JPH047306A - Preparation of syndiotactic poly-alpha-olefin - Google Patents

Preparation of syndiotactic poly-alpha-olefin

Info

Publication number
JPH047306A
JPH047306A JP10658090A JP10658090A JPH047306A JP H047306 A JPH047306 A JP H047306A JP 10658090 A JP10658090 A JP 10658090A JP 10658090 A JP10658090 A JP 10658090A JP H047306 A JPH047306 A JP H047306A
Authority
JP
Japan
Prior art keywords
catalyst
compd
olefin
transition metal
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10658090A
Other languages
Japanese (ja)
Other versions
JP2927881B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ryuichi Sugimoto
隆一 杉本
Tsutomu Iwatani
岩谷 勉
Osamu Uchida
治 内田
Katsumi Takeuchi
克己 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10658090A priority Critical patent/JP2927881B2/en
Publication of JPH047306A publication Critical patent/JPH047306A/en
Application granted granted Critical
Publication of JP2927881B2 publication Critical patent/JP2927881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To improve the yield per unit wt. of catalyst, particle size, and bulk density of a resulting polymer by polymerizing an alpha-olefin in the presence of a specific catalyst. CONSTITUTION:One mol of a transition metal compd. having an asymmetric ligand and pref. comprising a compd. of formula I (wherein A and B are each an arom. hydrocarbon group; R is a 1-20C hydrocarbon residue or an Si compd. connecting A to B; X is halogen or a 1-20C hydrocarbon residue; and M is Ti, Zr, or Hf) and 1-1000000mol of an aluminoxane comprising a compd. of formula II or III (wherein R is a 1-3C hydrocarbon residue) are deposited on an inorg. oxide having hollows in its inside, thus giving a catalyst component is compound with an organoaluminum compd. (e.g. triethylaluminum) to give a catalyst. In the presence of the catalyst, an alpha-olefin is polymerized under normal to 100kg/cm<2> pressure at -100 to 200 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシンジオタクチックポリα−オレフィンの製造
方法に関する。詳しくは、触媒当たり高収率でしかも粒
径が比較的大きく、高嵩比重のシンジオタクチックなポ
リα−オレフィンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing syndiotactic polyα-olefins. Specifically, the present invention relates to a method for producing a syndiotactic poly-α-olefin with a high yield per catalyst, a relatively large particle size, and a high bulk specific gravity.

〔従来技術〕[Prior art]

シンジオタクチックポリプロピレンについては古くより
その存在は知られていたが、従来のバナジウム化合物と
エーテルおよび有機アルミニウムからなる触媒で低温重
合する方法はシンジオタクテイシテイ−が悪く、シンジ
オタクチックなポリプロピレンの特徴を表しているとは
言い難かった。これに対して、J、A、EWENらによ
り非対称な配位子を有する遷移金属化合物とアルミノキ
サンからなる触媒によってシンジオタクチックペンタッ
ド分率が0.7を越えるようなタフティシティ−の良好
なポリプロピレンを得られることが初めて発見された(
J、^m、ches、soc、、1988,110.6
255−6256) 。
The existence of syndiotactic polypropylene has been known for a long time, but the conventional low-temperature polymerization method using a catalyst consisting of a vanadium compound, ether, and organoaluminium has poor syndiotacticity, and the characteristics of syndiotactic polypropylene It was difficult to say that it represented the On the other hand, J. A. EWEN et al. reported that a catalyst consisting of a transition metal compound having an asymmetrical ligand and an aluminoxane has a good toughness with a syndiotactic pentad fraction exceeding 0.7. It was discovered for the first time that polypropylene could be obtained (
J,^m,ches,soc,,1988,110.6
255-6256).

また本発明者らによれば、同様の方法で他のαオレフィ
ンを重合すると同様にシンジオタクチックなポリα−オ
レフィンが得られることが判明した。
Furthermore, the present inventors have found that syndiotactic poly-α-olefins can be similarly obtained by polymerizing other α-olefins in a similar manner.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記J、A、EWENらによる方法は遷移金属当たりの
活性が良好であり、しかも得られるポリマーのタフティ
シティ−が高く優れた方法であるが、得られる重合体の
粒度が小さくしかも嵩比重が小さくて、重合スラリーの
性状が不良で重合熱が除去できないなど生産性が悪いと
いう問題があった。
The above-mentioned method by J, A, EWEN et al. has good activity per transition metal, and is an excellent method in which the obtained polymer has high toughness, but the particle size of the obtained polymer is small and the bulk specific gravity is low. There were problems in that productivity was poor due to the small size, poor properties of the polymerization slurry, and inability to remove polymerization heat.

〔課題を解決するための手段] 本発明者らは、上記問題を解決して高活性で粒度の比較
的大きい高嵩比重であるシンジオタクテイシテイ−の高
いポリα−オレフィンを生産性良く製造する方法につい
て、鋭意検討し本発明を完成した。
[Means for Solving the Problems] The present inventors solved the above problems and produced polyα-olefins with high activity, relatively large particle size, high bulk specific gravity, and high syndiotacticity with good productivity. The present invention was completed after intensive study on the method for doing so.

即ち本発明は、非対称な配位子を有する遷移金属化合物
とアルミノキサンからなる触媒を用いてα−オレフィン
を重合する方法において、非対称な配位子を有する遷移
金属化合物とアルミノキサンを無機酸化物に担持した触
媒と有機アルミニウムからなる触媒を用いることを特徴
とするシンジオタクチックポリα−オレフィンの製造方
法である。
That is, the present invention provides a method for polymerizing α-olefin using a catalyst consisting of a transition metal compound having an asymmetric ligand and aluminoxane, in which a transition metal compound having an asymmetric ligand and aluminoxane are supported on an inorganic oxide. The present invention is a method for producing a syndiotactic polyα-olefin, which is characterized by using a catalyst consisting of an organic aluminum catalyst and an organoaluminum catalyst.

本発明において用いる遷移金属化合物としては、上記文
献に記載された化合物が例示できるが、(式中A、Bは
互いに異なる芳香族炭化水素、RはA、Bを連結する炭
素数1〜20の炭化水素残基、あるいは珪素を含む化合
物、Xはハロゲン原子または炭素数1〜20の炭化水素
残基。■はチタン、ジルコニウム、ハフニウムから選ば
れる金属原子。
As the transition metal compound used in the present invention, the compounds described in the above-mentioned documents can be exemplified. A hydrocarbon residue or a compound containing silicon; X is a halogen atom or a hydrocarbon residue having 1 to 20 carbon atoms; ■ is a metal atom selected from titanium, zirconium, and hafnium;

)で表される化合物が好ましく利用できる。A、Bとし
ては炭素数5〜30の単環、あるいは多環の芳香族化合
物が例示でき、具体的にはシクロペタジエン或いはその
一部または全部の水素が炭素数1〜10のアルキル基で
置換したもの(ここでアルキル基はその末端が再度シク
ロペンタジェン環に結合した構造であっても良い、)、
インデン、フルオレンなどの多環芳香族化合物あるいは
その水素の一部または全部が炭素数1〜10のアルキル
基で置換したものなどが例示される。Rとしては、ジア
ルキルメチレン基、ジアルキルシリレン基が好ましく、
例えばR’zC、R’zSi  (式中R゛は水素また
は炭素数1〜20のアルキル残基で同しでも異なっても
良い。)で表される化合物が好ましく利用できるが、さ
らに−CR’−CR”−で表されるエチレン基も例示で
きる(式中R゛は上記に同し。)Xとしては弗素、塩素
、臭素、沃素、あるいはメチル、エチル、プロピル、ブ
チル等のアルキル基、シクロペンタジェニル基などの芳
香族化合物が例示できるが特に塩素、メチル基が好まし
い。
) can be preferably used. Examples of A and B include monocyclic or polycyclic aromatic compounds having 5 to 30 carbon atoms, and specifically, cyclopetadiene or a part or all of the hydrogens thereof being an alkyl group having 1 to 10 carbon atoms. Substituted (here, the alkyl group may have a structure in which its terminal is bonded to the cyclopentadiene ring again),
Examples include polycyclic aromatic compounds such as indene and fluorene, and compounds in which part or all of the hydrogen atoms thereof are substituted with an alkyl group having 1 to 10 carbon atoms. R is preferably a dialkylmethylene group or a dialkylsilylene group,
For example, compounds represented by R'zC, R'zSi (wherein R' is hydrogen or an alkyl residue having 1 to 20 carbon atoms and may be the same or different) can be preferably used, but -CR' An example is an ethylene group represented by -CR''- (in the formula, R' is the same as above). Examples include aromatic compounds such as a pentagenyl group, with chlorine and methyl groups being particularly preferred.

17                 R(式中Rは
炭素数1〜3の炭化水素残基、)で表される化合物が例
示でき、特にRがメチル基であるメチルアルミノキサン
でnが5以上のものが利用される。上記遷移金属化合物
に対するアルミノキサンの使用割合としては1〜100
0000モル倍、通常10〜5000モル倍である。
Examples include compounds represented by 17 R (wherein R is a hydrocarbon residue having 1 to 3 carbon atoms), and in particular, methylaluminoxane in which R is a methyl group and n is 5 or more is used. The ratio of aluminoxane to the above transition metal compound is 1 to 100.
0,000 mol times, usually 10 to 5,000 mol times.

本発明において重要なのは、上記遷移金属化合物とアル
ミノキサンを無機酸化物に担持し、しかも重合に際して
後述の有機アルミニウム化合物を併用して用いることで
あり、ここで無機酸化物としては、Siow、Al2O
2、CaO1NazO1K20、MgO。
What is important in the present invention is to support the above-mentioned transition metal compound and aluminoxane on an inorganic oxide, and to use an organoaluminum compound described below in combination during polymerization.
2, CaO1NazO1K20, MgO.

MnO、、TiO□、ZrO□なと種々の酸化物で内部
に空洞を有するもの、比較的細孔が大きく表面積の大き
なものが好ましく利用でき、中空の無機酸化物、酸化物
のゲルなどが利用でき、通常直径が1μ翔〜0.1+*
s+程度のものが好ましく利用できる。なかでもAIz
Ozを含有するものが好ましく、上記遷移金属化合物と
アルミノキサンの担持量を多くすることが可能となり好
ましい。
Various oxides such as MnO, TiO□, and ZrO□ with cavities inside, those with relatively large pores and a large surface area can be preferably used, and hollow inorganic oxides, oxide gels, etc. can be used. It can be done, and the diameter is usually 1μ to 0.1+*
A material of about s+ can be preferably used. Especially AIz
Those containing Oz are preferred, and are preferred because they enable the supported amounts of the transition metal compound and aluminoxane to be increased.

無機酸化物は遷移金属化合物、アルミノキサンを担持す
るに先立ってさらに焼成して用いることもでき、少なく
ともフリーの水は除去して用いるのが好ましい。
The inorganic oxide may be used after being further calcined before supporting the transition metal compound or aluminoxane, and it is preferable to use the inorganic oxide after removing at least free water.

担持の方法については特に制限はないが、中空部を有効
に利用するため遷移金属化合物とアルミノキサンの溶液
に中空を有する無機酸化物を分散し系を減圧にし、つい
で常圧にもどすという操作を繰りかえすことで有効に担
持することができる。また担体表面に担持するためには
無機酸化物を遷移金属化合物とアルミノキサンの溶液に
分散し、ついでアルミノキサンの貧溶媒(通常ペンタン
ヘキサンなどの低級炭化水素化合物が利用される。)を
加えることでアルミノキサンと遷移金属化合物を担体上
に析出させることで達成される。
There are no particular restrictions on the method of supporting, but in order to effectively utilize the hollow space, the process of dispersing the hollow inorganic oxide in a solution of the transition metal compound and aluminoxane, reducing the pressure of the system, and then returning it to normal pressure is repeated. This allows for effective support. In addition, in order to support the inorganic oxide on the carrier surface, the inorganic oxide is dispersed in a solution of a transition metal compound and aluminoxane, and then a poor solvent for aluminoxane (usually a lower hydrocarbon compound such as pentanehexane is used) is added. This is achieved by depositing a transition metal compound on a carrier.

通常は担持した後、析出に用いた低級炭化水素化合物で
洗浄して担持されていない触媒を除いて重合に利用され
る。担持に際しての温度については特に制限はないが通
常O″C〜100℃で行われる。
Usually, after being supported, the catalyst is washed with the lower hydrocarbon compound used for precipitation to remove unsupported catalyst, and then used for polymerization. There is no particular restriction on the temperature at which the support is carried out, but it is usually carried out at O''C to 100C.

重合に際し上記担持触媒に併用する有機アルミニウム化
合物としてはアルミノキサンを用いることも可能である
がアルミノキサンは通常高価であり、炭素数〜12のア
ルキル残基が2〜3結合したトリアルキルアルミニム、
ジアルキルアルミニウムハライドなどが利用できる。
It is also possible to use aluminoxane as an organoaluminum compound used in combination with the supported catalyst during polymerization, but aluminoxane is usually expensive, and trialkylaluminium, which has 2 to 3 bonded alkyl residues having 12 to 12 carbon atoms,
Dialkyl aluminum halides and the like can be used.

本発明においてα−オレフィンとしてはプロピレン、ブ
テン−1、ペンテン−1、ヘキセン−1,ヘプテン−1
、オクテン−1、ノネン−1、デセン−1、ウンデセン
−1、ドデセン−1、トリデセン−1、テトラデセン−
1、ペンタデセン−1、ヘキサデセン−1、オクタデセ
ン−1などの直鎖α−オレフィンの他に3−メチルブテ
ン−1,4−メチルペンテン−1,4,4−ジメチルペ
ンテン−1等の分岐α−オレフィンが例示され、これら
のα−オレフィンの単独のみならず相互の混合物、或い
は少量のエチレンとの混合物をも示す。
In the present invention, α-olefins include propylene, butene-1, pentene-1, hexene-1, heptene-1
, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1
1. In addition to linear α-olefins such as pentadecene-1, hexadecene-1, and octadecene-1, branched α-olefins such as 3-methylbutene-1,4-methylpentene-1,4,4-dimethylpentene-1 are exemplified, and these α-olefins are shown not only singly but also in mixtures with each other or with a small amount of ethylene.

また重合条件については特に制限はなく不活性媒体を用
いる溶媒重合法、或いは実質的に不活性媒体の存在しな
い塊状重合法、気相重合法も利用できる0重合温度とし
ては一100〜200°C1重合圧力としては常圧〜1
00 kg/cjで行うのが一般的である。好ましくは
一100〜100°C1常圧〜50kg/dである。
There are no particular restrictions on the polymerization conditions, and solvent polymerization using an inert medium, bulk polymerization without an inert medium, and gas phase polymerization can also be used.The polymerization temperature is -100 to 200°C. Polymerization pressure is normal pressure ~ 1
00 kg/cj is common. Preferably, the temperature is -100 to 100°C and normal pressure to 50 kg/d.

〔実施例〕〔Example〕

以下に実施例を示しさらに本発明を説明する。 The present invention will be further explained with reference to Examples below.

実施例1 常法にしたがって合成したイソプロピルシクロペンタジ
ェニル−1−フルオレンをリチウム化シ、四塩化ジルコ
ニウムと反応することで得たイソプロピル(シクロペン
タジェニル−1−フルオレニル)ジルコニウムジクロリ
ド200+ag と東洋アクゾ■製メチルアルミノキサ
ン(重合度16.2)34gをトルエン300dに溶解
して101のフラスコに入れ、三機工業■製サンキライ
トYO4(600°Cで10時間焼成したもの。)を1
0g分散して攪拌しながら減圧ポンプで80mmHgに
減圧して10分間保持し、ついで常圧にもどし10分間
保持する操作を5回繰り返した。ついで窒素気流下で濾
過し過剰のイソプロピル(シクロペンタジェニル−1−
フルオレニル)ジルコニウムジクロリドメチルアルミノ
キサンを除去した。次いで担持触媒は100dのトルエ
ンで5回洗浄して担持触媒を得た。この触媒はジルコニ
ウムを0.04wtχ含有していた。
Example 1 Isopropyl (cyclopentadienyl-1-fluorenyl) zirconium dichloride 200+ag obtained by reacting isopropylcyclopentagenyl-1-fluorene synthesized according to a conventional method with lithiated silica-tetrachloride and Toyo Akzo Dissolve 34 g of methylaluminoxane (polymerization degree 16.2) manufactured by ■ in 300 d of toluene and put it in a flask No. 101, and add 1 liter of Sankilite YO4 manufactured by Sanki Kogyo ■ (calcined at 600°C for 10 hours).
An operation of dispersing 0 g of the mixture, reducing the pressure to 80 mmHg using a vacuum pump and holding it for 10 minutes while stirring, and then returning to normal pressure and holding it for 10 minutes was repeated 5 times. It was then filtered under a nitrogen stream to remove excess isopropyl (cyclopentadienyl-1-
fluorenyl) zirconium dichloride methylaluminoxane was removed. The supported catalyst was then washed five times with 100 d of toluene to obtain a supported catalyst. This catalyst contained 0.04 wtx zirconium.

こうして得た触媒0.5gを内容積21のオートクレー
ブにトリエチルアルミニウムを0.17mとトルエン1
1とともに入れ、重合圧力が3 kg/cj−Gとなる
ようにプロピレンを追加しなから20’Cで2時間重合
し、ついでメタノールとアセト酢酸メチルで脱灰処理し
塩酸水溶液で洗浄し、ついで濾過、乾燥してポリマーを
47.0 g得た(これは235000gポリプロピレ
ン/ジルコニウム1gに相当する。)。このポリマーの
嵩比重は0.40g/m1であり、平均粒径は420μ
mであった。また”C−NMRによればシンジオタクチ
ックペンタッド分率は0.92であり、135°Cテト
ラリン溶液で測定した極限粘度(以下、ηと記す)は1
.42.1,2.4− )リクロロヘンゼンで測定した
重量平均分子量と数平均分子量との比(以下、MW/M
Nと記す)は2.3であった。
0.5 g of the catalyst thus obtained was placed in an autoclave with an internal volume of 21 m, and 0.17 m of triethylaluminum and 1 ml of toluene.
1 and polymerized at 20'C for 2 hours without adding propylene so that the polymerization pressure was 3 kg/cj-G, then deashed with methanol and methyl acetoacetate, washed with an aqueous hydrochloric acid solution, and then After filtration and drying, 47.0 g of polymer was obtained (corresponding to 235,000 g polypropylene/1 g of zirconium). The bulk specific gravity of this polymer is 0.40g/m1, and the average particle size is 420μ
It was m. According to "C-NMR, the syndiotactic pentad fraction is 0.92, and the intrinsic viscosity (hereinafter referred to as η) measured in a tetralin solution at 135°C is 1.
.. 42.1, 2.4-) The ratio of the weight average molecular weight to the number average molecular weight measured with dichlorohensen (hereinafter referred to as MW/M
(denoted as N) was 2.3.

比較例1 重合に際してトリエチルアルミニウムを用いなかった他
は実施例1と同様にしたところ20.5gのシンジオタ
クチックポリプロピレンしか得られなかった(これは1
02500gポリプロピレン/ジルコニウム1gに相当
する)、このポリマーの嵩比重は0.37g/dであり
、平均粒径は400μ−であった。
Comparative Example 1 The same procedure as Example 1 was carried out except that triethylaluminum was not used during polymerization, and only 20.5 g of syndiotactic polypropylene was obtained (this was
The bulk specific gravity of this polymer was 0.37 g/d and the average particle size was 400 μ-.

また’ 3C−NMRによればシンジオタクチックペン
タッド分率は0.92テあり、ηは1.42、MW/M
Nは2.2であった。
Also, according to 3C-NMR, the syndiotactic pentad fraction is 0.92 Te, η is 1.42, and MW/M.
N was 2.2.

比較例2 実施例1で得たイソプロピル(シクロペンタジエニルー
1− フルオレニル)ジルコニウムジクロリドを1.0
mgとメチルアルミノキサン0.17gを用いて重合し
た他は実施例1と同様にしたところ、ポリマーを48.
2gを得た(これは241000gポリプロピレン/ジ
ルコニウムtgに相当する)。このポリマーの嵩比重は
0.218/dであり平均粒径は50μ謡であった。ま
た13C−NMRによればシンジオタクチックペンタッ
ド分率は0.92であり、ηは1.40、MW/MNは
2.3であった。
Comparative Example 2 Isopropyl (cyclopentadienyl-1-fluorenyl) zirconium dichloride obtained in Example 1 was added to 1.0
Example 1 was repeated except that 0.17 g of methylaluminoxane and 0.17 g of methylaluminoxane were used.
2 g were obtained (this corresponds to 241 000 g polypropylene/zirconium tg). The bulk specific gravity of this polymer was 0.218/d and the average particle size was 50 μm. According to 13C-NMR, the syndiotactic pentad fraction was 0.92, η was 1.40, and MW/MN was 2.3.

実施例2 実施例1で得た触媒0.5gとトリエチルアルミニウム
0.2 dを52のオートクレーブに入れプロピレン1
.5 kgを加えて60°Cで2時間重合し、未反応の
プロピレンをパージしてポリマーを取り出し乾燥して秤
量したところ342gのポリマーを得た。ポリマーのη
は0.87、嵩比重は0.34g/d、シンジオタクチ
ックペンタッド分率は0.82であった。
Example 2 0.5 g of the catalyst obtained in Example 1 and 0.2 d of triethylaluminum were placed in a 52 autoclave and 1 d of propylene was added.
.. 5 kg was added and polymerized at 60°C for 2 hours, unreacted propylene was purged, the polymer was taken out, dried, and weighed to obtain 342 g of polymer. η of polymer
was 0.87, bulk specific gravity was 0.34 g/d, and syndiotactic pentad fraction was 0.82.

比較例3 トリエチルアルミニムを用いることな〈実施例2と同様
に重合をして127.4gのポリマーを得た。
Comparative Example 3 Polymerization was carried out in the same manner as in Example 2 without using triethyl aluminum to obtain 127.4 g of polymer.

ポリマーのηは0.90、嵩比重は0.328/IIJ
l、シンジオタクチックペンタッド分率は0.83であ
った。
Polymer η is 0.90, bulk specific gravity is 0.328/IIJ
l, the syndiotactic pentad fraction was 0.83.

実施例3 東洋アクゾ■製メチルアルミノキサン(重合度16.2
)の20−tχ溶液40mに、日本エアロジル社製A1
ua+inium 0xide Cを450°Cで焼成
したものを2g加え15分間攪拌しついでn−ペンタン
を40d加え静置して上澄みを約40〆除去した。次い
で実施例1で得たイソプロピル(シクロペンタジェニル
−1フルオレニル)ジルコニウムジクロリドヲ500m
gを東洋アクゾ■製メチルアルミノキサン(重合度16
.2) (7)20@tX溶液40dに溶解1.f、−
ものを加え室温で1時間攪拌した0次いで40dのn−
ペンタンを加え10分間撹拌した後、ガラスフィルター
で濾過し得られた固体成分はさらに100−のn−ペン
タンで洗浄して触媒を得た。この触媒を0.2g用いト
リエチルアルミニウムに変えトリイソブチルアルミニウ
ムを0.2 d用いた他は実施例2と同様にして485
gのポリマーを得た。ポリマーのηは0.86、嵩比重
は0.34g/d、シンジオタクチックペンタッド分率
は0.80であった。
Example 3 Methylaluminoxane manufactured by Toyo Akzo ■ (polymerization degree 16.2
) to 40 m of 20-tχ solution of A1 manufactured by Nippon Aerosil Co., Ltd.
2g of ua+inium oxide C calcined at 450°C was added and stirred for 15 minutes, then 40d of n-pentane was added and allowed to stand, and about 40ml of supernatant was removed. Next, 500 m of isopropyl (cyclopentadienyl-1 fluorenyl) zirconium dichloride obtained in Example 1 was added.
g is methylaluminoxane manufactured by Toyo Akzo (polymerization degree 16).
.. 2) (7) Dissolved in 40d of 20@tX solution 1. f, -
was added and stirred at room temperature for 1 hour, then 40d of n-
After adding pentane and stirring for 10 minutes, the solid component obtained by filtration with a glass filter was further washed with 100-n-pentane to obtain a catalyst. 485 was prepared in the same manner as in Example 2 except that 0.2 g of this catalyst was used and 0.2 d of triisobutyl aluminum was used instead of triethyl aluminum.
g of polymer was obtained. The polymer had a η of 0.86, a bulk specific gravity of 0.34 g/d, and a syndiotactic pentad fraction of 0.80.

比較例4 トリイソブチルアルミニウムを用いること無く重合した
他は実施例3と同様にしたところ、ポリマーを215g
得た。ポリマーのηは0.87、嵩比重は0.34g/
d、シンジオタクチックペンタッド分率は0.81であ
った。
Comparative Example 4 The same procedure as Example 3 was carried out except that the polymerization was performed without using triisobutylaluminum, and 215 g of polymer was obtained.
Obtained. The polymer has a η of 0.87 and a bulk specific gravity of 0.34 g/
d, syndiotactic pentad fraction was 0.81.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより触媒当たり高活性で
嵩比重の大きなシンジオタクチックポリα−オレフィン
を得ることができ工業的に極めて価値がある。
By carrying out the method of the present invention, a syndiotactic polyα-olefin having high activity per catalyst and a large bulk specific gravity can be obtained, which is extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解を助けるためのフロー図である。 特許出願人 三井東圧化学株式会社 第1回 (A)遷移金属成分 FIG. 1 is a flow diagram to aid understanding of the present invention. Patent applicant: Mitsui Toatsu Chemical Co., Ltd. 1st (A) Transition metal component

Claims (1)

【特許請求の範囲】[Claims] 非対称な配位子を有する遷移金属化合物とアルミノキサ
ンからなる触媒を用いてα−オレフィンを重合する方法
において、非対称な配位子を有する遷移金属化合物とア
ルミノキサンを無機酸化物に担持した触媒と有機アルミ
ニウムからなる触媒を用いることを特徴とするシンジオ
タクチックポリα−オレフィンの製造方法。
In a method for polymerizing α-olefin using a catalyst consisting of a transition metal compound having an asymmetrical ligand and aluminoxane, a catalyst comprising a transition metal compound having an asymmetrical ligand and aluminoxane supported on an inorganic oxide and an organic aluminum are used. A method for producing a syndiotactic polyα-olefin, the method comprising using a catalyst comprising:
JP10658090A 1990-04-24 1990-04-24 Method for producing syndiotactic poly-α-olefin Expired - Fee Related JP2927881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10658090A JP2927881B2 (en) 1990-04-24 1990-04-24 Method for producing syndiotactic poly-α-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10658090A JP2927881B2 (en) 1990-04-24 1990-04-24 Method for producing syndiotactic poly-α-olefin

Publications (2)

Publication Number Publication Date
JPH047306A true JPH047306A (en) 1992-01-10
JP2927881B2 JP2927881B2 (en) 1999-07-28

Family

ID=14437159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10658090A Expired - Fee Related JP2927881B2 (en) 1990-04-24 1990-04-24 Method for producing syndiotactic poly-α-olefin

Country Status (1)

Country Link
JP (1) JP2927881B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658999A (en) * 1992-04-01 1997-08-19 Mitsui Toatsu Chemicals, Inc. Syndiotactic polypropylene wax, production process thereof, and heating roll fixing-type toner composition making use of the wax
JP2002328101A (en) * 2001-05-01 2002-11-15 Ishida Co Ltd X-ray inspection device
JP2009504888A (en) * 2005-08-17 2009-02-05 フイナ・テクノロジー・インコーポレーテツド Production and use of tetrasubstituted fluorenyl catalysts for olefin polymerization.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658999A (en) * 1992-04-01 1997-08-19 Mitsui Toatsu Chemicals, Inc. Syndiotactic polypropylene wax, production process thereof, and heating roll fixing-type toner composition making use of the wax
US5677409A (en) * 1992-04-01 1997-10-14 Mitsui Toatsu Chemicals, Inc. Syndiotactic polypropylene wax, production process thereof, and heating roll fixing-type toner composition making use of the wax
JP2002328101A (en) * 2001-05-01 2002-11-15 Ishida Co Ltd X-ray inspection device
JP2009504888A (en) * 2005-08-17 2009-02-05 フイナ・テクノロジー・インコーポレーテツド Production and use of tetrasubstituted fluorenyl catalysts for olefin polymerization.

Also Published As

Publication number Publication date
JP2927881B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US5780659A (en) Substituted indenyl unbridged metallocenes
US5359102A (en) Transition metal compound having two transition metal atoms in one molecule and method for polymerizing olefin by using the compound
JPH07138275A (en) Metallocene and polymerization of olefin by using same for catalyst system
JP2006523745A (en) Method for producing porous polymer and polymer thereof
EP2651986B1 (en) Method of preparing metallocene catalysts
JPH047306A (en) Preparation of syndiotactic poly-alpha-olefin
JP2002518560A (en) Production of supported catalyst
JP2927885B2 (en) Method for producing syndiotactic poly-α-olefin
JP2927887B2 (en) Method for producing syndiotactic polyolefin polymerization catalyst
JP2735658B2 (en) Novel transition metal compound and method for producing the same
JPH06345817A (en) Solid catalyst component and method for polymerizing olefin using the same
JP3162435B2 (en) α-Olefin polymerization method
JP3704205B2 (en) Transition metal compound and catalyst component for olefin polymerization comprising the transition metal compound
JP3117246B2 (en) Olefin polymerization method
JP3144851B2 (en) Olefin polymerization method
JP2780123B2 (en) Method for producing syndiotactic poly-α-olefin having wide molecular weight distribution
JP3027199B2 (en) Method for producing syndiotactic poly-α-olefin
JP3516516B2 (en) Solid catalyst component and method for polymerizing olefin using the same
JPH06287224A (en) Novel transition metal compound and method for polymerizing olefin with same
JP3092974B2 (en) Catalyst for producing syndiotactic poly-α-olefin and method for producing syndiotactic poly-α-olefin
JP2708586B2 (en) Method for producing syndiotactic poly-α-olefin
JP2764074B2 (en) Method for producing syndiotactic polypropylene
JPH0551393A (en) New transition metal compound and production of polyolefin using the same compound
JPH05125112A (en) Solid catalyst for polyolefin production and production of polyolefin
JPH02269705A (en) Polymerization of ethylene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees