JP2735658B2 - Novel transition metal compound and method for producing the same - Google Patents

Novel transition metal compound and method for producing the same

Info

Publication number
JP2735658B2
JP2735658B2 JP1332808A JP33280889A JP2735658B2 JP 2735658 B2 JP2735658 B2 JP 2735658B2 JP 1332808 A JP1332808 A JP 1332808A JP 33280889 A JP33280889 A JP 33280889A JP 2735658 B2 JP2735658 B2 JP 2735658B2
Authority
JP
Japan
Prior art keywords
group
cycloalkylidene
transition metal
general formula
fluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1332808A
Other languages
Japanese (ja)
Other versions
JPH03193797A (en
Inventor
則英 井上
哲之助 潮村
浅沼  正
政弘 神野
善穂 園部
一美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP1332808A priority Critical patent/JP2735658B2/en
Publication of JPH03193797A publication Critical patent/JPH03193797A/en
Application granted granted Critical
Publication of JP2735658B2 publication Critical patent/JP2735658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシクロアルキリデン(シクロペンタジエニル
−1−フルオレニル)基を配位子とする周期律表IVB族
の遷移金属化合物に関する。本発明の化合物は、シンジ
オタクチックポリ−α−オレフィン製造用触媒成分とし
て有用である。
The present invention relates to a transition metal compound of Group IVB of the periodic table having a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand. The compound of the present invention is useful as a catalyst component for syndiotactic poly-α-olefin production.

〔従来の技術〕[Conventional technology]

シンジオタクチックポリ−α−オレフィンを製造する
触媒成分として古くからバナジウム化合物が知られてい
る。しかし、従来のバナジウム化合物を有機アルミニウ
ムからなる触媒を用いて得られたポリマーはシンジオタ
クティシティーが悪く、シンジオタクチックなポリ−α
−オレフィンの特徴を表しているとは言い難かった。
Vanadium compounds have long been known as catalyst components for producing syndiotactic poly-α-olefins. However, a polymer obtained by using a conventional vanadium compound as a catalyst comprising an organoaluminum has a poor syndiotacticity and a syndiotactic poly-α.
-It was hard to say that it was characteristic of olefins.

これに対し、J.A.Emenらによりシンジオタクチックペ
ンタッド分率が0.8を越えるようなタクティシティーの
良好なポリプロピレンを製造しうる触媒成分としてイソ
プロピリデン(シクロペンタジエニル−1−フルオレニ
ル)基を配位子とする遷移金属化合物が合成されてい
る。(J.Am.Chem.,Soc.,1988.110.6255−6256) しかしながらシクロアルキリデン(シクロペンタジエ
ニル−1−フルオレニル)基を配位子とする遷移金属化
合物は合成されていない。
On the other hand, isopropylidene (cyclopentadienyl-1-fluorenyl) group is used as a catalyst component by JAEmen et al. As a catalyst component capable of producing polypropylene having good tacticity such that the syndiotactic pentad fraction exceeds 0.8. Has been synthesized. (J. Am. Chem., Soc., 1988.110.6255-6256) However, a transition metal compound having a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand has not been synthesized.

また特開昭64−66214には、少なくとも1つのフルオ
レニル基を配位子とする化合物をオレフィン重合用触媒
として使用する記載があるが、開示された化合物ではシ
ンジオタクチックポリα−オレフィンをえることはでき
ない。
JP-A-64-66214 discloses that a compound having at least one fluorenyl group as a ligand is used as a catalyst for olefin polymerization. However, the disclosed compound may be a syndiotactic poly-α-olefin. Can not.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記J.A.Ewenらによるイソプロピリデン(シクロペン
タジエニル−1−フルオレニル)基を配位子とする遷移
金属化合物は、アルミノキサンと組み合わせてプロピレ
ンの重合触媒として使用することにより、活性が良好
で、高いシンジオタクティシティーのポリプロピレンが
得られる優れた化合物であるが触媒が不安定で、遷移金
属化合物とアルミノキサンとを混合したものは経時的に
活性が低下するという問題点があった。
The transition metal compound having a ligand of an isopropylidene (cyclopentadienyl-1-fluorenyl) group according to JAEwen et al., When used as a polymerization catalyst for propylene in combination with aluminoxane, has good activity and high syndiotactic activity. Although it is an excellent compound from which Titicity polypropylene can be obtained, the catalyst is unstable, and a mixture of a transition metal compound and an aluminoxane has a problem that its activity decreases with time.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者らは、上記問題を解決し、高活性にシンジオ
タクチックポリ−α−オレフィンを製造しうる触媒成分
として有用な新規化合物を合成すべく鋭意検討し、本発
明を完成した。
Means for Solving the Problems The present inventors have solved the above-mentioned problems and have intensively studied to synthesize a novel compound useful as a catalyst component capable of producing a syndiotactic poly-α-olefin with high activity, and completed the present invention.

すなわち本発明は、シクロアルキリデン(シクロペン
タジエニル−1−フルオレニル)基を配位子とする周期
律表IVB族の遷移金属化合物を後述の合成経路で取得す
ることに成功し、かつ該化合物がシンジオタクチックポ
リ−α−オレフィン製造用触媒成分として有用であるこ
とも重合実験により確認した。
That is, the present invention succeeds in obtaining a transition metal compound of Group IVB of the periodic table having a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand by a synthesis route described later, and It was also confirmed by polymerization experiments that it was useful as a catalyst component for syndiotactic poly-α-olefin production.

本発明における遷移金属化合物は、一般式(I) (ここでA1はシクロペンタジエニル基、A2はフルオレニ
ル基を示し、A3は炭素数4〜10のシクロアルキリデン基
を示すものである。またR1およびR2はアリール基、アル
キル基、シクロアルキル基、またはハロゲン原子、水素
原子、シリル基である。Mはチタン、ジルコニウム、ハ
フニウムである)で示される化合物である。
The transition metal compound in the present invention has the general formula (I) (Where A 1 is a cyclopentadienyl group, A 2 is a fluorenyl group, A 3 is a cycloalkylidene group having 4 to 10 carbon atoms, and R 1 and R 2 are an aryl group or an alkyl group , A cycloalkyl group, or a halogen atom, a hydrogen atom, or a silyl group, and M is titanium, zirconium, or hafnium).

さらに、本願発明は (2)シクロアルキリデン(シクロペンタジエン−1−
フルオレン) (3)シクロアルキリデン(シクロペンタジエン−1−
フルオレン)をジアルカリ金属化し、さらにチタン、ジ
ルコニウム、ハフニウムから選ばれた遷移金属のテトラ
ハロゲン化物と反応し、 一般式(II) (ここでA1はシクロペンタジエニル基、A2はフルオレニ
ル基、A3は炭素数4〜10のシクロアルキリデン基を示す
ものである。またX1、X2はハロゲン原子、Mはチタン、
ジルコニウム、ハフニウムである)で示される、シクロ
アルキリデン(シクロペンタジニエル−1−フルオレニ
ル)基を配位子とする周期律表IVB族の遷移金属ハロゲ
ン化合物の合成方法。
Further, the present invention relates to (2) cycloalkylidene (cyclopentadiene-1-
Fluorene) (3) cycloalkylidene (cyclopentadiene-1-)
Fluorene) is converted into a dialkali metal, and further reacted with a tetrahalide of a transition metal selected from titanium, zirconium, and hafnium to obtain a compound represented by general formula (II) (Where A 1 is a cyclopentadienyl group, A 2 is a fluorenyl group, A 3 is a cycloalkylidene group having 4 to 10 carbon atoms. Further, X 1 and X 2 are halogen atoms, M is titanium,
A method for synthesizing a transition metal halide of Group IVB of the periodic table having a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand represented by zirconium or hafnium.

(4)一般式(2)の化合物に一般式RLi(但しRは炭
素数1〜10の炭化水素基を示す)を反応し、一般式(I
I)のX1またはX2の少なくとも一つがRで置換された一
般式(II)の誘導体の合成方法。
(4) The compound of the general formula (2) is reacted with a general formula RLi (where R represents a hydrocarbon group having 1 to 10 carbon atoms) to form a compound of the general formula (I
A method for synthesizing a derivative of the general formula (II) wherein at least one of X 1 or X 2 in I) is substituted with R.

を目的とするものである。 It is intended for.

本願発明の発明による上記遷移金属化合物の合成経路
を例えばシクロヘキシリデン(シクロペンタジエニル−
1−フルオレニル)基を配位子とする場合は下記のよう
に示される。
The synthesis route of the transition metal compound according to the invention of the present invention is, for example, cyclohexylidene (cyclopentadienyl-
The case where a ligand is a (1-fluorenyl) group is shown as follows.

C13H10+MeLi→LiC13H9+CH4 ……(1) LiC13H9+C6H10=C5H4+HCl→C6H10(C5H5)C13H9+LiCl ……(2) C6H10(C5H5)C13H9+2BuLi→Li2[C6H10(C5H4)C13H8] ……(3) Li2[C6H10(C5H4)C13H8]+MX4→[C6H10(C5H4)C13H8]MX2 ……(4) (ここでXはハロゲン原子であり、Mはチタン、ジルコ
ニウム、ハフニウムである) 上記反応式(2)で使用される6,6−ペンタメチレン
フルベンすなわちC6H10=C5H4の製法は公知である。
(J.Org.Chem.,1984.49.1849−1853)。
C 13 H 10 + MeLi → LiC 13 H 9 + CH 4 ...... (1) LiC 13 H 9 + C 6 H 10 = C 5 H 4 + HCl → C 6 H 10 (C 5 H 5) C 13 H 9 + LiCl ...... ( 2) C 6 H 10 (C 5 H 5 ) C 13 H 9 +2 BuLi → Li 2 [C 6 H 10 (C 5 H 4 ) C 13 H 8 ] …… (3) Li 2 [C 6 H 10 (C 5 H 4) C 13 H 8 ] + MX 4 → [C 6 H 10 (C 5 H 4) C 13 H 8] MX 2 ...... (4) ( where X is a halogen atom, M is titanium, zirconium The production method of 6,6-pentamethylenefulvene used in the above reaction formula (2), that is, C 6 H 10 CC 5 H 4 is known.
(J. Org. Chem., 1984.49.1849-1853).

(2)式で得られた新規なシクロヘキシリデン(シク
ロペンタジエン−1−フルオレン)すなわちC6H10(C
5H5)C13H9 の混合物で得られ本願発明の新規遷移金属化合物を合成
するための中間体として有用である。
The novel cyclohexylidene (cyclopentadiene-1-fluorene) obtained by the formula (2), that is, C 6 H 10 (C
5 H 5) C 13 H 9 is And useful as an intermediate for synthesizing the novel transition metal compound of the present invention.

シクロヘキシリデン(シクロペンタジエン−1−フル
オレン)と同様に炭素数4〜10のシクロアルキリデン
(シクロペンタジエン−1−フルオレン)、例えばシク
ロブテニリデン(シクロペンタジエン−1−フルオレ
ン)、シクロデカニリデン(シクロペンタジエン−1−
フルオレン)等も合成することができる。
Similar to cyclohexylidene (cyclopentadiene-1-fluorene), cycloalkylidene having 4 to 10 carbon atoms (cyclopentadiene-1-fluorene) such as cyclobutenylidene (cyclopentadiene-1-fluorene), cyclodecanylidene ( Cyclopentadiene-1-
Fluorene) can also be synthesized.

上記反応経路にしたがって得られたシクロヘキシリデ
ン(シクロペンタジエン−1−フルオレン)を配位子と
する遷移金属化合物の合成方法について以下に述べる。
A method for synthesizing a transition metal compound having cyclohexylidene (cyclopentadiene-1-fluorene) obtained according to the above reaction route as a ligand will be described below.

このようなシクロアルキリデン(シクロペンタジエン
−1−フルオレン)のジアルカリ金属化はシクロアルキ
リデン(シクロペンタジエン−1−フルオレン)とアル
カリ金属又は有機アルカリ金属化合物とを反応すること
によって行うことが。その際に使用する溶媒としてはジ
エチルエーテル、テトラハイドロフラン、ジメトキシエ
タンなどのエーテル類、ヘプタン、ヘキサン、ペンタン
などの飽和炭化水素化合物を使用することができる。シ
クロアルキリデン(シクロペンタジエン−1−フルオレ
ン)に対するアルカリ金属または有機アルカリ金属化合
物の使用割合は2.0〜10.0、好ましくは2.0〜4.0モル
比、反応温度は−100〜150℃、好ましくは−90℃〜90℃
の範囲である。
Such dialkyl metallization of cycloalkylidene (cyclopentadiene-1-fluorene) can be performed by reacting cycloalkylidene (cyclopentadiene-1-fluorene) with an alkali metal or organic alkali metal compound. As the solvent used at that time, ethers such as diethyl ether, tetrahydrofuran, and dimethoxyethane, and saturated hydrocarbon compounds such as heptane, hexane, and pentane can be used. The use ratio of the alkali metal or organic alkali metal compound to cycloalkylidene (cyclopentadiene-1-fluorene) is 2.0 to 10.0, preferably 2.0 to 4.0, and the reaction temperature is -100 to 150 ° C, preferably -90 ° C to 90. ° C
Range.

例えば上記方法によってシクロアルキリデン(シクロ
ペンタジエン−1−フルオレン)をアルキルリチウムで
ジリチウム化し、シクロアルキリデン(シクロペンタジ
エニル−1−フルオレニル)ジリチウムとし次の反応に
用いる。
For example, cycloalkylidene (cyclopentadiene-1-fluorene) is dilithiated with alkyllithium by the above method to obtain cycloalkylidene (cyclopentadienyl-1-fluorenyl) dilithium, which is used in the next reaction.

Li2[A3(C5H4)C13H8]とMX2との反応において使用され
る溶媒としては例えば、クロロホルム、塩化メチレンな
どのハロゲン化炭化水素、ペンタン、ヘキサン、ヘプタ
ン、シクロヘキサンなどの飽和炭化水素、ベンゼン、ト
ルエン、キシレンなどの芳香族炭化水素の他に、ジエチ
ルエーテル、テトラヒドロフランなどのエーテル類も使
用することができる。
Examples of the solvent used in the reaction of Li 2 [A 3 (C 5 H 4 ) C 13 H 8 ] with MX 2 include halogenated hydrocarbons such as chloroform and methylene chloride, pentane, hexane, heptane, cyclohexane and the like. , Aromatic hydrocarbons such as benzene, toluene, and xylene, and ethers such as diethyl ether and tetrahydrofuran.

また反応を行う際のLi2[A3(C5H4)C13H8]/MX4のモル
比は0.9〜3.0好ましくは1.0〜1.5である。反応温度は−
100℃〜100℃、好ましくは−90℃〜50℃の範囲である。
また、これにより生成した[A3(C5H4)C13H8]MX2(Xはハ
ロゲン原子)におけるXは、一般式RLi(但しRは炭素
数1〜10の炭化水素基を示す)で示される有機リチウム
化合物、例えばメチルリチウムなどのアルキルリチウム
と反応させることにより容易にアルキル基に置換され
る。
When performing the reaction, the molar ratio of Li 2 [A 3 (C 5 H 4 ) C 13 H 8 ] / MX 4 is 0.9 to 3.0, preferably 1.0 to 1.5. The reaction temperature is-
The temperature ranges from 100 ° C to 100 ° C, preferably from -90 ° C to 50 ° C.
In the [A 3 (C 5 H 4 ) C 13 H 8 ] MX 2 (X is a halogen atom), X is a general formula RLi (where R represents a hydrocarbon group having 1 to 10 carbon atoms). The compound is easily substituted with an alkyl group by reacting with an organolithium compound represented by the formula (1), for example, an alkyllithium such as methyllithium.

その際に使用する溶媒としては例えば、クロロホル
ム、塩化メチレンなどのハロゲン化炭化水素、ペンタ
ン、ヘキサン、ヘプタン、シクロヘキサンなどの飽和炭
化水素、ベンゼン、トルエン、キシレンなどの芳香族炭
化水素の他に、ジエチルエーテル、テトラヒドロフラン
などのエーテル類も使用することができる。また反応を
行う際の[A3(C5H4)C13H8]MX2に対するRLiの使用モル比
は1.0〜10.0好ましくは1.0〜3.0である。反応温度は−1
00℃〜100℃、好ましくは−90℃〜80℃の範囲である。
As the solvent used at that time, for example, halogenated hydrocarbons such as chloroform and methylene chloride, pentane, hexane, heptane, saturated hydrocarbons such as cyclohexane, benzene, toluene, aromatic hydrocarbons such as xylene, diethyl Ethers such as ether and tetrahydrofuran can also be used. The [A 3 (C 5 H 4 ) C 13 H 8] when performing the reaction using the molar ratio of RLi against MX 2 is 1.0 to 10.0, preferably 1.0 to 3.0. Reaction temperature is -1
It is in the range of 00 ° C to 100 ° C, preferably -90 ° C to 80 ° C.

生成した化合物(I)は再結晶あるいは昇華により精
製することができる。
The produced compound (I) can be purified by recrystallization or sublimation.

上記方法によって炭素数4〜10のシクロアルキリデン
(シクロペンタジエン−1−フルオレン)、例えばシク
ロブテニデン((シクロペンタジエン−1−フルオレ
ン)、シクロヘキシリデン(シクロペンタジエン−1−
フルオレン)、シクロデカニリデン(シクロペンタジエ
ン−1−フルオレン)等を配位子とする各種遷移金属化
合物を合成するとができる。
According to the above method, cycloalkylidene (cyclopentadiene-1-fluorene) having 4 to 10 carbon atoms, for example, cyclobutenidene ((cyclopentadiene-1-fluorene), cyclohexylidene (cyclopentadiene-1-fluorene)
Various transition metal compounds having fluorene), cyclodecanelidene (cyclopentadiene-1-fluorene) or the like as a ligand can be synthesized.

本発明における遷移金属化合物(I)は、アルミノキ
サンとともに使用してα−オレフィンを重合することに
より、高活性にシンジオタクチックポリ−α−オレフィ
ンを製造し、重合触媒成分として極めて価値がある。重
合に用いられるアルミノキサンは一般式 (ここでRは炭素数1〜4の炭化水素基) で表わされる化合物であり、特にRがメチル基であるメ
チルアルミノキサンで、nが5以上、好ましくはnが10
以上のものが利用される。
The transition metal compound (I) in the present invention produces a syndiotactic poly-α-olefin with high activity by polymerizing an α-olefin with an aluminoxane, and is extremely valuable as a polymerization catalyst component. The aluminoxane used for the polymerization has a general formula (Where R is a hydrocarbon group having 1 to 4 carbon atoms), in particular, methylaluminoxane wherein R is a methyl group, wherein n is 5 or more, preferably n is 10
The above are used.

上記アルミノキサンの製造法は公知であり、例えば結
晶水を含む塩類(硫酸銅水和物、塩化マグネシウム水和
物など)に炭化水素溶媒中、トリアルキルアルミニウム
を添加して反応させることにより製造する方法を例示す
ることができる。
A method for producing the above aluminoxane is known, and is, for example, a method for producing a salt by adding a trialkylaluminum to a salt containing water of crystallization (eg, copper sulfate hydrate, magnesium chloride hydrate) in a hydrocarbon solvent and reacting the salt. Can be exemplified.

本発明における遷移金属化合物に対するアルミノキサ
ンの使用割合としては10〜10000モル倍、通常50〜5000
モル倍である。また重合条件については特に制限はなく
不活性炭化水素媒体を用いる溶媒重合法、または実質的
に不活性炭化水素媒体の存在しない塊状重合法、気相重
合法も利用できる。重合温度としては−100〜200℃、重
合圧力としては常圧〜100kg/cm2で行うのが一般的であ
る。好ましくは−50℃〜100℃、常圧〜50kg/cm2であ
る。
The use ratio of the aluminoxane to the transition metal compound in the present invention is 10 to 10,000 mol times, usually 50 to 5000.
It is molar times. The polymerization conditions are not particularly limited, and a solvent polymerization method using an inert hydrocarbon medium, a bulk polymerization method substantially free of an inert hydrocarbon medium, and a gas phase polymerization method can be used. In general, the polymerization is carried out at a temperature of -100 to 200 ° C. and at a pressure of normal pressure to 100 kg / cm 2 . Preferably, it is -50 ° C to 100 ° C and normal pressure to 50 kg / cm 2 .

重合に際し使用される炭化水素媒体としては例えばブ
タン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナ
ン、デカン、シクロペンタン、シクロヘキサンなどの飽
和炭化水素の他に、ベンゼン、トルエン、キシレンなど
の芳香族炭化水素も使用することができる。
As the hydrocarbon medium used in the polymerization, for example, in addition to saturated hydrocarbons such as butane, pentane, hexane, heptane, octane, nonane, decane, cyclopentane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene are also included. Can be used.

重合反応の際に使用されるα−オレフィンとしては、
エチレン、プロピレン、1−ブテン、4−メチル−1−
ペンテン、1−ヘキセン、1−オクテン、1−デセン、
1−ドデセン、1−テトラデセン、1−ヘキサデセン、
1−オクタデセンなどの炭素数2〜25のα−オレフィン
を挙げることができる。
As the α-olefin used in the polymerization reaction,
Ethylene, propylene, 1-butene, 4-methyl-1-
Pentene, 1-hexene, 1-octene, 1-decene,
1-dodecene, 1-tetradecene, 1-hexadecene,
Examples thereof include α-olefins having 2 to 25 carbon atoms such as 1-octadecene.

本発明においては遷移金属化合物は、上述のα−オレ
フィンの単独重合のみならずシンジオタクチック構造を
表わす限り、これらの2種以上のα−オレフィンの共重
合体の製造にも有効である。
In the present invention, the transition metal compound is effective not only for the homopolymerization of the above-mentioned α-olefin but also for the production of a copolymer of two or more of these α-olefins as long as it exhibits a syndiotactic structure.

〔実施例〕〔Example〕

以下に本発明を実施例によっても具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 [シクロヘキシリデン(シクロペンタジエン−1−フル
オレン)] 充分に窒素置換した300mlガラス製フラスコ中にフル
オレン11.4gをテトラヒドロフラン150mlに溶解させた。
この溶液にメチルリチウムのエーテル溶液70ミリモルを
−78℃で滴下した。滴下終了後、反応溶液を室温まで上
昇させ、そのままの温度で3時間攪拌した。この反応溶
液にテトラヒドロフラン50mlで希釈した6,6−ペンタメ
チレンフルベン10g(J.Org,Chem.,1984.49.1849−1853
に記載された方法によって合成した)を滴下した。滴下
終了後、反応温度を室温まで上昇させ、さらに10時間攪
拌を続けた。3.6%塩酸水200mlを装入することにより反
応を停止し、エーテル層を水洗、蒸発乾固させることに
より黄白色の固体を得た。この固体をアセトン100mlで
洗浄することにより白色のシクロヘキシリデン(シクロ
ペンタジエン−1−フルオレン)12.4gを得た。この化
合物の物性値を下に示す。
Example 1 [Cyclohexylidene (cyclopentadiene-1-fluorene)] 11.4 g of fluorene was dissolved in 150 ml of tetrahydrofuran in a 300 ml glass flask which was sufficiently purged with nitrogen.
To this solution, 70 mmol of an ether solution of methyllithium was added dropwise at -78 ° C. After completion of the dropwise addition, the reaction solution was raised to room temperature, and stirred at that temperature for 3 hours. 10 g of 6,6-pentamethylenefulvene diluted with 50 ml of tetrahydrofuran was added to this reaction solution (J. Org, Chem., 1984.49.1849-1853).
(Synthesized according to the method described in). After completion of the dropwise addition, the reaction temperature was raised to room temperature, and stirring was continued for another 10 hours. The reaction was stopped by charging 200 ml of 3.6% aqueous hydrochloric acid, and the ether layer was washed with water and evaporated to dryness to obtain a yellow-white solid. This solid was washed with 100 ml of acetone to obtain 12.4 g of white cyclohexylidene (cyclopentadiene-1-fluorene). The physical properties of this compound are shown below.

元素分析値 C24H24 C H 計算値(%):92.31 7.69 実測値(%):92.22 7.721 H−NMR:図1 [シクロヘキシリデン(シクロペンタジエニル−1−フ
ルオレニル)ジルコニウムクロリド] 上記合成したシクロヘキシリデン(シクロペンタジエ
ン−1−フルオレン)をn−ブチルリチウムでリチウム
化することにより、シクロヘキシリデン(シクロペンタ
ジエン−1−フルオレン)のジリチウム塩を調製した。
次に充分窒素置換した500mlガラス製フラスコに四塩化
ジルコニウム5.5gを塩化メチレン100mlに懸濁させた。
この懸濁液に−78℃で溶解させたシクロヘキシリデン
(シクロペンタジエニル−1−フルオレニル)ジリチウ
ムの塩化メチレン溶液300mlを−78℃で導入した。−78
℃で4時間攪拌した後、室温まで昇温し、その温度でさ
らに15時間反応を続けた。塩化リチウムの白色沈澱を含
む赤褐溶液を濾別し、赤褐色濾液を濃縮し、−30℃で24
時間冷却することによって赤色結晶のシクロヘキシリデ
ン(シクロペンジタジエニル−1−フルオレニル)ジル
コニウムジクロリド2.3gを得た。
Elemental analysis value C 24 H 24 CH Calculated value (%): 92.31 7.69 Actual value (%): 92.22 7.72 1 H-NMR: FIG. 1 [Cyclohexylidene (cyclopentadienyl-1-fluorenyl) zirconium chloride] The dilithium salt of cyclohexylidene (cyclopentadiene-1-fluorene) was prepared by lithiating the synthesized cyclohexylidene (cyclopentadiene-1-fluorene) with n-butyllithium.
Next, 5.5 g of zirconium tetrachloride was suspended in 100 ml of methylene chloride in a 500 ml glass flask sufficiently purged with nitrogen.
300 ml of a methylene chloride solution of cyclohexylidene (cyclopentadienyl-1-fluorenyl) dilithium dissolved at -78 ° C was introduced into the suspension at -78 ° C. −78
After stirring at 4 ° C. for 4 hours, the temperature was raised to room temperature, and the reaction was continued at that temperature for another 15 hours. The reddish-brown solution containing the white precipitate of lithium chloride was filtered off, and the reddish-brown filtrate was concentrated.
After cooling for 2.3 hours, 2.3 g of red crystals of cyclohexylidene (cyclopentadienyl-1-fluorenyl) zirconium dichloride was obtained.

この化合物の物性値を下に示す。The physical properties of this compound are shown below.

元素分析値 C24H22ZrCl2 C H Cl 計算値(%):61.00 4.66 15.00 実測値(%):60.98 4.66 15.011 H−NMR:図2 実施例2 [触媒混合液の調製] 100mlのガラス製フラスコを窒素置換した後、実施例
1で合成したシクロヘキシリデン(シクロペンタジエニ
ル−1−フルオレン)ジルコニウムジクロリド10mgをト
ルエン10mlに溶解させた。この溶液に東ソー・アクゾ
(株)製メチルアルミノキサン(重合度16.1)1.2gを加
えることによって紫色の触媒溶液を調製した。
Elemental analysis value C 24 H 22 ZrCl 2 CHCl Calculated value (%): 61.00 4.66 15.00 Actual value (%): 60.98 4.66 15.01 1 H-NMR: FIG. 2 Example 2 [Preparation of catalyst mixture] 100 ml of glass After replacing the flask with nitrogen, 10 mg of cyclohexylidene (cyclopentadienyl-1-fluorene) zirconium dichloride synthesized in Example 1 was dissolved in 10 ml of toluene. A purple catalyst solution was prepared by adding 1.2 g of methylaluminoxane (degree of polymerization 16.1) manufactured by Tosoh Akzo Co., Ltd. to this solution.

[重合方法] 2lのオートクレーブを窒素置換した後、トルエン1
装入し、実施例1で調製した触媒溶液をZr原子換算で、
0.0046ミリモル加えた。プロピレンを加えて系内を3kg/
cm2に保ちながら20℃で2時間重合を行った。重合後ス
ラリーを取り出し、濾過乾燥してシンジオタクチックポ
リプロピレン98.5gを得た。また、濾液を減圧留去して
溶媒を取り除いてもトルエンに可溶な成分は0.1gであっ
た。パウダーの135℃のテトラリン溶液で測定した極限
粘度(以下ηと略記する)は1.45dl/g、シンジオタクチ
ックペンダット分率は0.90であった。
[Polymerization method] After replacing 2 l of autoclave with nitrogen, toluene 1 was added.
The catalyst solution prepared in Example 1 was charged and converted to Zr atoms,
0.0046 mmol was added. Add 3 kg /
Polymerization was carried out at 20 ° C. for 2 hours while maintaining cm 2 . After the polymerization, the slurry was taken out and dried by filtration to obtain 98.5 g of syndiotactic polypropylene. Further, even when the filtrate was distilled off under reduced pressure to remove the solvent, the amount of the component soluble in toluene was 0.1 g. The intrinsic viscosity (hereinafter abbreviated as η) of the powder measured with a tetralin solution at 135 ° C. was 1.45 dl / g, and the syndiotactic pendat fraction was 0.90.

上記触媒混合液を室温で24時間保存したのち同様にて
重合を行ったところ、得られたポリマーはトルエン不溶
分95.3g、トルエン可溶分0.1gであり触媒混合液を調製
後直ちに重合した結果と変わらなかった。
When the above-mentioned catalyst mixture was stored at room temperature for 24 hours and then polymerized in the same manner, the obtained polymer was 95.3 g of toluene-insoluble matter and 0.1 g of toluene-soluble matter. Did not change.

比較例1 [触媒調製] 常法に従って合成したイソプロピリデン(シクロペン
タジエン−1−フルオレン)をリチウム化し、四塩化ジ
ルコニウムと反応することで得たイソプロピリデン(シ
クロペンタジエニル−1−フルオレニル)ジルコニウム
クロリド10mgをトルエン10mlに溶解した。この溶液にメ
チルアルミノキサン1.3gを加えることによって紫色の触
媒溶液を調製した。
Comparative Example 1 [Catalyst Preparation] Isopropylidene (cyclopentadienyl-1-fluorenyl) zirconium chloride obtained by lithiating isopropylidene (cyclopentadiene-1-fluorene) synthesized according to a conventional method and reacting with zirconium tetrachloride. 10 mg was dissolved in 10 ml of toluene. A purple catalyst solution was prepared by adding 1.3 g of methylaluminoxane to this solution.

[重合方法] 上記調製した触媒混合液を用いた以外実施例1の[重
合方法]と同様にして重合を行った。得られたポリマー
は、トルエン可溶分106.1gトルエン不溶分2.3gであっ
た。パウダーのηは1.38dl/g、シンジオタクチックのペ
ンダット分率は0.91であった。
[Polymerization method] Polymerization was carried out in the same manner as in [Polymerization method] of Example 1, except that the catalyst mixture prepared above was used. The obtained polymer had a toluene-soluble content of 106.1 g and a toluene-insoluble content of 2.3 g. The η of the powder was 1.38 dl / g, and the pendat fraction of syndiotactic was 0.91.

しかし、実施例1と同様に触媒混合液を室温で24時間
保存してから使用したところ得られたポリマーは、トル
エン不溶分15.0g、トルエン可溶分0.4gであった。この
ように実施例1の触媒に比較して極めて不安定である。
However, when the catalyst mixture was stored at room temperature for 24 hours and used as in Example 1, the polymer obtained was 15.0 g of toluene-insoluble matter and 0.4 g of toluene-soluble matter. Thus, it is extremely unstable as compared with the catalyst of Example 1.

〔発明の効果〕〔The invention's effect〕

本発明における遷移金属化合物を触媒成分として使用
することで安定した性能でシンジオタクチックポリ−α
−オレフィンを製造することができ工業的に極めて価値
がある。
Syndiotactic poly-α with stable performance by using the transition metal compound in the present invention as a catalyst component
It is capable of producing olefins and is of great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本願発明のシクロヘキシリデン(シクロペンタ
ジエン−1−フルオレン)の1H−NMRスペクトル、第2
図はシクロヘキシリデン(シクロペンダジエニル−1−
フルオレニル)ジルコニウムジクロライドの1H−NMRス
ペクトルを示す。
FIG. 1 is a 1 H-NMR spectrum of cyclohexylidene (cyclopentadiene-1-fluorene) of the present invention, FIG.
The figure shows cyclohexylidene (cyclopentadienyl-1-
1 shows the 1 H-NMR spectrum of (fluorenyl) zirconium dichloride.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08F 4/64 C08F 4/64 10/00 10/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08F 4/64 C08F 4/64 10/00 10/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) (ここでA1はシクロペンタジエニル基、A2はフルオレニ
ル基、A3は炭素数4〜10のシクロアルキリデン基を示す
ものである。またR1、R2はアリール基、アルキル基、シ
クロアルキル基、またはハロゲン原子、水素原子、シリ
ル基である。Mはチタン、ジルコニウム、ハフニウムで
ある)で示される、シクロアルキリデン(シクロペンタ
ジエニル−1−フルオレニル)基を配位子とする周期律
表IVB族の遷移金属化合物。
1. The compound of the general formula (I) (Where A 1 is a cyclopentadienyl group, A 2 is a fluorenyl group, A 3 is a cycloalkylidene group having 4 to 10 carbon atoms. R 1 and R 2 are an aryl group, an alkyl group, An alkyl group, a halogen atom, a hydrogen atom, or a silyl group, wherein M is titanium, zirconium, or hafnium, and a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand; Table IVB Group transition metal compounds.
【請求項2】シクロアルキリデン(シクロペンタジエン
−1−フルオレン)
2. Cycloalkylidene (cyclopentadiene-1-fluorene)
【請求項3】シクロアルキリデン(シクロペンタジエン
−1−フルオレン)をジアルカリ金属化し、さらにチタ
ン、ジルコニウム、ハフニウムから選ばれた遷移金属の
テトラハロゲン化物と反応し、 一般式(II) (ここでA1はシクロペンタジエニル基、A2はフルオレニ
ル基、A3は炭素数4〜10のシクロアルキリデン基を示す
ものである。またX1、X2はハロゲン原子、Mはチタン、
ジルコニウム、ハフニウムである)で示される、シクロ
アルキリデン(シクロペンタジニエル−1−フルオレニ
ル)基を配位子とする周期律表IVB族の遷移金属ハロゲ
ン化合物の合成方法。
3. A method according to claim 1, wherein the cycloalkylidene (cyclopentadiene-1-fluorene) is converted into a dialkali metal, and further reacted with a tetrahalide of a transition metal selected from titanium, zirconium and hafnium to obtain a compound of the general formula (II) (Where A 1 is a cyclopentadienyl group, A 2 is a fluorenyl group, A 3 is a cycloalkylidene group having 4 to 10 carbon atoms. Further, X 1 and X 2 are halogen atoms, M is titanium,
A method for synthesizing a transition metal halide of Group IVB of the periodic table having a cycloalkylidene (cyclopentadienyl-1-fluorenyl) group as a ligand represented by zirconium or hafnium.
【請求項4】一般式(II)の化合物に一般式RLi(但し
Rは炭素数1〜10の炭化水素基を示す)を反応し、一般
式(II)のX1またはX2の少なくとも一つがRで置換され
た一般式(II)の誘導体の合成方法。
4. A compound of the general formula (II) is reacted with a general formula RLi (wherein R represents a hydrocarbon group having 1 to 10 carbon atoms), and at least one of X 1 and X 2 in the general formula (II) is reacted. A method for synthesizing a derivative of the general formula (II) in which one is substituted with R.
JP1332808A 1989-12-25 1989-12-25 Novel transition metal compound and method for producing the same Expired - Lifetime JP2735658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332808A JP2735658B2 (en) 1989-12-25 1989-12-25 Novel transition metal compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332808A JP2735658B2 (en) 1989-12-25 1989-12-25 Novel transition metal compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03193797A JPH03193797A (en) 1991-08-23
JP2735658B2 true JP2735658B2 (en) 1998-04-02

Family

ID=18259033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332808A Expired - Lifetime JP2735658B2 (en) 1989-12-25 1989-12-25 Novel transition metal compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2735658B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9101502A (en) * 1991-09-06 1993-04-01 Dsm Nv A METHOD FOR PREPARING A BRIDGED METALLOCENE COMPOUND, A CATALYST COMPONENT AND A METHOD FOR THE POLYMERIZATION OF OLEFINS.
JP3483013B2 (en) * 1995-04-28 2004-01-06 出光石油化学株式会社 Method for preserving homogeneous catalyst for polymerization
JP2000026490A (en) 1998-05-06 2000-01-25 Mitsui Chemicals Inc New metallocene compound and production of polyolefin using the same
AU2003211542B8 (en) 2002-09-27 2009-08-13 Mitsui Chemicals, Inc. Bridged metallocene compound for olefin polymerization and method of polymerizing olefin using the same

Also Published As

Publication number Publication date
JPH03193797A (en) 1991-08-23

Similar Documents

Publication Publication Date Title
RU2169152C2 (en) Metallocenes with fluorenyl type ligands, method of preparing thereof, intermediate compound for preparation thereof, olefin polymerization catalyst comprising these metallogenes, and method of polymerization of olefins
KR100352920B1 (en) Syndiotactic polypropylene prepared using silyl bridged metallocenes
KR100289508B1 (en) Vinyl Compound Polymerization Catalyst
JP4834965B2 (en) Novel transition metal compound and method for producing propylene polymer using the transition metal compound
US4874880A (en) Bis(di-, tri- or tetra-substituted-cyclopentadienyl)-zirconium dihalides
KR950009197B1 (en) Novel transition metal compound and process for polymerizing olefin by using the same
JPH04227708A (en) Manufacture of polyolefin
JP2001510846A (en) Production of metallocene
JP2735658B2 (en) Novel transition metal compound and method for producing the same
US5733990A (en) Catalyst for producing polyolefin and process for producing polyolefin
JP2775706B2 (en) Method for producing syndiotactic poly-α-olefin having wide molecular weight distribution
US6100416A (en) Asymmetric ethylene-bridged metallocenes useful as catalysts in the polymerization of olefins and process for preparing said metallocenes
JP2641459B2 (en) Process for producing α-olefin polymer
JPH0748408A (en) Polymerization of olefin
JP2780123B2 (en) Method for producing syndiotactic poly-α-olefin having wide molecular weight distribution
JPH05202124A (en) Production of olefin polymer
JPH0559077A (en) New transition metal compound
JP2883695B2 (en) New transition metal compounds
JP3289834B2 (en) Novel transition metal compound and method for polymerizing α-olefin using the same
JP2708586B2 (en) Method for producing syndiotactic poly-α-olefin
JP2000502678A (en) Transition metal compounds, their preparation and their use as catalyst components
JP3092974B2 (en) Catalyst for producing syndiotactic poly-α-olefin and method for producing syndiotactic poly-α-olefin
JPH0485310A (en) Production of syndiotactic poly-alpha-olefin
JP2995098B2 (en) Transition metal catalyst component for producing poly-α-olefin and method for polymerizing α-olefin using the same
JP3704205B2 (en) Transition metal compound and catalyst component for olefin polymerization comprising the transition metal compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

EXPY Cancellation because of completion of term