JPH0348817A - Liquid crystal electro-optical element - Google Patents
Liquid crystal electro-optical elementInfo
- Publication number
- JPH0348817A JPH0348817A JP18538089A JP18538089A JPH0348817A JP H0348817 A JPH0348817 A JP H0348817A JP 18538089 A JP18538089 A JP 18538089A JP 18538089 A JP18538089 A JP 18538089A JP H0348817 A JPH0348817 A JP H0348817A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- optical element
- polymer
- crystal electro
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 13
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims abstract description 6
- 125000001165 hydrophobic group Chemical group 0.000 claims abstract description 3
- 239000004974 Thermotropic liquid crystal Substances 0.000 claims abstract 2
- 239000000178 monomer Substances 0.000 claims abstract 2
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 3
- 229920006254 polymer film Polymers 0.000 claims description 2
- 239000010408 film Substances 0.000 abstract description 11
- 230000003446 memory effect Effects 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 5
- 238000002788 crimping Methods 0.000 abstract 1
- 230000004044 response Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野1 本発明は強誘電性液晶を用いる電気光学素子に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to an electro-optical element using ferroelectric liquid crystal.
]従来の技術1
近年、情報処理のコンピユータ化が進み、それに伴いコ
ンピュータの小型化が強く望まれるようになった。特に
マンマシンインターフェイスとしてゆるぎない地位を占
めていたCRTデイスプレィは重く大きい為、軽く薄い
液晶デイスプレィや、プラズマデイスプレィに置き換え
られようとしている。液晶デイスプレィとしては、ツイ
ストネマチック型のものが一般に使用されている。しが
し、高精細のデイスプレィとしては、応答の遅いネマチ
ヅク液晶よりも高速でメモリー性を有する強誘電性液晶
が研究されている。 (例えばC1ark ら、Ap
pl、 Phys、 Lett、、36,899 (1
980))従来の強誘電性液晶を用いた電気光学素子の
配向制御方法は、基板表面にポリイミド等の有機高分子
層を設はラビング処理を行なう方法、SiOを斜め方向
から蒸着する方法、磁場配向法、直流電界を印加しなが
ら徐冷する方法等がある。[Background Art 1] In recent years, information processing has become increasingly computerized, and as a result, there has been a strong desire for computers to be made smaller. In particular, CRT displays, which have held a strong position as man-machine interfaces, are heavy and large, so they are being replaced by lighter and thinner liquid crystal displays and plasma displays. Twisted nematic type liquid crystal displays are generally used. However, for high-definition displays, ferroelectric liquid crystals, which have faster response times and memory properties, are being researched than nematic liquid crystals, which have a slow response. (e.g. C1ark et al., Ap
pl, Phys, Lett, 36,899 (1
980)) Conventional methods for controlling the orientation of electro-optical elements using ferroelectric liquid crystals include forming an organic polymer layer such as polyimide on the substrate surface and performing a rubbing process, diagonally evaporating SiO, and using a magnetic field. There are an orientation method, a method of slow cooling while applying a DC electric field, etc.
1発明が解決しようとする課題1
強誘電性液晶の電界による応答特性、特に記憶効果は、
液晶分子と基板表面の化学的、あるいは物理化学的相互
作用に大きく影響されると考えられる。カイラルスメク
ティックC相(以下、SmC°相と略記する)のスイッ
チング原理によれば、良好な記憶効果を得るためには液
晶分子は基板表面に平行かつ一方向に揃っている事が望
ましい。1 Problem to be solved by the invention 1 The response characteristics of ferroelectric liquid crystals due to electric fields, especially the memory effect,
It is thought that this is largely influenced by chemical or physicochemical interactions between liquid crystal molecules and the substrate surface. According to the switching principle of chiral smectic C phase (hereinafter abbreviated as SmC° phase), in order to obtain a good memory effect, it is desirable that liquid crystal molecules be aligned parallel to the substrate surface and in one direction.
しかしながら従来の高分子膜表面にラビング処理を施す
等の配向制御方法を用いると、SmC’相における分子
配向はツイスト状態すなわち液晶分子ダイレクタが片側
の基板表面から対向基板表面において円錐の側面上を回
転しており、自発分極が上下両界面で内側或は外側を向
いた状態を呈しやすく、従って良好な記憶効果を得るの
は困難であった。ラビング処理を施さない配向膜形成方
法の1つとして、ラングミュア−プロジェット法(以下
、LB法と略記する)が提案されている(例えば、池野
ら:電子情報通信学会技術報告Vo1.88No、26
7 (1988))。しかし従来のポリイミドLB膜の
場合、ポリイミドを直接基板上に累積する事が出来ない
ため、前駆体であるポリアミック酸を積層した後、基板
上でイミド化反応を行なっている。However, when a conventional orientation control method such as rubbing the surface of a polymer film is used, the molecular orientation in the SmC' phase becomes a twisted state, that is, the liquid crystal molecular director rotates on the side surface of a cone from one substrate surface to the opposite substrate surface. Therefore, the spontaneous polarization tends to point inward or outward at both the upper and lower interfaces, and it is therefore difficult to obtain a good memory effect. The Langmuir-Prodgett method (hereinafter abbreviated as LB method) has been proposed as one of the methods for forming an alignment film without performing a rubbing process (for example, Ikeno et al.: IEICE Technical Report Vol. 1.88 No. 26
7 (1988)). However, in the case of conventional polyimide LB films, since polyimide cannot be directly accumulated on the substrate, an imidization reaction is performed on the substrate after stacking polyamic acid as a precursor.
この方法は工程が複雑である上に累積された膜の状態で
化学反応を行なうので生成物のポリイミドは構造的均一
性に欠け、液晶配向膜として満足な特性を得るのは容易
ではない。This method involves a complicated process, and since the chemical reaction is carried out in the state of an accumulated film, the resulting polyimide lacks structural uniformity, making it difficult to obtain satisfactory properties as a liquid crystal aligning film.
本発明は、液晶配向膜の材質と形成方法を改良して表面
物性を制御する事により上記問題点を解決するもので、
その目的とするところは、双安定なユニフォーム配向に
よって良好な記憶効果を持ち、配向欠陥によるコントラ
スト低下の少ない優れた液晶電気光学素子を提供する事
である。The present invention solves the above problems by improving the material and forming method of the liquid crystal alignment film and controlling the surface properties.
The purpose is to provide an excellent liquid crystal electro-optical element that has a good memory effect due to bistable uniform alignment and has less contrast deterioration due to alignment defects.
[課題を解決するための手段1
本発明の液晶電気光学素子は、上記課題を解決するため
に、
(1)走査″rJ、極群と信号電極群を有する一対の基
板間に強誘電性液晶を挟持して成る液晶電気光学素子に
於て、少なくとも一方の基板上には液晶分子の配列を規
制する為の略配向した高分子薄膜を有する事を特徴とす
る。[Means for Solving the Problems 1] In order to solve the above problems, the liquid crystal electro-optical element of the present invention has the following features: (1) scanning "rJ, ferroelectric liquid crystal between a pair of substrates having a pole group and a signal electrode group; The liquid crystal electro-optical device sandwiching the liquid crystal molecules is characterized in that at least one of the substrates has a substantially oriented polymer thin film for regulating the alignment of the liquid crystal molecules.
(2)上記高分子fiIIIIがラングミュア−プロジ
ェット法により形成された事を特徴とする。(2) The polymer fiIII is formed by the Langmuir-Prodgett method.
(3)上記高分子薄膜を構成する材料が、千ツマーユニ
ット中に親水性基と疎水性基を持つ両親媒性高分子化合
物である事を特徴とする。(3) The material constituting the polymer thin film is characterized in that it is an amphiphilic polymer compound having a hydrophilic group and a hydrophobic group in the 1,000-mer unit.
(4)上記高分子化合物がサーモトロピックな液晶性物
質である事を特徴とする。(4) The polymer compound is a thermotropic liquid crystalline substance.
1実施例 11
第1図は本発明実施例に於ける電気光学素子の主要断面
図である。ITO透明電極及びSiO2絶縁層を設けた
ガラス基板上にLBJIQを形成した。Embodiment 11 FIG. 1 is a main sectional view of an electro-optical element in an embodiment of the present invention. LBJIQ was formed on a glass substrate provided with an ITO transparent electrode and a SiO2 insulating layer.
膜材料としては構造式(1)に示す側鎖型高分子液晶化
合物を使用した。As the membrane material, a side chain type polymeric liquid crystal compound shown in structural formula (1) was used.
上記(1)の化合物を水面に展開してL(ラングミュア
)膜とし、表面圧を40mN/mに保ちながら5 av
/sin、の速度で基板を上下して3層のLB膜を形成
した。このようにして得られた基板を、上下で引き上げ
方向が180°となるように組み立てた。セル厚は約2
μmとした。第1図においては上下両基板上に絶縁層を
設けであるが、これはどちらか一方のみでも良い。また
、ラビング処理についても片側基板のみ施してもよい。The compound of (1) above was spread on the water surface to form an L (Langmuir) film, and the surface pressure was maintained at 40 mN/m for 5 av.
A three-layer LB film was formed by moving the substrate up and down at a speed of /sin. The thus obtained substrates were assembled so that the pulling direction was 180° at the top and bottom. Cell thickness is approximately 2
It was set as μm. In FIG. 1, an insulating layer is provided on both the upper and lower substrates, but it may be provided on only one of them. Furthermore, the rubbing treatment may be performed only on one side of the substrate.
上記基板間に強誘電性液晶組成物を加熱封入し、室温ま
で徐冷した。ここで液晶にはメルク社1zLI−377
4を用いた。以上の方法で得られた液晶電気光学素子を
偏光軸の互いに直交する偏光板間に挟持し、第2図(a
)に示す駆動波形を印加して、その際の同図(b)に示
される光学応答を評価した。記憶効果の良否は電界印加
時の透過光量(第2図(b)のI+)と電界除去後の透
過光1(第2図(b)の12)の比I2/Itが大きい
程良好であると考えられる。本実施例では25゛Cに於
てI2/I+=0.70、コントラスト比1:15と良
好であった。A ferroelectric liquid crystal composition was heated and sealed between the substrates, and slowly cooled to room temperature. Here, the liquid crystal is Merck 1zLI-377.
4 was used. The liquid crystal electro-optical element obtained by the above method was sandwiched between polarizing plates whose polarization axes were orthogonal to each other, and
) was applied, and the optical response shown in FIG. 6(b) was evaluated. The better the memory effect is, the larger the ratio I2/It of the amount of transmitted light when an electric field is applied (I+ in Figure 2(b)) to the transmitted light 1 after the electric field is removed (12 in Figure 2(b)). it is conceivable that. In this example, at 25°C, I2/I+=0.70 and the contrast ratio was 1:15, which was good.
【実施例21
実施例1に示した素子の電極間に±25v、15Hzの
交番波形を約10秒間印加したところ、液晶の配向状態
は、層方向にほぼ垂直な方向に緻密な筋状組織を伴った
ユニフォーム状態を呈した。[Example 21] When an alternating waveform of ±25 V and 15 Hz was applied for about 10 seconds between the electrodes of the device shown in Example 1, the alignment state of the liquid crystal showed a dense striated structure in a direction almost perpendicular to the layer direction. He appeared in a uniform condition.
この電界処理により、封入冷却時に形成されたジグザグ
欠陥は除去された。該素子を偏光軸の互いに直交する偏
光板間に挟持し、第2図(a)に示す駆動波形を印加し
て、その際の同図(b)に示される光学応答を評価した
。本実施例では25°Cに於てI2/II=0.96、
コントラスト比1:35と良好であった。By this electric field treatment, zigzag defects formed during cooling of the encapsulation were removed. The element was held between polarizing plates whose polarization axes were orthogonal to each other, and the driving waveform shown in FIG. 2(a) was applied to evaluate the optical response shown in FIG. 2(b). In this example, I2/II=0.96 at 25°C,
The contrast ratio was good at 1:35.
1発明の効果1
本発明は上記の構成によって、液晶配向膜の材質と形成
方法を改良して表面物性を制御する事により、上記従来
技術の欠点を解決し、双安定なユニフォーム配向によっ
て良好な記憶効果を持ち、配向欠陥によるコントラスト
低下の少ない優れた液晶電気光学素子を提供する事がで
きた。1 Effects of the Invention 1 The present invention solves the drawbacks of the prior art by improving the material and forming method of the liquid crystal alignment film and controlling the surface properties, and achieves good results through bistable uniform alignment. It was possible to provide an excellent liquid crystal electro-optical element that has a memory effect and exhibits little reduction in contrast due to alignment defects.
第1図は本発明実施例の液晶電気光学素子の断面図であ
る。
第2図は本発明の液晶電気光学素子を評価する際に用い
た駆動波形と、対応する光学応答の一例を示す図である
。
1.2.、、上下ガラス基板
3 89.スペーサ
4.5.、、透明電極
6 .6.液晶層
7.8.、、絶縁層
9、 10.、、LB配向膜
11.12.、偏光板
21 、、、駆動波形
22、、、光学応答
以上FIG. 1 is a sectional view of a liquid crystal electro-optical element according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of a driving waveform used in evaluating the liquid crystal electro-optical element of the present invention and a corresponding optical response. 1.2. ,,upper and lower glass substrates 3 89. Spacer 4.5. ,,transparent electrode 6. 6. Liquid crystal layer 7.8. ,, insulating layer 9, 10. ,,LB alignment film 11.12. , polarizing plate 21 , , drive waveform 22 , , more than optical response
Claims (4)
強誘電性液晶を挟持して成る液晶電気光学素子に於て、
少なくとも一方の基板上には液晶分子の配列を規制する
為の略配向した高分子薄膜を有する事を特徴とする液晶
電気光学素子。(1) In a liquid crystal electro-optical element comprising a ferroelectric liquid crystal sandwiched between a pair of substrates having a scanning electrode group and a signal electrode group,
1. A liquid crystal electro-optical element comprising, on at least one substrate, a substantially oriented thin polymer film for controlling the alignment of liquid crystal molecules.
により形成された事を特徴とする請求項1記載の液晶電
気光学素子。(2) The liquid crystal electro-optical device according to claim 1, wherein the polymer thin film is formed by a Langmuir-Prodgett method.
ット中に親水性基と疎水性基を持つ両親媒性高分子化合
物である事を特徴とする請求項1記載の液晶電気光学素
子。(3) The liquid crystal electro-optical device according to claim 1, wherein the material constituting the polymer thin film is an amphipathic polymer compound having a hydrophilic group and a hydrophobic group in the monomer unit.
質である事を特徴とする請求項3記載の液晶電気光学素
子。(4) The liquid crystal electro-optical element according to claim 3, wherein the polymer compound is a thermotropic liquid crystal substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18538089A JPH0348817A (en) | 1989-07-18 | 1989-07-18 | Liquid crystal electro-optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18538089A JPH0348817A (en) | 1989-07-18 | 1989-07-18 | Liquid crystal electro-optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0348817A true JPH0348817A (en) | 1991-03-01 |
Family
ID=16169793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18538089A Pending JPH0348817A (en) | 1989-07-18 | 1989-07-18 | Liquid crystal electro-optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0348817A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6195234A (en) * | 1984-10-09 | 1986-05-14 | ゼネラル・エレクトリツク・カンパニイ | Radiofrequency coil for nuclear magnetic resonance |
JP2002226275A (en) * | 2000-11-30 | 2002-08-14 | Osamu Yamanaka | Ceramic and method for manufacturing the same |
KR100621280B1 (en) * | 2003-06-30 | 2006-09-14 | 세이코 엡슨 가부시키가이샤 | Ferroelectric thin film formation composition, ferroelectric thin film and method of fabricating ferroelectric thin film |
-
1989
- 1989-07-18 JP JP18538089A patent/JPH0348817A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6195234A (en) * | 1984-10-09 | 1986-05-14 | ゼネラル・エレクトリツク・カンパニイ | Radiofrequency coil for nuclear magnetic resonance |
JP2002226275A (en) * | 2000-11-30 | 2002-08-14 | Osamu Yamanaka | Ceramic and method for manufacturing the same |
KR100621280B1 (en) * | 2003-06-30 | 2006-09-14 | 세이코 엡슨 가부시키가이샤 | Ferroelectric thin film formation composition, ferroelectric thin film and method of fabricating ferroelectric thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101100585B1 (en) | Liquid crystal display device | |
DE3909704A1 (en) | LIQUID CRYSTAL DISPLAY CELL AND METHOD FOR THE PRODUCTION THEREOF | |
WO2005071476A1 (en) | Liquid crystal display device | |
JPS6298326A (en) | Liquid crystal cell | |
JPH03164713A (en) | Ferrodielectric liquid crystal electrooptical device and its production | |
JPH0348817A (en) | Liquid crystal electro-optical element | |
JPH02208633A (en) | Liquid crystal display device | |
JPH04181920A (en) | Liquid crystal electrooptical device | |
JP2001226674A (en) | Monostable ferroelectric liquid crystal display device | |
JP2550054B2 (en) | Ferroelectric smectic liquid crystal electro-optical device | |
US5475517A (en) | Ferroelectric liquid crystal device with angles between smectic layers and the direction normal to the substrates are 5-15 degrees | |
JPH03134627A (en) | Liquid crystal eletrooptical element | |
JPH03288826A (en) | Liquid crystal electrooptical device | |
JPH05203933A (en) | Ferroelectric liquid crystal element | |
JPH0411222A (en) | Liquid crystal electrooptical element | |
JPH02269318A (en) | Production of oriented film for ferroelectric liquid crystal element | |
JPH01161314A (en) | Liquid crystal oriented film | |
JPH06313889A (en) | Liquid crystal electro-optical device | |
JPH0336524A (en) | Liquid crystal electrooptical element | |
JPH02267526A (en) | Liquid crystal electrooptical device | |
JPH0195185A (en) | Liquid crystal electro-optical device | |
JPH05273558A (en) | Liquid crystal element | |
JPH06289396A (en) | Liquid crystal display element and formation of its oriented film | |
JPH07181495A (en) | Ferroelectric liquid crystal element | |
JPH04204520A (en) | Liquid crystal element |