JPH0472296A - Device for taking up and paying off wire rope - Google Patents

Device for taking up and paying off wire rope

Info

Publication number
JPH0472296A
JPH0472296A JP18551190A JP18551190A JPH0472296A JP H0472296 A JPH0472296 A JP H0472296A JP 18551190 A JP18551190 A JP 18551190A JP 18551190 A JP18551190 A JP 18551190A JP H0472296 A JPH0472296 A JP H0472296A
Authority
JP
Japan
Prior art keywords
speed
winch
winches
gear
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18551190A
Other languages
Japanese (ja)
Other versions
JP2816891B2 (en
Inventor
Kiyonori Takeda
竹田 清則
Masakatsu Yamamoto
山本 正克
Toshio Nagahisa
永久 利夫
Ryuichi Hirakawa
隆一 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP18551190A priority Critical patent/JP2816891B2/en
Publication of JPH0472296A publication Critical patent/JPH0472296A/en
Application granted granted Critical
Publication of JP2816891B2 publication Critical patent/JP2816891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

PURPOSE:To change the speed of a rope by coupling a reaction force shaft for receiving a rotational reaction force from a wire take-up drum in each of winches so as to combine the start and stop, and normal and reverse rotations of the winches with each other. CONSTITUTION:A motor 1 is coupled to a wire take-up drum 4 through the intermediary of a sun gear 2, planetary gears 3 and a first internal gear 5. A second internal gear 6 which is rotatable is meshed with a reaction force shaft gear 11 in another winch through the intermediary of a reaction force shaft 9 and a gear 10. Both winches give a torque to a wire take-up drum at a rate corresponding to the ratio between the numbers of teeth of the reaction force shaft gears 10, 11. Further, the speed of the rope can be changed by starting and stopping, and b normally and reversely rotating two general-purpose single speed motors without the operation of the winches being stopped. Accordingly, during light load operation, the speed of the rope can be increased without stopping the winches, thereby it is possible to enhance the working efficiency, to miniaturize the motors and to reduce the capacity of a power source unit.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ワイヤーロープの巻込み及び巻出し速度(以
後ロープ速度と称す)の変更が可能なウィンチに関する
ものである。 (従来技術] 従来、ウィンチにおけるロープ速度の変更は。 下記手段により行っていた。 (1)極数変換誘導電動機による変速 (2)直流電動機や油圧モーター等の可変速原動機の使
用による変速 (3)減速比切り換え型減速機の使用による変速(4)
上記(1)と(3)及び(2)と(3)の併用による変
[Industrial Field of Application] The present invention relates to a winch that can change the winding and unwinding speed (hereinafter referred to as rope speed) of a wire rope. (Prior art) Conventionally, the rope speed in a winch has been changed by the following means: (1) Speed change using a pole change induction motor (2) Speed change using a variable speed prime mover such as a DC motor or hydraulic motor (3) ) Speed change using a reduction ratio switching type reducer (4)
Shifting by combination of (1) and (3) and (2) and (3) above

【従来技術の問題点) 従来技術(1)の場合 極数変換誘導電動機における極数の組み合せに制限があ
ることから1通常2速の固定速度しが得ることができず
、かつ任意のロープ速度変更比を得ることができない。 従来波# (2)の場合 近年クレーン作業の高能率化の要求から、クレーンが無
負荷時、すなわちフックやワイヤーロブ等の風袋荷重時
のフック速度は、クレーンが定格荷重を負荷したときに
出し得るフック速度の4〜5倍となすような一定出力特
性を有すウィンチが求められるが、通常ウィンチに入力
し得る原動樋口転数の上限値が2000rpm程度あり
、前述クレーン無負荷時のウィンチに対する入力回転数
を2000rpmとすれば、クレーン定格負荷時、すな
わちウィンチにおける最大トルク、出力時の原動機回転
数は400〜500rpmとなる。 従って、ウィンチの所要動力に対し低回転時に高トルク
を出し得る原動機が必要となることから、原動機の枠体
は大型化し、かつ可変速電動機であれば大電流を供給し
得る電源装置を要し、油圧モーターであれば高圧を供給
し得る油圧発生装置を要するため、原動機装置は重量化
、大型化し、かつ高価となる。 従来技術(3)の場合 ウィンチの減速機内で減速比の異なる歯車列を爪クラッ
チで切り換えるもので、ローブ速度の変更時、すなわち
減速比の切り換え時はウィンチの駆動を一旦停止する必
要があり、近年の高能率化の要求にそぐわない、さらに
ウィンチが負荷状態のままで減速比の切り換えを行うた
めに、変速歯車列よりワイヤーローブ巻取リドラム側の
動力伝達軸に負荷保持用のブレーキを要し、かつ爪クラ
ツチ作動用原動機も要すことから制御及び装置とも複雑
になる。 従来技術(4)の場合 (1)と(3)の組み合せによる。ローブ速度の切り換
え段数は増加し、(2)と(3)の組み合せではウィン
チ定格負荷時の原動機回転数を高く設定できることから
、原動機装置の小型化、低廉化は可能となるが、いずれ
もローブ速度の変更時にウィンチの駆動を一旦停止せざ
るを得ない不具合は改善されず、かつ制御及び装置とも
さらに複雑化する欠点がある。 【問題点を解決するための手段】 遊星減速機構等の入力回転中心と出力回転中心を同一軸
芯となす減速機構をワイヤー巻取リドラムに内蔵したウ
ィンチのワイヤー巻取りドラムの回転反力を受ける反力
軸をウィンチ外部に回転自由に突比し、複数台のウィン
チの該反力軸を各ウィンチのワイヤーローブ張力比が所
望する値となす回転比で、ギヤー又はチェーン等の動力
伝達手段を用いて連結し、各ウィンチの電動機の発停及
び正逆転操作の組合せにより幾多のローブ速度の変更を
可能とする。また、各ウィンチの減速比や電動機回転数
の組合せによって各電動機の発停及び正逆転操作によっ
て得るローブ速度及び変速段数は任意となすことができ
る。さらに上記手段によるワイヤーローブの巻出し巻込
み装置は、複数台ウィンチのワイヤー巻取りドラムが常
に所定の比率でトルクを負荷する。すなわち、所定のロ
ープ張力を常に保つ性質を有す0例えば2台のウィンチ
を用いてワイヤーロープ張力比を1.0とし、ワイヤー
ロープの巻込み巻出し装置を構成した場合、一方のウィ
ンチのワイヤー巻取負荷が小さければそのドラムの巻取
り回転数が増し、他方のドラムの巻取り回転数が減少し
て常にワイヤーローブ張力を等しくする。 r発明の実施例1 以下、本発明をさらに具体的に明らかにするために、そ
の実施例を図面に基づいて詳細に説明する。 第1図は、差動遊星減速機構をワイヤー巻取りドラムに
内蔵したウィンチ2台を使用し1本発明の装置を構成し
た一例を示す、電動11で発生した回転力は、差動遊星
減速機構のサンギヤ−2゜歯数の異なる2個のギヤーを
一体となしたプラネタリ−ギヤー3及びワイヤー巻取り
ドラム4に内蔵した一方のインターナルギヤ−5を介し
て、ワイヤー巻取りドラム4に伝達する6ワイヤー巻取
りドラム4の回転反力は他方のインターナルギヤ6を受
け、該インターナルギヤ−は、ドラムベアリング7と軸
受ベアリング8で回転自在に支持し、一端をウィンチ外
部へ突出した反力軸9と連結する。ウィンチ外部に突出
した反力軸9の軸端にはギヤー10を設け、他のウィン
チの反力軸ギヤー11と噛み合わす。 以上に構成した装置では1反力軸ギヤー10゜11の歯
数比に係る一定の比率で2台のウィンチのワイヤー巻取
りドラムに回転力を発生する性質が有す、なお、2台の
ワイヤー巻取りドラムに負荷するワイヤーロープ張力を
等しくする作用が不要の場合等は、2台のワイヤー巻取
りドラムフランジにギヤーを設け、2台のワイヤー巻取
りドラムの巻出し及び巻取り回転方向が一致するように
ギヤ一連結してもよい。 第2図は2本発明の装置をクレーンに塔載した場合のワ
イヤリング例を示す、第2図において各ワイヤーローブ
巻取リドラムから出した2本のワイヤーローブは、シー
ブ13及びフックブロック14のシーブを介し、その尻
手はジブ15等に各々固定する1本図に示す用途におい
て、2個のワイヤー巻取りドラムは同じ回転力を生じる
ように。 前述反力軸ギヤー比を設定する。 本発明のウィンチ装置における減速比、電動機回転数、
ワイヤー巻取りドラム発生トルク及びワイヤー巻取りド
ラム回転数の関係式を下記に示す。 一方のウィンチをNQlとし、他方のウィンチを恥2と
すると、 NQ1ウィンチのワイヤー巻取りドラム発生トルクz 
、 =−: & 1ウィンチの減速比1−〒:&2ウィ
ンチの減速比 2□    :&1ウィンチの反力軸ギヤー歯数Z2 
   :&2ウィンチの反力軸ギヤー歯数ドラム発生ト
ルク比を1.0とし、常に同等のトルクを2台のワイヤ
ー巻取りドラムが負荷した場合のワイヤー巻取リドラム
回転数は下記となる。 Malウィンチワイヤー巻取りドラム回転数=l!n2
ウィンチワイヤー巻取リドラム回転数= ’r (N 
Pi Hxユ+NPz・1□)Np1: &1ウィンチ
の電動機回転数Nρ、:NQ2ウィンチの電動機回転数
例えば、ドラム発生トルク比を1.0とし、2台のワイ
ヤー巻取りドラムが同等のトルクを負荷する場合、i 
□= 1150、i、=1/100. Np、=180
Orp m、 Np、=1200r p mとすると1
階1ウィンチの電動機のみを第1図の図中矢印方向に回
転駆動した場合、2台のワイヤー巻取りドラムの回転数
は18rpmとなり、淘2ウィンチの電動機のみを図中
矢印方向に回転駆動すると、2台のワイヤー巻取りドラ
ムの回転数は6rpmとなり、尚1ウィンチと&2ウィ
ンチの電動機をいずれも図中矢印方向に回転駆動すると
、2台のワイヤー巻取りドラムの回転数は24rpmと
なり、さらに&1ウィンチの電動機を図中矢印方向に回
転駆動し、かつ&2ウィンチの電動機を図中及矢印方向
に回転駆動すると、2台のワイヤー巻取りドラムの回転
数は12rpmとなる。すなわち、2台の汎用重速電動
機の発停及び正逆転制御によりウィンチの運転を停止す
ることなく4段階のローブ速度変更を可能にした。なお
、電磁ブレーキ12.13は同軸上に配した電動機の発
停に同調して弛締する。また上記例において2台のウィ
ンチの負荷するローブ張力が同じとした場合、翫1ウィ
ンチとNa3ウィンチの必要電動機容量比は3:1とな
り、小容量である11112ウィンチの電動機をO〜1
200rpmの可変速電動機とした場合は、2・台のワ
イヤー巻取りドラムの回転数において、0〜6rpm及
び12〜24rpmは無段階変速が可能になる。 さらに大型高揚程のクレーンに適したウィンチ性能を得
るための電動機回転数及び減速比の組み合せ例を次に示
す。 ドラム発生トルク比を1.0.i、=]/20.12=
]/+8. &lウィンチの電動機はO= l OOO
rpmが一定トルクでlooorpm−2000rpm
が一定動力の出力特性を有す可変速電動機とし、勤2ウ
ィンチの電動機を1800rpm固定速度汎用電動機と
した場合に得るワイヤー巻取りドラムの出力トルクと1
発生回転数の関係を第3図に示す、第3図において、斜
線部がNQlウィンチの可変速電動機により得るワイヤ
ー巻取りドラムの出力トルクと発生回転数の範囲を示し
、尚1ウィンチのブレーキを締めてNc2ウィンチの可
変速電動機を1100Orpで第1図の図中矢印方向に
回転駆動すれば22台のワイヤー巻取りドラムは25r
pmで回転し、2000rpmで図中矢印方向に回転駆
動すれば2台のワイヤー巻取りドラムは50rpmで回
転し、その時のワイヤー巻取りドラムの発生トルクは前
者の172となる。 さらに嵐1ウィンチの可変速電動機を2000rpmで
図中矢印方向に回転駆動し、かつ&2ウィンチのブレー
キをゆるめて電動機を図中矢印方向に回転駆動すれば、
2台のワイヤー巻取りドラムは1100ppで回転する
。 従って、クレーンの定格荷重を負荷した場合は、ワイヤ
ー巻取りドラムの回転数を0〜25rpmまで任意に変
更でき、クレーンの定格荷重以下の負荷においては、ワ
イヤー巻取りドラムの回転数を負荷の大小により0〜最
大50rpmまで任意に変更でき、さらにクレーンが無
負荷の場合は、クレーンフックやワイヤー口、ブ等の風
袋を巻上げる容量を持つ&2ウィンチの電動機を駆動す
ることにより、2台のワイヤー巻取りドラムの回転数は
1100rpとなる。すなわち、クレーンの軽負荷時や
無負荷時は、ギヤーチェンジのためにウィンチを停止す
ることなく、ロープ速度を上げることができることから
作業効率を高めることができ、高揚程クレーンにおいて
その利点は顕著となる。また、可変速電動機の最大トル
ク出力時の回転数を従来技術に比べ高くできることから
、電動機出力トルクは小さくなり、電動機を小型化し、
かつ電源装置のtJs容量化ができる。 第4図及び第5図に本発明による他の実施例を示す。 第4図は電動機1台による実施例で、差動遊星減速機構
21をワイヤー巻取りドラム22に内蔵し、入力軸上に
電磁ブレーキ23を有し、反力軸24の一端に他のウィ
ンチと噛合い連結する反力軸ギヤー25を有すウィンチ
2台と、電動機28及び電動機軸と2台のウィンチの入
力軸をギヤー番こより連結し、一方のウィンチ入力軸と
その入力軸を駆動するためのギヤー29に電磁クラッチ
26を介在した分配ギヤーボックス27から構成し、電
動機28の回転動力を電磁クラッチ26の連結操作によ
る2台のウィンチへの伝達及び電磁クラッチ26の切放
し操作による1台のウィンチへの伝達により、前述本発
明の作用を得る。 第5図は2組の差動遊星減速機構及び反力軸ギヤーをギ
ヤーボックスに収納した本発明の応用実施例を示し、差
動遊星減速機構30と該減速機構において、反力を受け
る方のインターナルギヤ31と一体となした反力軸ギヤ
ー32と、装置の回転出力を得る方のインターナルギヤ
−33と一体となした出力ギヤ−34からなる2組の歯
車装置の反力軸ギヤー32を噛み合せると共に出力ギヤ
−34をアイドルギヤー35を介して噛み合せてギヤー
ボックス36に収納する。出力ギヤーと一体とし、かつ
ギヤーボックス外部へ突出した出力軸36に出力ビニオ
ン37を設け、ワイヤー巻取りドラム38のフランジに
設けたドラムギヤー39と噛み合す、また2本の入力軸
今0の両端はギヤーボックス外部で各々電動機41及び
電磁ブレーキ42と連結する8本実施例において2台の
電動機の発停及び正逆転操作による出力ビニオンの発生
回転数は前述本発明の作用通りであるが、他の実施例に
おいて2台のワイヤー巻取りドラムに均等分配されるト
ルクは、本実施例では1ケの出力ビニオン37に集合さ
れる。 【発明の効果] 以上詳記した本発明により、f@素な構造でロープ速度
の変更を可能にしたことから、従来この種の装置に比べ
小型軽量化をなし得、複数の原動機の発停正逆転操作に
より幾多のロープ速度を得ることから、装置の停止を要
さずロープ速度の変更を可能にし、高い作業能率を提供
できる装置となし得た。さらに複数使用する原動機の内
の1台を可変速原動機として、必要なロープ速度域及び
ロブ速度全域の無段階変速を可能にしたことから。 高価な可変速原動機の小容量化を可能にし、ロープ速度
の無段変速を安価に実現できるものである。
[Problems with the prior art] In the case of prior art (1), because there are restrictions on the combination of pole numbers in the pole-changing induction motor, it is not possible to obtain a fixed speed of 1 or 2 speeds, and it is not possible to obtain an arbitrary rope speed. Unable to obtain change ratio. In the case of conventional wave # (2) In recent years, due to the demand for higher efficiency in crane work, the hook speed when the crane is unloaded, that is, when a tare load such as a hook or wire lobe, is set to the hook speed when the crane is loaded with the rated load. A winch with a constant output characteristic that is 4 to 5 times the hook speed obtained is required, but the upper limit of the driving gutter rotation speed that can be input to the winch is usually about 2000 rpm, and the above-mentioned winch with no load on the crane If the input rotation speed is 2000 rpm, the prime mover rotation speed at the crane rated load, that is, at the time of maximum torque and output at the winch, will be 400 to 500 rpm. Therefore, a prime mover that can produce high torque at low rotation speeds is required to meet the winch's power requirements, so the frame of the prime mover becomes larger, and a variable speed electric motor requires a power supply that can supply a large current. Since a hydraulic motor requires a hydraulic pressure generator capable of supplying high pressure, the prime mover becomes heavier, larger, and more expensive. In the case of conventional technology (3), gear trains with different reduction ratios are switched within the winch reducer using a pawl clutch, and when changing the lobe speed, that is, when switching the reduction ratio, it is necessary to temporarily stop the drive of the winch. This does not meet the recent demand for high efficiency, and in order to switch the reduction ratio while the winch is under load, a brake is required to maintain the load on the power transmission shaft on the wire lobe take-up lid drum side of the transmission gear train. In addition, since a prime mover for actuating the pawl clutch is also required, the control and device become complicated. In case of prior art (4), it is based on a combination of (1) and (3). The number of lobe speed switching steps increases, and the combination of (2) and (3) allows the prime mover rotation speed at the winch rated load to be set high, making it possible to downsize and lower the cost of the prime mover. The problem of having to temporarily stop the drive of the winch when changing the speed has not been improved, and there is also the drawback that the control and device are further complicated. [Means for solving the problem] A reduction mechanism such as a planetary reduction mechanism whose input rotation center and output rotation center are on the same axis is built into the wire winding red drum to receive the rotational reaction force of the wire winding drum of the winch. The reaction shafts are freely rotated outside the winches, and the reaction shafts of multiple winches are connected to power transmission means such as gears or chains at a rotation ratio that makes the wire lobe tension ratio of each winch a desired value. It is possible to change the lobe speed in many ways by combining the motors of each winch with starting/stopping and forward/reverse operations. Moreover, the lobe speed and the number of gear stages obtained by starting/stopping and forward/reverse operation of each electric motor can be made arbitrary by combining the reduction ratio of each winch and the rotational speed of the electric motor. Further, in the wire lobe unwinding and winding device according to the above means, the wire winding drums of the plurality of winches always apply torque at a predetermined ratio. In other words, if a wire rope winding and unwinding device is configured using two winches with a wire rope tension ratio of 1.0, which have the property of always maintaining a predetermined rope tension, the wire of one winch If the winding load is small, the winding speed of that drum increases, and the winding speed of the other drum decreases to always equalize the wire lobe tension. Embodiment 1 of the Invention Hereinafter, in order to clarify the present invention more specifically, an embodiment thereof will be described in detail based on the drawings. Fig. 1 shows an example in which the device of the present invention is constructed using two winches each having a differential planetary reduction mechanism built into the wire winding drum. The sun gear 2 degrees is transmitted to the wire winding drum 4 through a planetary gear 3 which is an integral unit of two gears with different numbers of teeth, and one internal gear 5 built into the wire winding drum 4. 6. The rotational reaction force of the wire winding drum 4 is received by the other internal gear 6, which is rotatably supported by a drum bearing 7 and a bearing 8, and has one end protruding outside the winch. Connected to shaft 9. A gear 10 is provided at the shaft end of the reaction shaft 9 projecting outside the winch, and meshes with a reaction shaft gear 11 of another winch. The device configured above has the property of generating rotational force on the wire winding drums of the two winches at a constant ratio related to the tooth number ratio of the first reaction shaft gear 10°11. When it is not necessary to equalize the wire rope tension applied to the winding drums, gears are installed on the flanges of the two wire winding drums so that the unwinding and winding rotation directions of the two wire winding drums are aligned. The gears may be connected in series so that FIG. 2 shows an example of wiring when two apparatuses of the present invention are mounted on a crane. In FIG. In the application shown in the figure, the two wire winding drums generate the same rotational force. Set the reaction shaft gear ratio mentioned above. Reduction ratio, motor rotation speed, in the winch device of the present invention,
The relational expression between the wire winding drum generated torque and the wire winding drum rotation speed is shown below. If one winch is NQl and the other winch is 2, then the wire winding drum generated torque of NQ1 winch z
, =-: & 1 winch reduction ratio 1 - 〒: & 2 winch reduction ratio 2 □ : & 1 winch reaction shaft gear teeth number Z2
:&2 winch reaction shaft gear teeth number drum generation torque ratio is 1.0, and when two wire winding drums always load the same torque, the wire winding red drum rotation speed is as follows. Mal winch wire winding drum rotation speed = l! n2
Winch wire winding red drum rotation speed = 'r (N
Pi Hx Yu + NPz・1 □) Np1: &1 Winch motor rotation speed Nρ, :NQ2 Winch motor rotation speed For example, assuming the drum generation torque ratio is 1.0, two wire winding drums load the same torque. If i
□=1150, i,=1/100. Np, = 180
Orp m, Np, = 1200 r p m, then 1
If only the electric motor of the floor 1 winch is driven to rotate in the direction of the arrow in the figure, the rotation speed of the two wire winding drums will be 18 rpm, and if only the electric motor of the floor 2 winch is driven to rotate in the direction of the arrow in the figure. , the rotational speed of the two wire winding drums becomes 6 rpm, and if both the motors of winch 1 and winch 2 are driven to rotate in the direction of the arrow in the figure, the rotational speed of the two wire winding drums becomes 24 rpm, and further. When the motor of winch &1 is driven to rotate in the direction of the arrow in the figure, and the motor of winch &2 is driven to rotate in the direction of the arrow in the figure, the rotational speed of the two wire winding drums becomes 12 rpm. That is, the start/stop and forward/reverse control of two general-purpose heavy-speed electric motors makes it possible to change the lobe speed in four stages without stopping the winch operation. The electromagnetic brakes 12 and 13 are loosened in synchronization with the starting and stopping of the electric motor arranged on the same axis. In addition, in the above example, if the lobe tension applied by the two winches is the same, the required motor capacity ratio of the winch 1 and the winch Na3 is 3:1, and the motor of the small capacity 11112 winch is O~1.
In the case of a variable speed electric motor of 200 rpm, the rotation speed of the two wire winding drums can be continuously variable from 0 to 6 rpm and from 12 to 24 rpm. Examples of combinations of motor rotation speed and reduction ratio to obtain winch performance suitable for large-scale, high-lift cranes are shown below. The drum generation torque ratio was set to 1.0. i,=]/20.12=
]/+8. &l The electric motor of the winch is O= l OOO
Loooorpm-2000rpm with constant torque
is a variable speed motor with constant power output characteristics, and the output torque of the wire winding drum and 1 are
The relationship between the number of revolutions generated is shown in Figure 3. In Figure 3, the shaded area shows the range of the output torque of the wire winding drum and the number of revolutions generated by the variable speed motor of the NQl winch. If the variable speed motor of the Nc2 winch is rotated in the direction of the arrow in Fig. 1 at 1100 rpm, the 22 wire winding drums will be 25 rpm.
pm and rotated at 2000 rpm in the direction of the arrow in the figure, the two wire winding drums will rotate at 50 rpm, and the torque generated by the wire winding drum at that time will be 172 for the former. Furthermore, if the variable speed motor of Arashi 1 winch is driven to rotate in the direction of the arrow in the figure at 2000 rpm, and the brake of &2 winch is loosened and the motor is driven to rotate in the direction of the arrow in the figure,
The two wire winding drums rotate at 1100 pp. Therefore, when the rated load of the crane is applied, the rotation speed of the wire winding drum can be changed arbitrarily from 0 to 25 rpm, and when the load is less than the rated load of the crane, the rotation speed of the wire winding drum can be changed depending on the load. The speed can be changed arbitrarily from 0 to a maximum of 50 rpm, and when the crane is unloaded, the speed can be changed arbitrarily from 0 to a maximum of 50 rpm, and when the crane is unloaded, the speed can be changed by driving a 2-winch electric motor that has the capacity to wind up tares such as crane hooks, wire ports, and bu. The rotation speed of the winding drum is 1100 rpm. In other words, when the crane is lightly loaded or unloaded, the rope speed can be increased without stopping the winch to change gears, increasing work efficiency, and this advantage is especially noticeable for high-lift cranes. Become. In addition, since the rotational speed of the variable speed motor at maximum torque output can be increased compared to conventional technology, the motor output torque becomes smaller, making the motor more compact.
Moreover, the capacity of the power supply device can be increased to tJs. FIGS. 4 and 5 show other embodiments of the present invention. FIG. 4 shows an embodiment using one electric motor, with a differential planetary reduction mechanism 21 built into the wire winding drum 22, an electromagnetic brake 23 on the input shaft, and one end of the reaction shaft 24 connected to another winch. In order to drive one winch input shaft and its input shaft by connecting two winches each having a reaction shaft gear 25 meshingly connected to each other, and connecting the motor 28 and the motor shaft to the input shafts of the two winches through a gear number. The rotational power of the electric motor 28 is transmitted to two winches by connecting the electromagnetic clutch 26, and one winch by disengaging the electromagnetic clutch 26. The effect of the present invention described above can be obtained by transmitting the information to the . FIG. 5 shows an applied embodiment of the present invention in which two sets of differential planetary reduction mechanisms and reaction force shaft gears are housed in a gear box. Two sets of reaction shaft gears of a gear device, consisting of a reaction shaft gear 32 integrated with an internal gear 31 and an output gear 34 integrated with an internal gear 33 that obtains the rotational output of the device. 32 and the output gear 34 are engaged via the idle gear 35 and housed in the gear box 36. An output pinion 37 is provided on the output shaft 36 which is integrated with the output gear and projects outside the gear box, and meshes with a drum gear 39 provided on the flange of the wire winding drum 38. are connected to an electric motor 41 and an electromagnetic brake 42, respectively, outside the gear box.In this embodiment, the number of revolutions generated by the output pinion due to the start/stop and forward/reverse operations of the two electric motors is the same as the operation of the present invention described above. The torque that is equally distributed to the two wire winding drums in the embodiment described above is concentrated in one output pinion 37 in this embodiment. [Effects of the Invention] The present invention described in detail above makes it possible to change the rope speed with a simple structure, which makes it possible to reduce the size and weight compared to conventional devices of this type, and to start and stop multiple prime movers. Since various rope speeds can be obtained by forward and reverse operations, the rope speed can be changed without stopping the device, and the device can provide high work efficiency. Furthermore, one of the multiple prime movers used is a variable speed prime mover, which enables stepless speed change over the required rope speed range and lob speed range. This makes it possible to reduce the capacity of an expensive variable speed prime mover, and to achieve continuously variable rope speed at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・・・・実施例の装置機構図 第2図・・・・本発明の装置をクレーンに塔載した場合
のワイヤリング図 第3図・・・・ クレーン用ウィンチの出力特性図第4
図・・・・電動機1台による実施例の装置機構図 第5図 本発明の作用を得る歯車装置をギ ヤーボックスに収納した実施例の 装置機構図
Figure 1: Mechanical diagram of the device according to the embodiment Figure 2: Wiring diagram when the device of the present invention is mounted on a crane Figure 3: Output characteristics diagram of the crane winch Figure 4
Figure: A mechanical diagram of an embodiment using one electric motor. Figure 5: A mechanical diagram of an embodiment in which a gear device that obtains the effects of the present invention is housed in a gear box.

Claims (1)

【特許請求の範囲】[Claims] 遊星減速機構等の入力回転中心と出力回転中心を同一軸
芯となす減速機構を、ワイヤー巻取りドラムに内蔵した
ウインチのワイヤー巻取りドラムの回転反力を受ける軸
(以後反力軸と称す)をウインチ外部へ回転自由に突出
し、該構造となした複数台のウインチの反力軸を動力伝
達手段により連結したことを特徴とするワイヤーロープ
の巻込み巻出し装置。
A shaft that receives the rotational reaction force of the wire winding drum of a winch that has a speed reduction mechanism (such as a planetary speed reduction mechanism) whose input rotation center and output rotation center are on the same axis built into the wire winding drum (hereinafter referred to as the reaction force shaft) 1. A wire rope winding and unwinding device, characterized in that the wire rope rotatably projects outside the winch, and the reaction shafts of a plurality of winches having the above structure are connected by a power transmission means.
JP18551190A 1990-07-12 1990-07-12 Wire rope winding and unwinding device Expired - Fee Related JP2816891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18551190A JP2816891B2 (en) 1990-07-12 1990-07-12 Wire rope winding and unwinding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18551190A JP2816891B2 (en) 1990-07-12 1990-07-12 Wire rope winding and unwinding device

Publications (2)

Publication Number Publication Date
JPH0472296A true JPH0472296A (en) 1992-03-06
JP2816891B2 JP2816891B2 (en) 1998-10-27

Family

ID=16172067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18551190A Expired - Fee Related JP2816891B2 (en) 1990-07-12 1990-07-12 Wire rope winding and unwinding device

Country Status (1)

Country Link
JP (1) JP2816891B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403550B1 (en) * 2001-12-06 2003-10-30 국방과학연구소 Multi drum winch with multi layer structure
JP2008229073A (en) * 2007-03-22 2008-10-02 Kayaba System Machinery Kk Point hanging device
JP2011131985A (en) * 2009-12-24 2011-07-07 Tsuryo Technica Corp Automatic conveying device, plating device using the same, and conveying robot
US8640895B2 (en) 2009-07-28 2014-02-04 Manitowoc Crane Companies, Llc Drum tensioning method and apparatus for load hoist wire rope
CN105110221A (en) * 2015-08-25 2015-12-02 江苏科技大学 Differential planetary reducer for crane
CN106904517A (en) * 2017-04-06 2017-06-30 中国矿业大学 A kind of extra deep shaft elevator and method for improving
CN106927347A (en) * 2017-04-06 2017-07-07 中国矿业大学 Rope winding hoisting machine and winding method more than a kind of deep vertical

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403550B1 (en) * 2001-12-06 2003-10-30 국방과학연구소 Multi drum winch with multi layer structure
JP2008229073A (en) * 2007-03-22 2008-10-02 Kayaba System Machinery Kk Point hanging device
US8640895B2 (en) 2009-07-28 2014-02-04 Manitowoc Crane Companies, Llc Drum tensioning method and apparatus for load hoist wire rope
JP2011131985A (en) * 2009-12-24 2011-07-07 Tsuryo Technica Corp Automatic conveying device, plating device using the same, and conveying robot
CN105110221A (en) * 2015-08-25 2015-12-02 江苏科技大学 Differential planetary reducer for crane
CN106904517A (en) * 2017-04-06 2017-06-30 中国矿业大学 A kind of extra deep shaft elevator and method for improving
CN106927347A (en) * 2017-04-06 2017-07-07 中国矿业大学 Rope winding hoisting machine and winding method more than a kind of deep vertical

Also Published As

Publication number Publication date
JP2816891B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US8771127B2 (en) Differential output control
US7128680B2 (en) Compound differential dual power path transmission
US7645205B2 (en) Electrically-variable transmission with two differential gear sets
CN105164045B (en) Cable hoist
US20080207372A1 (en) Three mode electrically-variable transmission
JPH0472296A (en) Device for taking up and paying off wire rope
JP2000094973A (en) Transmission and hybrid vehicle using it
US10727717B2 (en) Damping system for generating electrical power
JP2705316B2 (en) Drum rotation device and rotation method
JP2562418B2 (en) Power transmission starter
US4216942A (en) Double-drum winch
JP2005263420A (en) Structure of winch
JP3585024B2 (en) Single crystal pulling device
CN2628509Y (en) Double-speed quick-releasing hoister mechanism
CN214756012U (en) Birotor permanent magnet synchronous motor with auxiliary starting device
JPH0617829Y2 (en) Winch device
JP5226578B2 (en) Handling equipment
CN213472776U (en) Power driving system and vehicle with same
KR102074910B1 (en) Rotating apparatus capable of rapid accelerating
EP3787159A1 (en) Damping system for generating electrical power
JPH1160170A (en) Transmission and lifting and rotary device
JPH05132292A (en) Winch for civil engineering and construction machinery
JPH0297751A (en) Continuously variable transmission
CN87208336U (en) Double drum winding engine driven by epicyclic gear
JPS6216999A (en) Winch

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees