JPH0472140B2 - - Google Patents

Info

Publication number
JPH0472140B2
JPH0472140B2 JP58169956A JP16995683A JPH0472140B2 JP H0472140 B2 JPH0472140 B2 JP H0472140B2 JP 58169956 A JP58169956 A JP 58169956A JP 16995683 A JP16995683 A JP 16995683A JP H0472140 B2 JPH0472140 B2 JP H0472140B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pressure
heat exchanger
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58169956A
Other languages
Japanese (ja)
Other versions
JPS6060467A (en
Inventor
Shohei Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16995683A priority Critical patent/JPS6060467A/en
Publication of JPS6060467A publication Critical patent/JPS6060467A/en
Publication of JPH0472140B2 publication Critical patent/JPH0472140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、圧縮機、四方弁、利用側熱交換器、
減圧装置、熱源側熱交換器から冷媒回路を構成し
たヒートポンプ式冷凍装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention provides a compressor, a four-way valve, a user-side heat exchanger,
The present invention relates to a heat pump type refrigeration system in which a refrigerant circuit is composed of a pressure reducing device and a heat exchanger on the heat source side.

(ロ) 従来技術 ヒートポンプ式冷凍装置は第1図に示すよう構
成されていた。
(b) Prior art A heat pump type refrigeration system was constructed as shown in Fig. 1.

1は圧縮機、2は四方弁で暖房運転時は第1図
の状態となり、冷房(除霜)運転時は第2図の状
態となるようにしてある。3は利用側熱交換器
で、暖房運転時に凝縮器として作用し、冷房運転
時に蒸発器として作用する。4は減圧装置、5は
熱源側熱交換器で、暖房運転時に蒸発器として作
用し冷房運転時に凝縮器として作用する。
1 is a compressor, and 2 is a four-way valve, which is configured to be in the state shown in FIG. 1 during heating operation and to be in the state shown in FIG. 2 during cooling (defrosting) operation. Reference numeral 3 denotes a user-side heat exchanger, which acts as a condenser during heating operation and as an evaporator during cooling operation. 4 is a pressure reducing device, and 5 is a heat source side heat exchanger, which acts as an evaporator during heating operation and as a condenser during cooling operation.

この四方弁2は暖房運転時ソレノイドコイル6
に通電させてプランジヤ7を左方へ動かし第1図
のようにポート8を開放する。従つて圧縮機1の
吐出配管9の高圧圧力P1の冷媒が破線矢印の如
く配管10aからポート8、配管10bを通つて
バルブ11の右側面12を押し、バルブ11は左
に位置する。そして圧縮機1の吐出配管9と利用
側熱交換器3の接続配管13とを連通し、圧縮機
1の吸込管14と熱源側熱交換器5の接続配管1
5とを連通する。このようにして圧縮機1から吐
出された冷媒を第1図の実線矢印の如く循環させ
る。
This four-way valve 2 has a solenoid coil 6 during heating operation.
energize and move the plunger 7 to the left to open the port 8 as shown in FIG. Therefore, the refrigerant at the high pressure P 1 in the discharge pipe 9 of the compressor 1 passes from the pipe 10a to the port 8 and the pipe 10b as indicated by the broken line arrow, and pushes the right side surface 12 of the valve 11, so that the valve 11 is located on the left. The discharge pipe 9 of the compressor 1 and the connection pipe 13 of the heat exchanger 3 on the user side are connected, and the suction pipe 14 of the compressor 1 and the connection pipe 1 of the heat exchanger 5 on the heat source side are connected.
5. In this way, the refrigerant discharged from the compressor 1 is circulated as indicated by the solid line arrows in FIG.

一方冷房運転時はソレノイドコイル6への通電
を止めてバネ16の力でプランジヤ7を右方へ動
かし第2図のようにポート8を閉鎖する。従つて
圧縮機1の吸込配管14の低圧圧力P2の冷媒が
破線矢印の如く配管17,10bを通つてバルブ
11の右側面12を押す。これに対し圧縮機1の
吐出配管9の高圧圧力P1の冷媒がバルブ11の
左側面18を押す。すなわちバルブ11の左側面
18にかかる冷媒の圧力の方が右側面12にかか
る冷媒の圧力よりも大きいため、バルブ11は右
側に位置する。そして圧縮機1の吐出配管9と熱
源側熱交換器5の接続配管15とを連通し、圧縮
機1の吸込管14と利用側熱交換器3の接続配管
13とを連通する。このようにして圧縮機1から
吐出された冷媒を第2図の実線矢印の如く循環さ
せる。
On the other hand, during cooling operation, the energization to the solenoid coil 6 is stopped and the plunger 7 is moved to the right by the force of the spring 16 to close the port 8 as shown in FIG. Therefore, the refrigerant at the low pressure P 2 in the suction pipe 14 of the compressor 1 passes through the pipes 17 and 10b as indicated by the broken line arrow and pushes the right side surface 12 of the valve 11. In contrast, the refrigerant at the high pressure P 1 in the discharge pipe 9 of the compressor 1 presses the left side surface 18 of the valve 11 . That is, since the pressure of the refrigerant applied to the left side surface 18 of the valve 11 is greater than the pressure of the refrigerant applied to the right side surface 12, the valve 11 is located on the right side. Then, the discharge pipe 9 of the compressor 1 and the connection pipe 15 of the heat source side heat exchanger 5 are communicated, and the suction pipe 14 of the compressor 1 and the connection pipe 13 of the utilization side heat exchanger 3 are communicated. In this way, the refrigerant discharged from the compressor 1 is circulated as shown by the solid arrow in FIG.

このような構成を備えた空気調和機において暖
房運転から冷房(除霜)運転に切り換える時は第
3図に示すように四方弁2を動作させていた。
In an air conditioner having such a configuration, when switching from heating operation to cooling (defrosting) operation, the four-way valve 2 is operated as shown in FIG. 3.

圧縮機1の運転を止めて暖房運転を停止させた
後、一定時間(約1分)四方弁2は第1図の暖房
運転の状態を保持するようにしていた。そして圧
縮機1の吐出配管9のA地点の冷媒の高圧圧力
と、圧縮機1の吸込配管14のB地点の冷媒の低
圧圧力との差を小さくするようにしていた(第3
図○ロの領域)。この圧力差(ΔP)がある程度(6
Kg/cm2)小さくなつたら四方弁2を第2図の除霜
(冷房)運転の状態に切り換えて高圧の冷媒と低
圧の冷媒とを混合させていた(第3図○ロ′地点)。
その後混合された冷媒が安定する時間(約6秒)
をおいて(第3図○ハ′)、圧縮機1を運転し、冷房
(除霜)運転を開始するようにしていた(第3図
○ニ領域)。
After the operation of the compressor 1 was stopped and the heating operation was stopped, the four-way valve 2 was kept in the heating operation state shown in FIG. 1 for a certain period of time (about 1 minute). The difference between the high pressure of the refrigerant at point A of the discharge pipe 9 of the compressor 1 and the low pressure of the refrigerant at point B of the suction pipe 14 of the compressor 1 is made small (third
Area shown in Figure ○○). This pressure difference (ΔP) is to a certain extent (6
Kg/cm 2 ) When it became smaller, the four-way valve 2 was switched to the defrosting (cooling) mode shown in Figure 2 to mix high-pressure refrigerant and low-pressure refrigerant (point ○Ro' in Figure 3).
Time for the mixed refrigerant to stabilize (approximately 6 seconds)
(Fig. 3, ○C'), the compressor 1 was operated, and cooling (defrosting) operation was started (Fig. 3, ○D area).

このような四方弁2の動作を行なわせると、第
3図○ハ領域で次のような不具合が生じる。すなわ
ち、冷媒が混合されたことによりA地点の冷媒の
圧力は下がりB地点の冷媒の圧力は上がり冷媒圧
力は共に6Kg/cm2となる。ここでさきほどまで暖
房運転をしていたので利用側熱交換器3の温度は
約23℃、熱源側熱交換器5の温度は約−7℃とな
つている。従つて利用側熱交換器3並びにこの熱
交換器の接続配管13内の冷媒は加熱され膨張
し、B地点での冷媒の圧力は7Kg/cm2となる(第
3図○ハ′領域)。一方熱源側熱交換器5並びにこの
熱交換器の接続配管15内の冷媒は冷却され縮少
しA地点での冷媒の圧力は5.5Kg/cm2となる(第3
図○ハ′領域)。従つて第2図バルブ11の状でバル
ブの凹部19の下面20の方が上面21より大き
な圧力が加わる。そのためこのバルブ19が押し
上げられこのバルブの凹部19と弁座との間から
冷媒が漏れることにより、この凹部19が上下に
振動して、四方弁2の異常音の発生の一因となつ
ていた。
If the four-way valve 2 is operated in this manner, the following problems will occur in the area ○C in FIG. 3. That is, by mixing the refrigerants, the pressure of the refrigerant at point A decreases, and the pressure of the refrigerant at point B increases, both of which become 6 kg/cm 2 . Since the heating operation was being performed until now, the temperature of the user side heat exchanger 3 is about 23°C, and the temperature of the heat source side heat exchanger 5 is about -7°C. Therefore, the refrigerant in the user-side heat exchanger 3 and the connecting pipe 13 of this heat exchanger is heated and expanded, and the pressure of the refrigerant at point B becomes 7 kg/cm 2 (region ○C' in FIG. 3). On the other hand, the refrigerant in the heat source side heat exchanger 5 and the connecting pipe 15 of this heat exchanger is cooled and contracted, and the pressure of the refrigerant at point A becomes 5.5 Kg/cm 2 (third
Figure ○C’ area). Therefore, in the form of the valve 11 in FIG. 2, a greater pressure is applied to the lower surface 20 of the recess 19 of the valve than to the upper surface 21. As a result, the valve 19 is pushed up and refrigerant leaks from between the recess 19 of the valve and the valve seat, causing the recess 19 to vibrate up and down, which is a contributing factor to the generation of abnormal noise in the four-way valve 2. .

(ハ) 発明の目的 暖房運転もしくは冷房運転を停止させて冷房
(除霜)運転もしくは暖房運転を開始する時、四
方弁から異常音の発生するおそれを少なくするこ
とを目的としたものである。
(c) Purpose of the invention The purpose of the invention is to reduce the possibility of abnormal noise being generated from a four-way valve when heating or cooling operation is stopped and cooling (defrosting) operation or heating operation is started.

(ニ) 発明の構成 圧縮機、四方弁、利用側熱交換器、減圧装置、
熱源側熱交換器を順次冷媒配管でつなぎ、暖房運
転から除霜運転への切り換え時に、前記圧縮機の
運転を停止させてから一定時間後に前記四方弁を
切り換えた後に前記圧縮機の運転を再開させるヒ
ートポンプ式冷凍装置において、この四方弁の切
り換えによつて前記圧縮機の吸込配管が暖房運転
中に凝縮器として作用していた前記利用側熱交換
器とつながりこの吸込配管内の冷媒がこの利用側
熱交換器の熱で加熱されてその冷媒圧力が上昇す
ると共に前記圧縮機の吐出配管が暖房運転中に蒸
発器として作用していた前記熱源側熱交換器とつ
ながりこの吐出配管内の冷媒がこの熱源側熱交換
器の熱で冷却されてその冷媒圧力が下降する際、
前記圧縮機の吸込配管の冷媒圧力が前記圧縮機の
吐出配管の冷媒圧力よりも高くなる前にこの圧縮
機の運転を再開させるようにしたものである。
(d) Configuration of the invention Compressor, four-way valve, user-side heat exchanger, pressure reducing device,
The heat source side heat exchangers are sequentially connected with refrigerant piping, and when switching from heating operation to defrosting operation, operation of the compressor is stopped, and after a certain period of time, the four-way valve is switched, and then operation of the compressor is restarted. In a heat pump type refrigeration system, by switching this four-way valve, the suction pipe of the compressor is connected to the user-side heat exchanger, which was acting as a condenser during heating operation, and the refrigerant in this suction pipe is used. The pressure of the refrigerant increases as it is heated by the heat of the side heat exchanger, and the discharge pipe of the compressor connects with the heat source side heat exchanger, which was acting as an evaporator during heating operation, and the refrigerant in this discharge pipe increases. When the refrigerant pressure decreases due to cooling by the heat of this heat source side heat exchanger,
The compressor is restarted before the refrigerant pressure in the suction pipe of the compressor becomes higher than the refrigerant pressure in the discharge pipe of the compressor.

(ホ) 実施例 第4図において、22はヒートポンプ式空気調
和機で、第1図に示した圧縮機1、四方弁2、熱
源側熱交換器5、利用側熱交換器3、減圧装置4
が環状に接続されている。この減圧装置4は冷暖
兼用減圧素子4aと、暖房用減圧素子4bと、冷
房運転時のみ開放される逆止弁4cとから構成さ
れている。そして四方弁を暖房運転時は実線状態
に冷房運転時は破線状態に切り換えて圧縮機から
吐出された冷媒を暖房運転時は実線矢印のよう
に、冷房運転時は破線矢印のように流して室内を
冷房、暖房するようになつている。
(E) Example In FIG. 4, 22 is a heat pump type air conditioner, which includes the compressor 1, four-way valve 2, heat source side heat exchanger 5, user side heat exchanger 3, and pressure reducing device 4 shown in FIG.
are connected in a ring. This pressure reducing device 4 includes a cooling/heating pressure reducing element 4a, a heating pressure reducing element 4b, and a check valve 4c that is opened only during cooling operation. Then, the four-way valve is switched to the solid line state during heating operation and the broken line state during cooling operation, allowing the refrigerant discharged from the compressor to flow indoors as shown by the solid line arrow during heating operation and as shown by the dashed line arrow during cooling operation. Air conditioning and heating are now available.

第5図はその四方弁2と圧縮機1との動作状態
並びに冷媒の圧力状態を示すものである。
FIG. 5 shows the operating states of the four-way valve 2 and compressor 1 as well as the pressure state of the refrigerant.

暖房運転中は圧縮機1を運転させ、四方弁2へ
通電し、四方弁2を第4図の実線のように暖房運
転の状態にする。この暖房運転中、圧縮機1の吐
出配管9のA地点の冷媒の高圧圧力は17.5Kg/cm2
圧縮機1の吸込配管14のB地点の冷媒の低圧圧
力は2.5Kg/cm2となつている(第5図○イ領域)。そ
して、熱源側熱交換器5に生成された霜を溶かす
(除霜運転を行なう)時は、まず圧縮機1を止め
る。その後1分間四方弁2を暖房運転の状態に保
持する。そしてA地点の冷媒の圧力は9Kg/cm2
下がり、B地点の冷媒の圧力は3Kg/cm2に上がつ
て、両地点での圧力差(ΔP)を6Kg/cm2と小さく
する(第5図○ロ領域)。次に四方弁2への通電を
止めて四方弁2を除霜(冷房)運転の状態とする
(第5図○ハ領域)。その2秒後に圧縮機1の運転を
開始して除霜(冷房)運転にはいる(第5図○ニ領
域)。
During the heating operation, the compressor 1 is operated, the four-way valve 2 is energized, and the four-way valve 2 is placed in the heating operation state as shown by the solid line in FIG. During this heating operation, the high pressure of the refrigerant at point A of the discharge pipe 9 of the compressor 1 is 17.5 Kg/cm 2 ,
The low pressure of the refrigerant at point B of the suction pipe 14 of the compressor 1 is 2.5 kg/cm 2 (region ○A in Figure 5). When melting the frost generated on the heat source side heat exchanger 5 (performing defrosting operation), the compressor 1 is first stopped. Thereafter, the four-way valve 2 is maintained in the heating operation state for one minute. Then, the pressure of the refrigerant at point A decreases to 9 kg/cm 2 and the pressure of the refrigerant at point B rises to 3 kg/cm 2 , reducing the pressure difference (ΔP) at both points to 6 kg/cm 2 (the (Fig. 5). Next, the power supply to the four-way valve 2 is stopped, and the four-way valve 2 is placed in a defrosting (cooling) operation state (region ◯ in FIG. 5). Two seconds later, the compressor 1 starts operating and enters defrosting (cooling) operation (region ◯ in Figure 5).

前述の第5図○ハ領域について詳述すると次のよ
うになる。四方弁2を除霜運転の状態に切り換え
て、圧縮機1の吐出配管9と利用側熱交換器3の
接続配管13とを連通し、熱源側熱交換器5の接
続配管15と圧縮機1の吸込配管14とを連通す
る。そして冷媒回路の高圧冷媒と低圧冷媒とを混
合させる。2秒後に、A地点の冷媒圧力は9Kg/
cm2から6Kg/cm2に下がり、B地点の冷媒圧力は3
Kg/cm2から6Kg/cm2に上がる。この間は2秒と短か
いので、利用側熱交換器3並びに接続配管13内
の冷媒は利用側熱交換器3の熱による加熱を受け
にくく、B地点での冷媒圧力は6Kg/cm2を保持す
る。又熱源側熱交換器5並びに接続配管15内の
冷媒も熱源側熱交換器5の熱による冷却を受けに
くく、A地点での冷媒圧力も6Kg/cm2を保持する。
このように2秒後にはA地点、B地点共に略同一
の冷媒圧力となり、第2図に示した四方弁2のバ
ルブ11の凹部19の上面19と下面20とを同
一の圧力で押す。
The above-mentioned area ○C in FIG. 5 will be described in detail as follows. The four-way valve 2 is switched to the defrosting operation state, the discharge pipe 9 of the compressor 1 and the connection pipe 13 of the user side heat exchanger 3 are connected, and the connection pipe 15 of the heat source side heat exchanger 5 and the compressor 1 are connected. The suction pipe 14 is connected to the suction pipe 14 . Then, the high-pressure refrigerant and low-pressure refrigerant in the refrigerant circuit are mixed. After 2 seconds, the refrigerant pressure at point A is 9Kg/
cm2 to 6Kg/ cm2 , and the refrigerant pressure at point B is 3
Increases from Kg/cm 2 to 6Kg/cm 2 . Since this period is as short as 2 seconds, the refrigerant in the user-side heat exchanger 3 and the connecting pipe 13 is not easily heated by the heat of the user-side heat exchanger 3, and the refrigerant pressure at point B is maintained at 6 kg/cm 2 . do. Furthermore, the refrigerant in the heat source side heat exchanger 5 and the connecting pipe 15 is not easily cooled by the heat of the heat source side heat exchanger 5, and the refrigerant pressure at point A is also maintained at 6 kg/cm 2 .
In this manner, after two seconds, the refrigerant pressure becomes approximately the same at both points A and B, and the same pressure presses the upper surface 19 and lower surface 20 of the recess 19 of the valve 11 of the four-way valve 2 shown in FIG.

一方、除霜(冷媒)運転中は圧縮機1を運転さ
せ、四方弁2への通電を停止して四方弁を破線の
ように除霜運転の状態にする。この除霜運転中、
A地点の冷媒の高圧圧力は4.5Kg/cm2から9.5Kg/cm2
に、B地点の冷媒の低圧圧力は1.5Kg/cm2になる
(第5図○ニ領域)。除霜(冷媒)運転を停止させる
時は、まず圧縮機1を止める。その後約30秒間四
方弁2をこの除霜運転の状態に保持する。そして
A地点の冷媒の圧力は7Kg/cm2に下がり、B地点
の冷媒の圧力は3Kg/cm2に上がり、両地点での圧
力差(ΔP)を小さく(4Kg/cm2)する(第5図○ホ
領域)。次に四方弁2への通電を開始して四方弁
2を暖房運転の状態とする(第5図○ヘ領域)。そ
の2秒後に圧縮機1の運転を開始して暖房運転に
はいる。(第5図○ハ領域)。
On the other hand, during the defrosting (refrigerant) operation, the compressor 1 is operated, and the power supply to the four-way valve 2 is stopped, so that the four-way valve is in the defrosting operation state as shown by the broken line. During this defrosting operation,
The high pressure of the refrigerant at point A is 4.5Kg/cm 2 to 9.5Kg/cm 2
At this point, the low pressure of the refrigerant at point B becomes 1.5Kg/cm 2 (circle area in Figure 5). When stopping the defrosting (refrigerant) operation, first stop the compressor 1. Thereafter, the four-way valve 2 is maintained in this defrosting operation state for about 30 seconds. Then, the pressure of the refrigerant at point A decreases to 7Kg/cm 2 and the pressure of the refrigerant at point B increases to 3Kg/cm 2 , reducing the pressure difference (ΔP) at both points to a small value (4Kg/cm 2 ). Figure ○ area). Next, energization to the four-way valve 2 is started to put the four-way valve 2 into a heating operation state (region ○ in FIG. 5). Two seconds later, the compressor 1 starts operating and enters heating operation. (Fig. 5).

前述の第5図○ヘ領域について詳述すると次のよ
うになる。四方弁2の切り換えで、圧縮機1の吐
出配管9と利用側熱交換器3の接続配管13とが
連通し、熱源側熱交換器5の接続配管15と圧縮
機1の吸込配管14とが連通する。そして冷媒回
路の高圧冷媒と低圧冷媒とを混合させる。2秒後
にA地点の冷媒圧力は7Kg/cm2から4.5Kg/cm2に下
がり、B地点の冷媒圧力は3Kg/cm2から4.5Kg/cm2
に上がる。一方、さきほどまで除霜運転をしてい
たため利用側熱交換器3は蒸発器として作用して
−7℃に冷却されている。しかし2秒間と短かい
ので、利用側熱交換器3並びに接続配管13内の
冷媒は利用側熱交換器3の熱による冷却を受けに
くくA地点での冷媒圧力は4.5Kg/cm2を保持する。
又除霜運転で熱源側熱交換器5は凝縮器として作
用して15℃に加熱されている。しかし2秒間と短
かいので、熱源側熱交換器5並びに接続配管15
内の冷媒は熱源側熱交換器5の熱による加熱を受
けにくくB地点での冷媒圧力も4.5Kg/cm2を保持す
る。
The above-mentioned area ◯ in FIG. 5 will be described in detail as follows. By switching the four-way valve 2, the discharge pipe 9 of the compressor 1 and the connection pipe 13 of the user-side heat exchanger 3 are brought into communication, and the connection pipe 15 of the heat source-side heat exchanger 5 and the suction pipe 14 of the compressor 1 are connected. communicate. Then, the high-pressure refrigerant and low-pressure refrigerant in the refrigerant circuit are mixed. After 2 seconds, the refrigerant pressure at point A decreases from 7Kg/cm 2 to 4.5Kg/cm 2 , and the refrigerant pressure at point B decreases from 3Kg/cm 2 to 4.5Kg/cm 2
go up to On the other hand, since the defrosting operation was being performed until recently, the user-side heat exchanger 3 acts as an evaporator and is cooled to -7°C. However, since it is only 2 seconds, the refrigerant in the user-side heat exchanger 3 and the connecting pipe 13 is not easily cooled by the heat of the user-side heat exchanger 3, so the refrigerant pressure at point A maintains 4.5 Kg/cm 2 .
Also, during the defrosting operation, the heat source side heat exchanger 5 acts as a condenser and is heated to 15°C. However, since it is only 2 seconds, the heat source side heat exchanger 5 and connection piping 15
The refrigerant inside is not easily heated by the heat of the heat source side heat exchanger 5, and the refrigerant pressure at point B is also maintained at 4.5 Kg/cm 2 .

このように2秒後にはA地点、B地点共に略同
一の冷媒圧力となり第1図に示した四方弁2のバ
ルブ11の凹部19の上面21と下面20とを同
一圧力で押す。
In this manner, after two seconds, the refrigerant pressure becomes substantially the same at both points A and B, and the same pressure presses the upper surface 21 and lower surface 20 of the recess 19 of the valve 11 of the four-way valve 2 shown in FIG.

上記実施例ではいずれも四方弁2を切り換えて
から2秒後に、圧縮機1を運転させるようにした
が、他の一実施例として第5図○ロ,○ホの領域の時
間を長くして差圧(ΔP)を小さくし、四方弁2
の切り換えと同時に圧縮機1を運転させてもよ
い。
In each of the above embodiments, the compressor 1 is operated two seconds after switching the four-way valve 2, but in another embodiment, the time in the regions ○B and ○H in Figure 5 is lengthened. Reduce the differential pressure (ΔP) and use the four-way valve 2
The compressor 1 may be operated simultaneously with the switching.

すなわち、A地点の冷媒圧力の方がB地点の冷
媒圧力よりも高い間に圧縮機1を運転させればよ
い。
That is, the compressor 1 may be operated while the refrigerant pressure at point A is higher than the refrigerant pressure at point B.

(ヘ) 発明の効果 圧縮機の運転を止めて暖房運転を停止すると共
に、四方弁を一定時間この暖房運転の状態に保持
させて冷媒回路の高圧圧力と低圧圧力との差を小
さくし、この一定時間経過後、四方弁を除霜運転
の状態にする。そして圧縮機の吸込配管の冷媒圧
力が圧縮機の吐出配管の冷媒圧力よりも高くなる
前に圧縮機の運転を再開するようにしたものであ
る。すなわち、四方弁のバルブを中心に見れば暖
房運転停止から除霜運転開始の間に蒸発器として
作用していた熱交換器からの熱で圧縮器の吐出配
管中の冷媒が冷却され又凝縮器として作用してい
た熱交換器からの熱で圧縮機の吸込配管中の冷媒
が加熱されてもバルブに加わる両冷媒圧力が反転
する前に圧縮機の運転が再開するので、バルブが
振動して四方弁から異常音の発生するおそれを少
なくすることができる。
(f) Effects of the invention The compressor operation is stopped to stop the heating operation, and the four-way valve is maintained in the heating operation state for a certain period of time to reduce the difference between the high pressure and the low pressure in the refrigerant circuit. After a certain period of time, the four-way valve is put into defrosting mode. The compressor is then restarted before the refrigerant pressure in the suction pipe of the compressor becomes higher than the refrigerant pressure in the discharge pipe of the compressor. In other words, if we focus on the four-way valve, the refrigerant in the discharge pipe of the compressor is cooled by the heat from the heat exchanger that was acting as an evaporator between the stop of heating operation and the start of defrosting operation, and the refrigerant in the discharge pipe of the compressor is cooled. Even if the refrigerant in the compressor suction pipe is heated by the heat from the heat exchanger, the compressor restarts before the pressure of both refrigerants applied to the valve is reversed, causing the valve to vibrate. It is possible to reduce the possibility that abnormal noise will be generated from the four-way valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来のヒートポンプ式冷凍
装置を示し、第1図第2図は異なる運転状態を示
す冷媒回路図、第3図は圧縮機と四方弁との動作
状態並びに冷媒回路の圧力状態を示す説明図、第
4図乃至第5図は本発明の一実施例のヒートポン
プ式冷凍装置を示し、第4図は冷媒回路図、第5
図は圧縮機と四方弁との動作状態並びに冷媒回路
の圧力状態を示す説明図である。 1…圧縮機、2…四方弁、3…利用側熱交換
器、4…減圧装置、5…熱源側熱交換器、9…吐
出配管、14…吸込配管。
Figures 1 to 3 show conventional heat pump refrigeration equipment, Figure 1 and Figure 2 are refrigerant circuit diagrams showing different operating states, and Figure 3 shows the operating states of the compressor and four-way valve as well as the refrigerant circuit. Explanatory diagrams showing the pressure state, FIGS. 4 and 5 show a heat pump type refrigeration system according to an embodiment of the present invention, FIG. 4 is a refrigerant circuit diagram, and FIG.
The figure is an explanatory diagram showing the operating states of the compressor and the four-way valve, as well as the pressure state of the refrigerant circuit. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3... Utilization side heat exchanger, 4... Pressure reduction device, 5... Heat source side heat exchanger, 9... Discharge piping, 14... Suction piping.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、四方弁、利用側熱交換器、減圧装
置、熱源側熱交換器を順次冷媒配管でつなぎ、暖
房運転から除霜運転への切り換え時に、前記圧縮
機の運転を停止させてから、一定時間後に前記四
方弁を切り換えた後に前記圧縮機の運転を再開さ
せるヒートポンプ式冷凍装置において、この四方
弁の切り換えによつて前記圧縮機の吸込配管が暖
房運転中に凝縮器として作用していた前記利用側
熱交換器とつながりこの吸込配管内の冷媒がこの
利用側熱交換器の熱で加熱されてその冷媒圧力が
上昇すると共に前記圧縮機の吐出配管が暖房運転
中に蒸発器として作用していた前記熱源側熱交換
器とつながりこの吐出配管内の冷媒がこの熱源側
熱交換器の熱で冷却されてその冷媒圧力が下降す
る際、前記圧縮機の吸込配管の冷媒圧力が前記圧
縮機の吐出配管の冷媒圧力よりも高くなる前にこ
の圧縮機の運転を再開させることを特徴とするヒ
ートポンプ式冷凍装置の運転制御方法。
1. Connect the compressor, four-way valve, user-side heat exchanger, pressure reduction device, and heat source-side heat exchanger in sequence with refrigerant piping, and when switching from heating operation to defrosting operation, stop the operation of the compressor, and then In a heat pump refrigeration system in which the compressor restarts operation after switching the four-way valve after a certain period of time, the suction pipe of the compressor acts as a condenser during heating operation by switching the four-way valve. The refrigerant in this suction pipe connected to the user-side heat exchanger is heated by the heat of the user-side heat exchanger and the refrigerant pressure increases, and the discharge pipe of the compressor acts as an evaporator during heating operation. When the refrigerant in this discharge pipe is cooled by the heat of this heat source side heat exchanger and its refrigerant pressure decreases, the refrigerant pressure in the suction pipe of the compressor decreases to A method for controlling the operation of a heat pump type refrigeration apparatus, characterized in that the operation of the compressor is restarted before the refrigerant pressure becomes higher than the refrigerant pressure in the discharge piping of the apparatus.
JP16995683A 1983-09-13 1983-09-13 Heat pump type refrigerator Granted JPS6060467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16995683A JPS6060467A (en) 1983-09-13 1983-09-13 Heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16995683A JPS6060467A (en) 1983-09-13 1983-09-13 Heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS6060467A JPS6060467A (en) 1985-04-08
JPH0472140B2 true JPH0472140B2 (en) 1992-11-17

Family

ID=15895960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16995683A Granted JPS6060467A (en) 1983-09-13 1983-09-13 Heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS6060467A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935625B2 (en) * 2012-09-20 2016-06-15 株式会社デンソー Refrigeration cycle controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120403A (en) * 1976-04-02 1977-10-08 Mitsubishi Electric Corp Preventive device of overloaded starting of compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54175646U (en) * 1978-05-26 1979-12-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120403A (en) * 1976-04-02 1977-10-08 Mitsubishi Electric Corp Preventive device of overloaded starting of compressor

Also Published As

Publication number Publication date
JPS6060467A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
JP2005140444A (en) Air conditioner and its control method
JPS6325471A (en) Air conditioner
JP3342145B2 (en) Air conditioner
JPH0472140B2 (en)
JPH05340619A (en) Low pressure stage refrigerant system in double-pressure type freezer device
CN210089178U (en) Air conditioner defrosting system
JP2003056887A (en) Air conditioner and method for controlling the same
JPH06265242A (en) Engine driven heat pump
JP2924954B2 (en) Heat pump system for both cooling and heating
JP3583792B2 (en) Hot water supply / air conditioning system
JP2004233015A (en) Air conditioner
JPH10148413A (en) Air-conditioning equipment
JP3099574B2 (en) Air conditioner pressure equalizer
JPH1062026A (en) Air conditioner
JPH06272992A (en) Air conditioner
JPS5888548A (en) Heat pump type floor heating device
JP2827656B2 (en) Heat transfer device
JP3778687B2 (en) Four-way valve switching method for air conditioner and air conditioner
JP2504236B2 (en) Air conditioner
JPS6233264A (en) Method of controlling rise of heat pump type air conditioner
JP3269432B2 (en) Control device for air conditioner equipped with refrigerant heating device
JPH0120709B2 (en)
JPS5956052A (en) Controller for flow of refrigerant of refrigerator
JPH03236559A (en) Operation control method for heat pump type cooling heating hot water feeder
JPH1062030A (en) Air conditioner