上基板と下基板の間に、強誘電性
を示すスメクチック液晶が挟持され、該上下基板の透明
電極間に電圧を印加する手段を備えた液晶電気光学装置
において、該上下基板の少なくとも一方に表面電位の制
御膜を設け、上下基板の配向制御膜が同一材料で形成さ
れ、該配向制御膜が一軸配向処理され、該表面電位の制
御膜によって該上下基板間に生ずる表面電位差が50mV以
上500mV以下であることを特徴とする強誘電性スメクチ
ック液晶電気光学装置。1. A smectic liquid crystal exhibiting ferroelectricity is sandwiched between an upper substrate and a lower substrate each having an alignment control film on which a transparent electrode having a desired shape is formed, and a voltage is applied between the transparent electrodes of the upper and lower substrates. In a liquid crystal electro-optical device provided with a means for applying a voltage, a surface potential control film is provided on at least one of the upper and lower substrates, the alignment control films of the upper and lower substrates are formed of the same material, and the alignment control film is uniaxially oriented. A ferroelectric smectic liquid crystal electro-optical device, wherein a surface potential difference generated between the upper and lower substrates by the surface potential control film is 50 mV or more and 500 mV or less.
液晶である特許請求の範囲第1項記載の強誘電性スメク
チック液晶電気光学装置。2. The ferroelectric liquid crystal is chiral smectic C.
The ferroelectric smectic liquid crystal electro-optical device according to claim 1, which is a liquid crystal.
許請求の範囲第1項記載の強誘電性スメクチック液晶電
気光学装置。3. The ferroelectric smectic liquid crystal electro-optical device according to claim 1, wherein the alignment control film is subjected to a rubbing treatment.
請求の範囲第3項記載の強誘電性スメクチック液晶電気
光学装置。4. A ferroelectric smectic liquid crystal electro-optical device according to claim 3, wherein the rubbing directions of the upper and lower substrates are the same.
接する表面に形成する特許請求の範囲第1項、第2項ま
たは第3項記載の強誘電性スメクチック液晶電気光学装
置。5. The ferroelectric smectic liquid crystal electro-optical device according to claim 1, 2 or 3, wherein the surface potential control film is formed on a surface of the alignment control film in contact with liquid crystal.
れた特許請求の範囲第1項〜第5のいずれか1項記載の
強誘電性スメクチック液晶電気光学装置。6. A ferroelectric smectic liquid crystal electro-optical device according to any one of claims 1 to 5, wherein a surfactant is used in the surface potential control film.
特許請求の範囲第6項記載の強誘電性スメクチック液晶
電気光学装置。7. The ferroelectric smectic liquid crystal electro-optical device according to claim 6, wherein the surfactant is a silane surface treatment agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62060109A JP2550054B2 (en) | 1987-03-17 | 1987-03-17 | Ferroelectric smectic liquid crystal electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62060109A JP2550054B2 (en) | 1987-03-17 | 1987-03-17 | Ferroelectric smectic liquid crystal electro-optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63228130A JPS63228130A (en) | 1988-09-22 |
JP2550054B2 true JP2550054B2 (en) | 1996-10-30 |
Family
ID=13132613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62060109A Expired - Fee Related JP2550054B2 (en) | 1987-03-17 | 1987-03-17 | Ferroelectric smectic liquid crystal electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2550054B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0378293B1 (en) * | 1989-01-09 | 1994-09-14 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and its driving method |
JP3184613B2 (en) * | 1992-06-22 | 2001-07-09 | キヤノン株式会社 | Display control device and method |
ATE216090T1 (en) * | 1994-08-04 | 2002-04-15 | Canon Kk | LIQUID CRYSTAL DEVICE |
JP3466986B2 (en) | 2000-04-07 | 2003-11-17 | キヤノン株式会社 | Chiral smectic liquid crystal element and liquid crystal device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6236634A (en) * | 1985-08-12 | 1987-02-17 | Seikosha Co Ltd | Liquid crystal display device |
JPS63225224A (en) * | 1987-03-16 | 1988-09-20 | Seiko Epson Corp | Electrooptic device |
-
1987
- 1987-03-17 JP JP62060109A patent/JP2550054B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63228130A (en) | 1988-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0455160B1 (en) | Liquid crystal display device | |
JPH05273537A (en) | Ferroelectric liquid crystal display element and its production | |
JPH04258924A (en) | Ferroelectric liquid crystal element | |
JP2794369B2 (en) | Liquid crystal element | |
JPH0750272B2 (en) | Method for manufacturing ferroelectric smectic liquid crystal electro-optical device | |
JPH0437406B2 (en) | ||
JP2550054B2 (en) | Ferroelectric smectic liquid crystal electro-optical device | |
JP2767836B2 (en) | Ferroelectric liquid crystal device | |
JP3078573B2 (en) | Liquid crystal electro-optical device | |
KR20000077112A (en) | Monostable Ferroelectric Liquid Crystal Display Apparatus | |
JP2001226674A (en) | Monostable ferroelectric liquid crystal display device | |
KR100433412B1 (en) | Method of producing FLCD | |
JPH1143674A (en) | Liquid crystal element and manufacture thereof | |
JP3180171B2 (en) | Ferroelectric liquid crystal device | |
JPH0768521B2 (en) | Liquid crystal electro-optical device | |
JPS63277295A (en) | Ferroelectric liquid crystal composition | |
JPH01245224A (en) | Liquid crystal electro-optic element | |
JPH0348817A (en) | Liquid crystal electro-optical element | |
JPH06123888A (en) | Liquid crystal element | |
JP2000336361A (en) | Monostable, ferroelectric, liquid crystal display | |
JPH0731325B2 (en) | Liquid crystal display | |
JP3062978B2 (en) | Ferroelectric liquid crystal device | |
JPH06104825B2 (en) | Liquid crystal electro-optical device | |
JPS61205921A (en) | Liquid crystal element | |
JPH0768520B2 (en) | Liquid crystal electro-optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |