JPS6233264A - Method of controlling rise of heat pump type air conditioner - Google Patents

Method of controlling rise of heat pump type air conditioner

Info

Publication number
JPS6233264A
JPS6233264A JP17360485A JP17360485A JPS6233264A JP S6233264 A JPS6233264 A JP S6233264A JP 17360485 A JP17360485 A JP 17360485A JP 17360485 A JP17360485 A JP 17360485A JP S6233264 A JPS6233264 A JP S6233264A
Authority
JP
Japan
Prior art keywords
air conditioner
compressor
heat pump
type air
pump type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17360485A
Other languages
Japanese (ja)
Inventor
隆弘 増田
仁 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17360485A priority Critical patent/JPS6233264A/en
Publication of JPS6233264A publication Critical patent/JPS6233264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒートポンプ式空気調和機の立上逆制御に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to start-up reverse control of a heat pump type air conditioner.

従来の技術 近年、ヒートポンプ式空気調和機は、省エネルギの観点
よシヒータレス化が進むと共に、高能力確保のためにイ
ンバータ機種へと推移している。
BACKGROUND OF THE INVENTION In recent years, heat pump type air conditioners have become increasingly shiftless in order to save energy, and in order to ensure high performance, there has been a shift towards inverter models.

さらに、形態の多様化や設置スペース制限により、室内
外の接続配管も長くなる傾向にある。
Furthermore, due to the diversification of shapes and restrictions on installation space, indoor and outdoor connection pipes are also becoming longer.

前者は熱交換器容量の増加につながシ、後者の接続配管
の伸びと共に、冷凍サイクルを構成する配管が長くなシ
、その分だけ最適冷媒量も増加し多冷媒状態となってぐ
る。このため、主として圧縮機の起動時に液状態で吸入
される恐れが増してき、対策として、多冷媒分に余分の
液だめ部を設ける方法や、低圧側と高圧側の熱交換によ
シ液冷媒を蒸発させる方法がとられてきた。
The former leads to an increase in the capacity of the heat exchanger, while the latter leads to an increase in the length of the connecting piping, and as the piping constituting the refrigeration cycle becomes longer, the optimum amount of refrigerant increases accordingly, resulting in a multi-refrigerant state. For this reason, there is an increasing risk that liquid refrigerants will be sucked in when starting up the compressor, and countermeasures include methods of providing extra liquid reservoirs for multiple refrigerants, and methods of removing liquid refrigerants by heat exchange between the low-pressure side and the high-pressure side. A method has been used to evaporate the

後者は、省スペース化の観点から不具合であシ、後者の
手法も多くの問題を含んでいる。
The latter method is problematic from the standpoint of space saving, and the latter method also includes many problems.

以下図面を参照しながら、上述したヒートポンプ式空気
調和機の立上逆制御の一例について説明する。
An example of start-up reverse control of the heat pump air conditioner described above will be described below with reference to the drawings.

第3図は従来のヒートポンプ式空気調和機の立上逆制御
に関する冷凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram regarding start-up reverse control of a conventional heat pump type air conditioner.

第3図において、101は圧縮機、102は室外側熱交
換器、103はキャピラリチューブ、104は室内側熱
交換器で、いわゆる冷房用の冷凍サイクルを構成してい
る。この冷凍サイクルで、低圧側の吸入管105は、圧
縮機101に吸入される前に、室外側熱交換器102と
キャピラリーチューブ103の間の接続管106と熱交
換部107にて近接している。
In FIG. 3, 101 is a compressor, 102 is an outdoor heat exchanger, 103 is a capillary tube, and 104 is an indoor heat exchanger, which constitute a so-called refrigeration cycle for cooling. In this refrigeration cycle, the low pressure side suction pipe 105 is in close proximity to the connecting pipe 106 between the outdoor heat exchanger 102 and the capillary tube 103 at the heat exchange section 107 before being sucked into the compressor 101. .

以上のように構成されたヒートポンプ式空気調和機の立
上り制御において、以下その動作について説明する。 
The operation of the start-up control of the heat pump air conditioner configured as described above will be described below.
.

まず、圧縮機101によシ加圧された高圧高温の冷媒ガ
スは、室外側熱交換器102で放熱し凝縮され高温の冷
媒液となシ、さらにキャピラリチューブ103にて減圧
され低温の冷媒液となシ室内側熱交換器104で蒸発さ
れ低温の冷媒ガスとなって圧縮機101にもどる。
First, the high-pressure, high-temperature refrigerant gas pressurized by the compressor 101 radiates heat in the outdoor heat exchanger 102 and is condensed into a high-temperature refrigerant liquid.Then, the pressure is further reduced in the capillary tube 103 and a low-temperature refrigerant liquid is generated. It is evaporated in the indoor heat exchanger 104 and returns to the compressor 101 as a low-temperature refrigerant gas.

この時、冷媒量が多いと、室内側熱交換器104で十分
蒸発されないので圧縮機101へ低温の冷媒液でもどる
現象が生ずる。そこで、室内側熱交換器104で蒸発で
きない分を新たに設けた熱交換部107にて蒸発させる
しくみとなっている。
At this time, if the amount of refrigerant is large, it will not be evaporated sufficiently in the indoor heat exchanger 104, and a phenomenon will occur in which a low-temperature refrigerant liquid returns to the compressor 101. Therefore, the amount that cannot be evaporated in the indoor heat exchanger 104 is evaporated in a newly provided heat exchange section 107.

(特開昭57−174660号公報) 発明が解決しようとする問題点 しかしながら上記のような構成では、冷房用サイクルに
のみ適用されるので、冷暖房兼用型では不具合が生ずる
。すなわち、冷凍サイクル上で高温高圧の冷媒液で在す
る所が、冷房と暖房のサイクルでは別な位置に存在し、
両者を成り立たせるには、複雑なバイパス回路が必要と
なり、冷凍サイクルを構成する配管が複雑になシ、スペ
ースも余分に必要となる。
(Japanese Unexamined Patent Publication No. 57-174660) Problems to be Solved by the Invention However, since the above-mentioned configuration is applied only to a cooling cycle, problems occur in a dual-purpose cooling/heating type. In other words, the high-temperature, high-pressure refrigerant liquid is present in the refrigeration cycle, but in the cooling and heating cycles it is located in a different location.
In order to achieve both, a complicated bypass circuit is required, the piping that constitutes the refrigeration cycle becomes complicated, and additional space is required.

本発明は、上記問題点に鑑み、圧縮機への液もどシを防
ぐ手段として、省スペース化を考慮し、冷暖房兼用型に
も適用可能なヒートポンプ式空気調和機の立上多制御を
提供するものである。
In view of the above-mentioned problems, the present invention provides multi-startup control for a heat pump type air conditioner, which can be applied to a dual-use air conditioner and air conditioner, in consideration of space saving, as a means of preventing liquid backflow to the compressor. It is something.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
気調−和機の立上多制御方法は、圧縮機、四方弁、室内
側熱交換器、減圧装置、室外側熱交換器を環状に連結し
てヒートポンプ式空気調和機の冷凍サイクルを構成し、
前記四方弁を経由して圧縮機に至る低圧側の吸入管に加
熱装置を備えたものである。
Means for Solving the Problems In order to solve the above problems, the start-up control method for a heat pump type air conditioner according to the present invention provides A refrigeration cycle of a heat pump air conditioner is constructed by connecting external heat exchangers in a ring.
A heating device is provided in the suction pipe on the low pressure side leading to the compressor via the four-way valve.

作  用 本発明は上記した構成によって、圧縮機の起動後の所定
の時間のみ加熱装置に通電し、四方弁を経由して圧縮機
に至る低圧側の吸入管を加熱し、液冷媒を十分に蒸発さ
せるので、主として起動時に起る圧縮機への液もどシが
解決されることになる。
According to the above-described configuration, the present invention energizes the heating device only for a predetermined period of time after starting the compressor, heats the suction pipe on the low pressure side leading to the compressor via the four-way valve, and makes sure that the liquid refrigerant is sufficiently absorbed. Since it is evaporated, the problem of liquid backflow to the compressor, which mainly occurs during startup, can be solved.

実施例 以下、本発明の一実施例のヒートポンプ式空気調和機の
立上り制御について図面を参照しながら説明する。
Embodiment Hereinafter, startup control of a heat pump type air conditioner according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のヒートポンプ式空気調和機
の立上多制御を実現する冷凍サイクルを示すものである
FIG. 1 shows a refrigeration cycle for realizing multiple start-up control of a heat pump type air conditioner according to an embodiment of the present invention.

第1図において、1は圧縮機、2は四方弁、3は室内側
熱交換器、4はキャピラリチューブ、5は室外側熱交換
器、6は四方弁を経由して圧縮機に至る低圧側の吸入管
、7は電気ヒータである。
In Figure 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary tube, 5 is an outdoor heat exchanger, and 6 is a low-pressure side leading to the compressor via a four-way valve. 7 is an electric heater.

以上のように構成されたヒートポンプ式空気調和機の立
上多制御について、以下第1図及び第2図を用いてその
動作を説明する。
The operation of the start-up multiple control of the heat pump type air conditioner configured as described above will be explained below with reference to FIGS. 1 and 2.

第2図は本発明のヒートポンプ式空気調和機の立上)制
御を実現する回路図である。
FIG. 2 is a circuit diagram for realizing start-up control of the heat pump type air conditioner of the present invention.

圧縮機1の運転・停止に関与する起動用リレーr2が閉
じると、回路上のタイマT、およびT2に通電される。
When the starting relay r2 involved in starting and stopping the compressor 1 is closed, timers T and T2 on the circuit are energized.

タイマT1は一定時間τ1後にt、を閉じる遅延タイマ
で、タイマT2は通電と同じにt2を閉じ、所定時間τ
2後にt2を開ける限時タイマである。この両者のタイ
マTI 、 T2によってまず、圧縮機1の起動後11
秒後にヒータ7に通電され(τ2−τ1.)後に通電が
止められる。一般にτ1は圧縮機1とヒータ7の同時起
動を防ぐもので3〜5秒、τ2は冷凍サイクルが程安定
し、液もどシの恐れのない5〜10分に設定される。
Timer T1 is a delay timer that closes t after a predetermined time τ1, and timer T2 closes t2 at the same time as energization, and waits for a predetermined time τ.
This is a time-limited timer that opens t2 after 2 seconds. These two timers TI and T2 first start 11 after the compressor 1 is started.
After seconds, the heater 7 is energized (τ2-τ1.), and then the energization is stopped. In general, τ1 is set to 3 to 5 seconds to prevent simultaneous activation of the compressor 1 and heater 7, and τ2 is set to 5 to 10 minutes in which the refrigeration cycle is reasonably stable and there is no risk of liquid backflow.

以上のように本実施例によれば、圧縮機1、四方弁2、
室内側熱交換器a、キャピラリチューブ4、室外側熱交
換器5を環状に連結しさらに、四方弁2から圧縮機1に
至る低圧側の吸入管6にヒータ7を取付け、さらにタイ
マTI 、 T2の設定時間の組合せによって冷房、冷
暖房兼用を問わず、圧縮機の起動後の所定時間のみ通電
が可能なので立上シ時に生じる液もどりを防ぐことがで
きる。
As described above, according to this embodiment, the compressor 1, the four-way valve 2,
The indoor heat exchanger a, the capillary tube 4, and the outdoor heat exchanger 5 are connected in an annular manner, and a heater 7 is attached to the suction pipe 6 on the low pressure side from the four-way valve 2 to the compressor 1, and timers TI and T2 are connected. Depending on the combination of set times, it is possible to supply electricity only for a predetermined time after the compressor is started, regardless of whether it is used for air conditioning or air conditioning, thereby preventing liquid backflow that occurs during start-up.

また、加熱装置としてヒータを用いることによって構成
も簡素化され、従来のような、冷凍サイクルを構成する
配管の無理な引廻しや、余分なバイパス回路が不用とな
ってスペースの省略化が図れると共に振動面でも有利に
なる。また、ヒータ7の通電時間をできるだけ抑えるこ
とによシ、省エネルギは保つことができる。
In addition, by using a heater as the heating device, the configuration is simplified, eliminating the need for unnecessary routing of pipes that make up the refrigeration cycle and unnecessary bypass circuits, which was required in the past, and saving space. It is also advantageous in terms of vibration. Moreover, energy saving can be maintained by minimizing the energization time of the heater 7.

発明の効果 以上のように本発明は、圧縮機、四方弁、室内側熱交換
器、減圧装置、室外側熱交換器を環状に連結してヒート
ポンプ式空気調和機の冷凍サイクルを構成し、前記四方
弁を経由して圧縮機に至る低圧側の吸入管に加熱装置を
設け、さらに、前記加熱装置に圧縮機の起動後の所定の
時間のみ通電することによシ、冷房、冷暖房兼用を問わ
ず、圧縮機の起動時の液もどシを防ぐことができるとと
もに、冷凍サイクルを構成する配管の簡素化が図れ、省
スペース化が可能となシ、さらに配管振動、  面でも
顕著な効果が得られる。
Effects of the Invention As described above, the present invention configures a refrigeration cycle of a heat pump type air conditioner by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger in a ring shape. A heating device is installed in the low-pressure suction pipe leading to the compressor via a four-way valve, and the heating device is energized only for a predetermined period of time after the compressor is started. In addition to preventing liquid stagnation when starting up the compressor, it also simplifies the piping that makes up the refrigeration cycle, saving space, and has a significant effect in reducing piping vibration. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の立上シ制御を実現する冷凍サイクル、第2図は
同空気調和機の制御回路図、第3図は従来のヒートポン
プ式空気調和機の立上シ制御に関する冷凍サイクルであ
る。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内側熱交換器、4・・・・・・減圧装置、5
・・・・・・室外側熱交換器、6・・・・・・吸入管、
7・・・・・・加熱装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 圧縮機 2−= 1!!7 を弁 3− 車内al熱文機器 4−m−十ヤヒラリチューブ 5− 室外倶I熟文#翼 /−m−圧縮機
Fig. 1 shows a refrigeration cycle that realizes start-up control of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 shows a control circuit diagram of the air conditioner, and Fig. 3 shows a conventional heat pump air conditioner. This is a refrigeration cycle related to startup control of the machine. 1... Compressor, 2... Four-way valve, 3...
... Indoor heat exchanger, 4 ... Pressure reduction device, 5
...Outdoor heat exchanger, 6...Suction pipe,
7... Heating device. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Compressor 2-=1! ! 7 Valve 3- In-vehicle al thermographic equipment 4-m-10-Yahirali tube 5-Outdoor kiln compound #wings/-m-compressor

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内側熱交換器、減圧装置、室外側熱
交換器を環状に連結してヒートポンプ式空気調和機の冷
凍サイクルを構成し、前記四方弁を経由し圧縮機に至る
低圧側の吸入管に加熱装置を設け、さらに、前記加熱装
置に圧縮機の起動後の所定時間のみ通電するヒートポン
プ式空気調和機の立上り制御方法。
A compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, and an outdoor heat exchanger are connected in a ring to form a refrigeration cycle of a heat pump air conditioner, and the low-pressure side connects to the compressor via the four-way valve. A method for controlling the start-up of a heat pump type air conditioner, wherein a heating device is provided in the suction pipe of the heat pump, and the heating device is energized only for a predetermined time after starting the compressor.
JP17360485A 1985-08-07 1985-08-07 Method of controlling rise of heat pump type air conditioner Pending JPS6233264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17360485A JPS6233264A (en) 1985-08-07 1985-08-07 Method of controlling rise of heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17360485A JPS6233264A (en) 1985-08-07 1985-08-07 Method of controlling rise of heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS6233264A true JPS6233264A (en) 1987-02-13

Family

ID=15963685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17360485A Pending JPS6233264A (en) 1985-08-07 1985-08-07 Method of controlling rise of heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS6233264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783215A (en) * 1993-09-16 1995-03-28 Moriden:Kk Attaching bracket
WO2010032417A1 (en) * 2008-09-17 2010-03-25 ダイキン工業株式会社 Refrigerant heating device assembly and mounting structure for same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783215A (en) * 1993-09-16 1995-03-28 Moriden:Kk Attaching bracket
WO2010032417A1 (en) * 2008-09-17 2010-03-25 ダイキン工業株式会社 Refrigerant heating device assembly and mounting structure for same
CN102144135A (en) * 2008-09-17 2011-08-03 大金工业株式会社 Refrigerant heating device assembly and mounting structure for same
JP5110167B2 (en) * 2008-09-17 2012-12-26 ダイキン工業株式会社 Mounting structure for refrigerant heating device assembly

Similar Documents

Publication Publication Date Title
JPS6233264A (en) Method of controlling rise of heat pump type air conditioner
JP2597634Y2 (en) Pressure equalizer in multi-room air-conditioning heat pump system
JPH045932Y2 (en)
JP2646704B2 (en) Heat pump type air conditioner
JP3164451B2 (en) Air conditioner
JPS6018757Y2 (en) air conditioner
JPS5816160A (en) Heat pump type air conditioner
KR100237922B1 (en) Method for prevention of compressor restriction of heat pump
JPS6315021A (en) Defrosting method of air conditioner
JPS591963A (en) Heat pump type refrigeration cycle
JPS60233471A (en) Heat pump type air conditioner
JPH03236559A (en) Operation control method for heat pump type cooling heating hot water feeder
JPS59151069U (en) Air conditioner for heating, cooling, and hot water supply
JPH0429345Y2 (en)
JPH0431505Y2 (en)
JPS6244278Y2 (en)
JP3269432B2 (en) Control device for air conditioner equipped with refrigerant heating device
JPS59191859A (en) Heat pump device
JPS62299665A (en) Refrigerator
JPS5973356A (en) Air conditioner for diesel locomotive
JPH01305237A (en) Air conditioner
JPS6057169A (en) Absorption type air conditioner
JPH109701A (en) Refrigerating cycle
JPS61280350A (en) Refrigerator
JPS63290359A (en) Air conditioner