JPH0472378B2 - - Google Patents

Info

Publication number
JPH0472378B2
JPH0472378B2 JP57000615A JP61582A JPH0472378B2 JP H0472378 B2 JPH0472378 B2 JP H0472378B2 JP 57000615 A JP57000615 A JP 57000615A JP 61582 A JP61582 A JP 61582A JP H0472378 B2 JPH0472378 B2 JP H0472378B2
Authority
JP
Japan
Prior art keywords
substrate
gas
electrode
plasma
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57000615A
Other languages
Japanese (ja)
Other versions
JPS58118111A (en
Inventor
Ko Yasui
Kazuhisa Kato
Juichi Ishikawa
Akio Matsuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP61582A priority Critical patent/JPS58118111A/en
Publication of JPS58118111A publication Critical patent/JPS58118111A/en
Publication of JPH0472378B2 publication Critical patent/JPH0472378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明はプラズマCVD装置に関する。[Detailed description of the invention] The present invention relates to a plasma CVD apparatus.

従来、電子写真用ドラムとして使用されるAl
ドラム等の円筒状金属サブストレートの表面に、
例えばアモルフアスシリコンの薄膜を形成する手
段として、第1図示のようなプラズマCVD
(Chemical Vapor Deposition)装置が知られて
いる。この装置は、Alドラムその他の円筒状金
属サブストレートaを回転自在に収容した石英か
ら成る真空処理室b内にSiH4等のガスを導入し、
該ガスを該処理室bの外周に設けたコイルからな
るプラズマ発生装置cにより励起および電離して
反応を起こさしめ、その生成物を該サブストレー
トaの周面に付着させて薄膜を形成するが、該サ
ブストレートaが長いとその周面に均一な厚さの
薄膜が得られず、また該コイルの巻数を増大させ
ると該処理室b内のプラズマ密度が低下して良好
な薄膜が得られない等の不都合があつた。
Conventionally, Al used as drums for electrophotography
On the surface of a cylindrical metal substrate such as a drum,
For example, as a means of forming a thin film of amorphous silicon, plasma CVD as shown in Figure 1 is used.
(Chemical Vapor Deposition) devices are known. This device introduces a gas such as SiH 4 into a vacuum processing chamber b made of quartz that rotatably houses an Al drum or other cylindrical metal substrate a.
The gas is excited and ionized by a plasma generator c consisting of a coil provided on the outer periphery of the processing chamber b to cause a reaction, and the product is deposited on the circumferential surface of the substrate a to form a thin film. If the substrate a is long, a thin film with a uniform thickness cannot be obtained on its circumferential surface, and if the number of turns of the coil is increased, the plasma density in the processing chamber b decreases, making it difficult to obtain a good thin film. There were some inconveniences, such as not having one.

本発明は、こうした不都合のない装置を提供す
ることをその目的としたもので、その特定発明
は、円筒状金属サブストレートを回転自在に収容
した真空処理室内にソースガスを導入し、該ガス
を1対の放電電極を備えたプラズマ発生装置によ
り励起および電離して反応を起さしめ、その生成
物を該サブストレートの周面に付着させて薄膜を
形成するようにしたものに於て、該プラズマ発生
装置の一方の放電電極を前記サブストレートを囲
繞する筒状の電極で構成すると共に該電極内を中
空に形成して前記ガスが導入される中空円筒状の
ガス室とし、該ガス室の内側面に複数個のガス噴
出口を設け、前記サブストレートを該プラズマ発
生装置の他方の放電電極として成り、その第2発
明は、円筒状金属サブストレートを回転自在に収
容した真空処理室内にソースガスを導入し、該ガ
スを1対の放電電極を備えたプラズマ発生装置に
より励起および電離して反応を起さしめ、その生
成物を該サブストレートの周面に付着させて薄膜
を形成するようにしたものに於て、該プラズマ発
生装置の一方の放電電極を前記サブストレートを
囲繞する筒状の電極で構成すると共に該電極内を
中空に形成して前記ガスが導入される中空円筒状
のガス室とし、該ガス室の内側面に複数個のガス
噴出口を設け、前記サブストレートを該プラズマ
発生装置の他方の放電電極とし、更に前記サブス
トレートの両端に着脱自在の筒状の延長部を設
け、該サブストレートと該延長部との全長に亘り
該電極と対向させて成る。
The object of the present invention is to provide an apparatus free from such inconveniences, and the specific invention involves introducing a source gas into a vacuum processing chamber rotatably housing a cylindrical metal substrate, and discharging the gas. In a plasma generating device equipped with a pair of discharge electrodes, a reaction is caused by excitation and ionization, and the resulting product is deposited on the peripheral surface of the substrate to form a thin film. One discharge electrode of the plasma generator is constituted by a cylindrical electrode surrounding the substrate, and the inside of the electrode is formed hollow to form a hollow cylindrical gas chamber into which the gas is introduced, and the gas chamber is A plurality of gas ejection ports are provided on the inner surface, and the substrate serves as the other discharge electrode of the plasma generating device. A gas is introduced, and the gas is excited and ionized by a plasma generator equipped with a pair of discharge electrodes to cause a reaction, and the product is deposited on the peripheral surface of the substrate to form a thin film. In the plasma generating device, one discharge electrode is constituted by a cylindrical electrode surrounding the substrate, and the inside of the electrode is formed hollow so that the gas is introduced into the hollow cylindrical electrode. a gas chamber, a plurality of gas jet ports are provided on the inner surface of the gas chamber, the substrate is the other discharge electrode of the plasma generating device, and further, detachable cylindrical extensions are provided at both ends of the substrate. is provided, facing the electrode over the entire length of the substrate and the extension.

本発明の実施例を図面につき説明するに、その
第2図に於て、符号1は真空処理室、2は中空筒
状のAlシリンダからなるサブストレート、3は
該処理室1の下方に設けたサブストレート2の回
転装置で、サブストレート2はその中心軸を該回
転装置3の回転軸に合致させて取付けされ、該処
理室1内で回転する。4は該処理室1の側方に設
けた例えばSiH4ガスを導入するガス導入孔、5
は真空排気孔である。該処理室1内に導入された
SiH4等のガスは、該処理室1内の1対の放電電
極から成るプラズマ発生装置ドアにより励起およ
び電離され、反応を起してその生成物がアース電
位のサブストレート2の周面に付着し、モルフア
スシリコン等の薄膜を形成する。該プラズマ発生
装置6の一方の放電電極は該サブストレート2を
囲繞する内外2重の筒体14,16からなる電極
7にて構成され、他方の放電電極はアース電位の
サブストレート2を利用し、該電極7に1極をア
ースに落としたRF電源が接続されると、アース
に接続した該サブストレート2との間隔8内に比
較的密度の高い安定したプラズマが発生し、該サ
ブストレート2の周面から電極7までの距離をほ
ぼ均一となし得るので該サブストレート2に均一
な薄膜を形成し得る。9はサブストレート2の内
側からこれを加熱するヒータである。
An embodiment of the present invention will be described with reference to the drawings. In FIG. 2, reference numeral 1 denotes a vacuum processing chamber, 2 a substrate made of a hollow cylindrical Al cylinder, and 3 installed below the processing chamber 1. In this rotating device for a substrate 2, the substrate 2 is mounted with its central axis aligned with the rotation axis of the rotating device 3, and is rotated within the processing chamber 1. 4 is a gas introduction hole provided on the side of the processing chamber 1 for introducing, for example, SiH 4 gas; 5
is a vacuum exhaust hole. introduced into the processing chamber 1
A gas such as SiH 4 is excited and ionized by a plasma generator door consisting of a pair of discharge electrodes in the processing chamber 1, causes a reaction, and its products adhere to the circumferential surface of the substrate 2 at ground potential. Then, a thin film of morphous silicon or the like is formed. One discharge electrode of the plasma generating device 6 is constituted by an electrode 7 consisting of a dual inner and outer cylinder 14 and 16 surrounding the substrate 2, and the other discharge electrode utilizes the substrate 2 at ground potential. , when an RF power source with one pole grounded is connected to the electrode 7, a relatively dense and stable plasma is generated within a distance 8 between the substrate 2 and the substrate 2, which is connected to the ground. Since the distance from the circumferential surface of the substrate 2 to the electrode 7 can be made substantially uniform, a uniform thin film can be formed on the substrate 2. A heater 9 heats the substrate 2 from inside.

該真空処理室1内に導入されるSiH4等のガス
は、その一部がサブストレート2の薄膜形成に消
費され、残部は真空排気孔5から排気されるが、
該ガスを前記電極7の筒体14,16間に形成さ
れる中空円筒状のガス室11内にガス導入孔4を
介して導入し、該ガス室11内にて一旦静圧にさ
れたガスをサブストレート2と対向する内側の筒
体16からなる内側面の複数個のガス噴出口12
から該サブストレート2との間隔8内にほぼ均一
な速度で噴出させ、かくて該ガスは該排気孔5に
吸込まれるまでの間に比較的長い時間プラズマ雰
囲気にある間隔8内に滞在して該ガスの生成物が
サブストレート2の周面に効率良く付着し反応効
率が向上する。尚、該電極7とその外周のシール
ド17との間隙10をパツシエンの法則に従う微
小なものに形成して、そこにプラズマ放電が発生
しないようにした。また、該ガス噴出口12を例
えば第4図に見られるように、ガス導入孔4側の
筒体16aに設けられる穴数を変えることによつ
てサブストレート2の周囲に均一にガスが噴出さ
れ、その分布状態が向上し、また各ガス噴出口1
2の口径を変えることによつて、ガスの種類、圧
力等が変わつても比較的簡単に均一のガス分布が
得られるように調節することが出来る。さらに、
該電極7の外側の筒体14はその外周のアースシ
ールド17に絶縁碍子13を介して取付けされる
ようにし、内側の筒体16を両端のリング15,
15を介して外側の筒体14に着脱自在に取付
け、該サブストレート2の寸法が変わつた場合、
該リング15,15及び内側の筒体16を外側の
筒体14から取外して任意に間隔8を調節出来る
と共に簡単に該筒体16の清掃を行なえるように
した。
A part of the gas such as SiH 4 introduced into the vacuum processing chamber 1 is consumed for forming a thin film on the substrate 2, and the rest is exhausted from the vacuum exhaust hole 5.
The gas is introduced into the hollow cylindrical gas chamber 11 formed between the cylindrical bodies 14 and 16 of the electrode 7 through the gas introduction hole 4, and the gas is once brought to static pressure within the gas chamber 11. a plurality of gas jet ports 12 on the inner surface of the inner cylinder 16 facing the substrate 2;
The gas is ejected at a substantially uniform speed into the space 8 between the gas and the substrate 2, and thus the gas remains in the space 8 in the plasma atmosphere for a relatively long time before being sucked into the exhaust hole 5. The products of the gas are efficiently attached to the peripheral surface of the substrate 2, and the reaction efficiency is improved. Incidentally, the gap 10 between the electrode 7 and the shield 17 on its outer periphery was formed to be minute in accordance with Patsien's law to prevent plasma discharge from occurring there. Furthermore, as shown in FIG. 4, for example, by changing the number of holes provided in the cylinder body 16a on the side of the gas introduction hole 4, the gas can be uniformly ejected around the substrate 2. , its distribution state is improved, and each gas outlet 1
By changing the diameter of 2, even if the type of gas, pressure, etc. are changed, it can be adjusted relatively easily so that a uniform gas distribution can be obtained. moreover,
The outer cylindrical body 14 of the electrode 7 is attached to the earth shield 17 on its outer periphery via the insulator 13, and the inner cylindrical body 16 is attached to the rings 15 at both ends.
It is detachably attached to the outer cylindrical body 14 via the substrate 15, and when the dimensions of the substrate 2 change,
The rings 15, 15 and the inner cylindrical body 16 can be removed from the outer cylindrical body 14 to adjust the distance 8 as desired, and the cylindrical body 16 can be easily cleaned.

該筒状の電極7をサブストレート2よりも多少
長手に構成しても、該電極7の上下端部に於ける
プラズマ放電の不均一により該電極7の端部に対
向するサブストレート2の周面には厚さの多少と
も不均一な薄膜が形成され易いが、該サブストレ
ート2の上下の各端部にカプラー19,19を介
してAl等からなる延長部20,20を着脱自在
に取付け、サブストレート2の上下端部と電極7
との間で放電不均一が生ずるを防止するようにし
た。尚、サブストレート2の長さが短いものであ
る場合、その複数個を該カプラー19を介して接
続し、各サブストレート2に同時に薄膜を形成さ
せることも可能である。
Even if the cylindrical electrode 7 is configured to be somewhat longer than the substrate 2, the periphery of the substrate 2 facing the end of the electrode 7 may be uneven due to non-uniform plasma discharge at the upper and lower ends of the electrode 7. Although a thin film with a more or less uneven thickness is likely to be formed on the surface, extension parts 20, 20 made of Al or the like are removably attached to the upper and lower ends of the substrate 2 via couplers 19, 19. , the upper and lower ends of the substrate 2 and the electrode 7
This is to prevent non-uniform discharge between the two. In addition, when the length of the substrate 2 is short, it is also possible to connect a plurality of them via the coupler 19 and form a thin film on each substrate 2 at the same time.

その作動を説明するに、Alシリンダ等のサブ
ストレート2の両端に延長部20,20を設けて
これを筒状の電極7内に収容し、真空処理室1内
を真空排気したのちヒータ9でのサブストレート
2の加熱と回転装置3によるサブストレート2の
回転を行ない、さらにガス室11のガス噴出口1
2を介してSiH4等の反応ガスを均一な間隔8内
に均一に噴出させつつ電極7に通電すると該間隔
8内に比較的密度の高いプラズマが発生し、該ガ
スは排気孔5から排出されるまでの時間のうち比
較的長い時間該プラズマ内に存在してその多くが
電離され、その成分が該サブストレート2の周面
に比較的効率的良く均一な厚さで薄膜状に付着す
る。
To explain its operation, extensions 20, 20 are provided at both ends of a substrate 2 such as an Al cylinder, and this is housed in a cylindrical electrode 7. After the inside of the vacuum processing chamber 1 is evacuated, the heater 9 is turned on. The substrate 2 is heated and the substrate 2 is rotated by the rotation device 3, and the gas outlet 1 of the gas chamber 11 is heated.
When the electrode 7 is energized while a reactive gas such as SiH 4 is ejected uniformly within the uniform interval 8 through the electrode 2, relatively dense plasma is generated within the interval 8, and the gas is discharged from the exhaust hole 5. It remains in the plasma for a relatively long time until it is ionized, and most of it is ionized, and its components adhere to the peripheral surface of the substrate 2 relatively efficiently and in the form of a thin film with a uniform thickness. .

このように、本発明の特定発明によるときは、
円筒状金属サブストレートを囲繞する筒状の電極
を中空に形成して前記ガスが導入される中空円筒
状のガス室とし、該ガス室の内側面に複数個のガ
ス噴出口を設けたので、該電極とサブストレート
との間隔が均一になりしかも該間隔に均一にガス
を分布させて比較的長時間該ガスを間隔内に滞在
させることが出来、密度の高い安定したプラズマ
を発生させて均一な薄膜をサブストレートに効率
良く形成でき、その第2発明によるときは、該サ
ブストレートの両端に着脱自在の筒状の延長部を
設け、該サブストレートと該延長部との全長に亘
り該筒状の電極と対向させたので、上記第1発明
の効果に加えて、ガスの流れを一様にし、且つサ
ブストレートの端部と電極との間の異常放電の発
生を防止でき、サブストレートに放電不均一によ
る薄膜が形成されることがなく、より一層均一性
の良い薄膜を形成できる効果がある。
In this way, according to the specific invention of the present invention,
A cylindrical electrode surrounding a cylindrical metal substrate is formed hollow to form a hollow cylindrical gas chamber into which the gas is introduced, and a plurality of gas jet ports are provided on the inner surface of the gas chamber. The gap between the electrode and the substrate becomes uniform, and the gas can be evenly distributed in the gap, allowing the gas to stay within the gap for a relatively long time, generating a stable plasma with high density and uniform plasma. According to the second invention, a removable cylindrical extension part is provided at both ends of the substrate, and the cylindrical extension part is formed over the entire length of the substrate and the extension part. In addition to the effect of the first invention, the gas flow is made uniform and abnormal discharge can be prevented from occurring between the end of the substrate and the electrode, and the electrode is placed opposite the substrate. This has the effect that a thin film with even better uniformity can be formed without forming a thin film due to non-uniform discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の説明線図、第2図は本発明の
実施例の截断側面図、第3図は第2図の截断平面
図、第4図は電極の一部を截除した斜視図であ
る。 1……真空処理室、2……サブストレート、4
……ガス導入孔、6……プラズマ発生装置、7…
…電極、11……ガス室、12……ガス噴出口、
20,20……延長部。
Fig. 1 is an explanatory diagram of the conventional example, Fig. 2 is a cutaway side view of the embodiment of the present invention, Fig. 3 is a cutaway plan view of Fig. 2, and Fig. 4 is a perspective view with a part of the electrode cut away. It is a diagram. 1... Vacuum processing chamber, 2... Substrate, 4
...Gas introduction hole, 6...Plasma generator, 7...
...electrode, 11...gas chamber, 12...gas outlet,
20, 20...extension part.

Claims (1)

【特許請求の範囲】 1 円筒状金属サブストレートを回転自在に収容
した真空処理室内にソースガスを導入し、該ガス
を1対の放電電極を備えたプラズマ発生装置によ
り励起および電離して反応を起さしめ、その生成
物を該サブストレートの周面に付着させて薄膜を
形成するようにしたものに於て、該プラズマ発生
装置の一方の放電電極を前記サブストレートを囲
繞する筒状の電極で構成すると共に該電極内を中
空に形成して前記ガスが導入される中空円筒状の
ガス室とし、該ガス室の内側面に複数個のガス噴
出口を設け、前記サブストレートを該プラズマ発
生装置の他方の放電電極として成るプラズマ
CVD装置。 2 円筒状金属サブストレートを回転自在に収容
した真空処理室内にソースガスを導入し、該ガス
を1対の放電電極を備えたプラズマ発生装置によ
り励起および電離して反応を起さしめ、その生成
物を該サブストレートの周面に付着させて薄膜を
形成するようにしたものに於て、該プラズマ発生
装置の一方の放電電極を前記サブストレートを囲
繞する筒状の電極で構成すると共に該電極内を中
空に形成して前記ガスが導入される中空円筒状の
ガス室とし、該ガス室の内側面に複数個のガス噴
出口を設け、前記サブストレートを該プラズマ発
生装置の他方の放電電極とし、更に前記サブスト
レートの両端に着脱自在の筒状の延長部を設け、
該サブストレートと該延長部との全長に亘り該電
極と対向させて成るプラズマCVD装置。
[Claims] 1. A source gas is introduced into a vacuum processing chamber that rotatably accommodates a cylindrical metal substrate, and the gas is excited and ionized by a plasma generator equipped with a pair of discharge electrodes to cause a reaction. in which one discharge electrode of the plasma generator is connected to a cylindrical electrode surrounding the substrate, and the product is attached to the circumferential surface of the substrate to form a thin film. The inside of the electrode is formed hollow to form a hollow cylindrical gas chamber into which the gas is introduced, a plurality of gas jet ports are provided on the inner surface of the gas chamber, and the substrate is used to generate the plasma. Plasma as the other discharge electrode of the device
CVD equipment. 2 A source gas is introduced into a vacuum processing chamber that rotatably accommodates a cylindrical metal substrate, and the gas is excited and ionized by a plasma generator equipped with a pair of discharge electrodes to cause a reaction and generate In a device in which a thin film is formed by attaching a substance to the circumferential surface of the substrate, one discharge electrode of the plasma generating device is constituted by a cylindrical electrode surrounding the substrate, and the electrode A hollow cylindrical gas chamber is formed with a hollow interior to introduce the gas, a plurality of gas jet ports are provided on the inner surface of the gas chamber, and the substrate is connected to the other discharge electrode of the plasma generator. and further provided with removable cylindrical extensions at both ends of the substrate,
A plasma CVD apparatus comprising the substrate and the extension portion facing the electrode over the entire length thereof.
JP61582A 1982-01-07 1982-01-07 Plasma cvd apparatus Granted JPS58118111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61582A JPS58118111A (en) 1982-01-07 1982-01-07 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61582A JPS58118111A (en) 1982-01-07 1982-01-07 Plasma cvd apparatus

Publications (2)

Publication Number Publication Date
JPS58118111A JPS58118111A (en) 1983-07-14
JPH0472378B2 true JPH0472378B2 (en) 1992-11-18

Family

ID=11478632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61582A Granted JPS58118111A (en) 1982-01-07 1982-01-07 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS58118111A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147026A (en) * 1982-02-24 1983-09-01 Toshiba Corp Apparatus for film formation by glow discharge
JPS6086276A (en) * 1983-10-17 1985-05-15 Canon Inc Formation of deposited film by discharge
CN102335580A (en) * 2011-06-21 2012-02-01 浙江大学 Apparatus and method for preparing group IV nanoparticles with capacitive coupling plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391664A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Plasma cvd device
JPS56121631A (en) * 1980-02-29 1981-09-24 Canon Inc Film forming device
JPS56130465A (en) * 1980-03-14 1981-10-13 Canon Inc Film forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391664A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Plasma cvd device
JPS56121631A (en) * 1980-02-29 1981-09-24 Canon Inc Film forming device
JPS56130465A (en) * 1980-03-14 1981-10-13 Canon Inc Film forming method

Also Published As

Publication number Publication date
JPS58118111A (en) 1983-07-14

Similar Documents

Publication Publication Date Title
JPH06128749A (en) Method and device for microwave plasma treatment
JPH0644554B2 (en) Plasma CVD equipment
JPH0472378B2 (en)
JP2797307B2 (en) Plasma process equipment
JPS5931977B2 (en) Plasma CVD equipment
JPH08165194A (en) Method and device for forming thin film with microwave plasma cvd
JP3621730B2 (en) Microwave plasma chemical vapor deposition system
JPH02243766A (en) Thin film forming device
JPH06252060A (en) Plasma cvd device
JP2641450B2 (en) Plasma processing equipment
JPH05217915A (en) Plasma cvd device
JPH06326080A (en) Plasma cvd device
JPS5832413A (en) Film forming apparatus by glow discharge
JPH0666296B2 (en) Plasma processing device
JPS60123033A (en) Plasma treating device
JPH10172793A (en) Plasma generator
JPH0211771A (en) Glow discharge cracking device
TW202042278A (en) Batch type substrate processing apparatus
JP2920637B2 (en) Glow discharge decomposition equipment
JPS59100265A (en) Device for forming amorphous silicon photosensitive layer
JPS62136572A (en) Formation of thin film by plasma cvd method
JPS6247485A (en) Device for forming deposited film by plasma cvd
JP3055888B2 (en) Plasma processing method
JP2900546B2 (en) Liquid crystal alignment processing equipment
JPH06151334A (en) Plasma cvd apparatus