JPH0471609B2 - - Google Patents

Info

Publication number
JPH0471609B2
JPH0471609B2 JP60100283A JP10028385A JPH0471609B2 JP H0471609 B2 JPH0471609 B2 JP H0471609B2 JP 60100283 A JP60100283 A JP 60100283A JP 10028385 A JP10028385 A JP 10028385A JP H0471609 B2 JPH0471609 B2 JP H0471609B2
Authority
JP
Japan
Prior art keywords
billet
alloy
aluminum alloy
wear
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60100283A
Other languages
Japanese (ja)
Other versions
JPS61259829A (en
Inventor
Ichizo Tsukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP10028385A priority Critical patent/JPS61259829A/en
Publication of JPS61259829A publication Critical patent/JPS61259829A/en
Publication of JPH0471609B2 publication Critical patent/JPH0471609B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、特に耐摩耗性とゝもに耐熱性、低
熱膨脹係数が要求されるようなエンジンのシリン
ダー、ピストン、あるいはコンプレツサ・ベーン
等に好適に使用される耐摩耗性のAl−Si系アル
ミニウム合金押出材の製法に関する。 定 義 なお、この明細書において、「%」はいずれも
重量%を示すものである。 従来の技術 従来、耐摩耗性アルミニウム合金としては、耐
摩耗性の向上元素としてSiを添加したAl−Si系
合金がよく知られている。ところが、例えば内燃
機関用ピストンとかシリンダーのような用途に使
われる合金材料の場合には、耐摩耗性と同時に耐
熱性にも優れ、かつ低熱膨脹係数のものであるこ
とが強く要求される。かゝる要求に対しアルミニ
ウム合金の耐熱性を改善するための元素として、
Fe、Cr、Mn、Ni、Tiなどの高融点金属の添加
が有効であることは良く知られており、また熱膨
脹係数を低下させる元素としても同じく高融点金
属が有効に用いられる。ところが、Al−Si系の
耐摩耗性合金に上記のような高融点金属元素の添
加によつて耐熱特性を向上したアルミニウム合金
は、従来主に鋳物合金(例えばAC3A合金、
AC8A〜C合金等)として知られているにすぎ
ず、展伸材としてはほとんど知られていない。 発明が解決しようとする問題点 しかしながら、従来の上記合金は、鋳物合金で
あるかぎり、展伸材のように自由な製品形状を求
めることが困難なものであり、用途上の制限をう
けるのみならず、上記のような高融点金属を添加
したAl−Si系合金は鋳造温度が一般的な展伸材
に較べて高いことから、鋳造自体も困難である。
更に均一かつ微細な組織を得ることも困難であ
る。殊に、最近では、耐熱性、低熱膨脹係数に対
する要求が益々厳しくなつてきていることから、
鋳造法による場合でさえ、添加量の高い高融点金
属元素による金属間化合物の制御が困難になつて
きており、機械的性質の均質な高温特性に優れた
耐摩耗性アルミニウム合金材料を得ることは困難
であつたのが実情である。 この発明は、上記のような背景に鑑み、高融点
金属元素を含有して高温特性にも優れた耐摩耗性
アルミニウム合金であつて、押出材として高品質
のものを高能率に生産しうる製造方法の提供する
ことを目的としてなされたものである。 問題点を解決するための手段 而して、この発明は、押出用ビレツトの作製を
高圧下に溶融アルミニウム合金を凝固せしめる加
圧凝固法を採用して行うことにより、高融点金属
を含むAl−Si系合金をも支障なく均一かつ微細
組織に鋳造しうることを見出すことによつて完成
し得たものである。 即ち、この発明に係る耐摩耗性アルミニウム合
金押出材の製造は、合金組織において、 Si;4〜40%を含有し、かつ Fe;0.5〜20%、 Cr;0.5〜20%、 Mn;1〜20%、 Ni;0.5〜20%、 Ti;0.5〜10%、 Be;1〜20%、 V;1〜20%、 Y;2〜20%、 Zr;0.5〜10% のうちの1種または2種以上を含有し、あるいは
更にMg;0.3〜2%、Cu;4〜20%のうちの1
種または2種を含有し、残部アルミニウム及び不
可避不純物からなるものであり、製造工程におい
て、上記アルミニウム合金を溶解し、その溶湯を
300Kgf/cm2以上の高圧下に加圧凝固せしめるこ
とによりビレツトを作製し、次いで該ビレツトを
押出加工することを特徴とするものである。 上記合金成分の限定理由は次のとおりである。 Siは、周知のとおり耐摩耗性の向上成分として
必須のものである。Si;4%以上の含有によつ
て、その添加量に見合つた効果を得ることができ
るが、好適には12%以上の過共晶領域に含有せし
めるものとすることが望ましい。しかしながら40
%をこえて過多に含有せしめるときは、押出しが
困難なものとなる。従つて一般的には耐摩耗性の
要求と製造の行い易さとの調和点を求めて、16〜
30%程度の範囲で調製するのが望ましい。 Fe、Cr、Mn、Ni、Ti、Be、V、Y、Zrは、
いずれも合金材の耐熱性の向上、熱膨脹係数の低
下等の高温特性の向上に添加意義を有するもので
あり、この作用の面からこの発明においては相互
に実質的に均等物として評価しうるものである。
いずれの元素も、その含有量が前記に規定した加
減値未満であると、上記高温特性の向上効果に不
十分なものとなる。逆に上限値をこえて過多に含
有されるときは、粗大な晶出物の生成により押出
しが困難なものとなる。 また、Mg、Cuは、合金の強度向上に寄与する
ものである、Mg;0.3%未満、Cu;4%未満で
はその効果に不十分である。またMg;2%、
Cu;20%をそれぞれこえて含有しても上記効果
を格別増大せず、むしろ粗大な晶出物を生成して
機械的性質を劣化する。 次に、製造工程の限定理由について説明する
と、上記高温特性の改善のための高融点金属元素
を添加したアルミニウム合金は、従来のビレツト
の製造に常法として行われているような鋳造法で
は、鋳造温度が高いためにビレツトの製造が困難
であり、また製造し得たとしても、均一で微細な
組織を得ることができず、押出し加工の困難なも
のとなるのみならず、製品の押出材において良好
な機械的性質を得ることができない。このような
問題をこの発明は、ビレツトの作製に加圧凝固法
を採用することによつて克服する。即ち。上記ア
ルミニウム合金を溶解し、その溶湯を加圧凝固用
金型内に注湯して所定の高悪化に加圧凝固せしめ
ることにより、欠陥のない結晶粒の微細なビレツ
トの作製を行いうるものである。加圧凝固用金型
は、これに押出機のコンテナを利用するものとし
てもよい。即ち、アルミニウム合金溶湯を直接外
コンテナに注入し、ステムで加圧しつつ凝固させ
るものとしても良い。もちろん、この場合、上記
コンテナの全面は盲ダイスを付設して塞ぎ加圧凝
固中の溶湯の噴き出しを防ぐものとすることが必
要である。 また、上記の注湯に際しては、前記金型を予め
300〜350℃程度に加熱しておくものとすることが
望ましい。これによりビレツトに一層微細な組織
を得ることを可能にする。即ち、300℃程度未満
であると、注湯後前記アルミニウムの凝固がすぐ
に開始してしまい、加圧凝固による効果が充分に
達成され難い。一方350℃をこえる高温に加熱し
ておくと、冷却速度が遅くなり、晶出物が成長し
て上記微細化効果を充分に達成し難いものとなる
傾向がみられる。 注湯後、すぐさま前記金型内の溶湯を加圧ピス
トンにより加圧し、凝固を進行せしめることによ
つてビレツトを作製する。即ち、加圧凝固法によ
つてビレツトを作製する。この際の加圧力は、充
分な加圧凝固の効果を得るためには少なくとも
300Kgf/cm2以上に設定することが必要であり、
好ましくは500〜1000Kgf/cm2程度とするのが良
い。このように、所定の加圧状態下においてアル
ミニウム合金を凝固させることにより、鋳造割れ
を生じさせることなく、かつ晶出物の小さなビレ
ツトを作製しうる。従つて、従来の鋳造法によつ
てビレツトを作製する場合、組織の均一化と微細
化をはかるために必要とした爾後の加熱均質化処
理を省略することが可能となり、そのための熱エ
ネルギー及び処理時間の節約を達成しうる。上記
加圧力の大小は、ビレツトの品質にさして大きな
影響を与えるものではない。しかしながら300Kg
f/cm2未満では、加圧凝固法による鋳造割れ防止
及び結晶粒の微細化効果に不十分であり、反面た
とえば1500Kg/cm2をこえるような高圧を付加して
も、それに要するエネルギーの増大に見合う効果
の比例的向上を見ることができないためにむしろ
無益である。なお、加圧凝固により、晶出物の微
細化をはかりうる理由は、加圧により金型と溶湯
の間及び溶湯内の空〓が消滅し、冷却速度が増大
することが1つの要因になつているものと推測さ
れる。 上記の加圧凝固法により作製したビレツトは、
次にこれを押出加工して所期する耐熱性に優れた
耐摩耗性アルミニウム合金材とする。こゝに、ビ
レツトは一旦冷却された固相状態のものを用いて
も良いが、好ましくは前記加圧凝固の進行によ
り、ビレツトの温度が押出加工に適する温度、例
えば液相温度の約1/2程度にまで低下し半溶融状
態となつた時点で加圧凝固工程を終了し、再加熱
をすることなくそのまゝ押出機のコンテナに充填
して押出しを開始するものとなすことが推奨され
る。このような手順を採用することにより、押出
加工に際してのビレツトの加熱工程を省くことが
可能となり、その加熱に要するエネルギー及び時
間を節約しうると共に、再加熱による結晶の粗大
化を防ぎ、押出性の低下を防止して合金押出材の
製造能率の向上及び製造コストの低減の利益を享
受しうる。 発明の効果 この発明は前述のように、組成面において特に
耐摩耗性向上元素としてのSiを所定範囲に含有
し、かつ耐熱性及び熱膨脹係数の改善のための元
素として、Fe、Cr、Mn、Ni、Ti、Be、V、Y、
Zrのうちの1種または2種以上を所定量含有す
るものであるから、耐摩耗性とゝもに高温特性に
優れた性質を有するものであり、高温条件下で使
用される耐摩耗部品用に好敵に使用しうるアルミ
ニウム合金材料を得ることができる。しかも一
方、製造工程において当該アルミニウム合金の溶
湯から、先ず300Kgf/cm2以上の高圧凝固法によ
りビレツトの作製を行い、然る後、押出加工を行
うものとしたことにより、前記のような組成の高
温特性に優れた耐摩耗性アルミニウム合金であり
ながら、鋳造法では得られない均一微細組織で機
械的性質の優れたアルミニウム合金材料を得るこ
とができる。従つて、二次加工としての鍛造、切
削も容易に行いうるものとなし得、耐摩耗部品の
コスト低減、製造歩留りの向上をはかりうる。 実施例 実施例 1 次にこの発明の実施例を比較例とゝもに示す。
Industrial Application Field This invention is particularly suited for use in engine cylinders, pistons, compressor vanes, etc., which require both wear resistance, heat resistance, and a low coefficient of thermal expansion. This invention relates to a method for producing Al-Si aluminum alloy extrusions. Definition In this specification, all "%" indicates weight %. BACKGROUND ART Conventionally, as wear-resistant aluminum alloys, Al-Si alloys to which Si is added as an element to improve wear resistance are well known. However, in the case of alloy materials used for applications such as pistons and cylinders for internal combustion engines, it is strongly required that they have excellent wear resistance and heat resistance as well as a low coefficient of thermal expansion. To meet these demands, as an element to improve the heat resistance of aluminum alloys,
It is well known that addition of high melting point metals such as Fe, Cr, Mn, Ni, and Ti is effective, and high melting point metals are also effectively used as elements to lower the coefficient of thermal expansion. However, aluminum alloys whose heat resistance properties have been improved by adding the above-mentioned high-melting point metal elements to Al-Si wear-resistant alloys have traditionally been mainly cast alloys (e.g. AC3A alloy,
AC8A-C alloy, etc.), and is hardly known as a wrought material. Problems to be Solved by the Invention However, as long as the above-mentioned conventional alloys are cast alloys, it is difficult to obtain a free product shape like a wrought material, and there are only limitations in terms of use. First, since the casting temperature of Al--Si alloys containing high melting point metals as described above is higher than that of general wrought materials, casting itself is difficult.
Furthermore, it is difficult to obtain a uniform and fine structure. In particular, recently, requirements for heat resistance and low coefficient of thermal expansion have become increasingly strict.
Even when using the casting method, it is becoming difficult to control intermetallic compounds due to high melting point metal elements added, making it difficult to obtain wear-resistant aluminum alloy materials with homogeneous mechanical properties and excellent high-temperature properties. The reality is that it was difficult. In view of the above-mentioned background, this invention is a wear-resistant aluminum alloy containing high-melting point metal elements and having excellent high-temperature properties, and is a manufacturing method that can efficiently produce high-quality extruded materials. This was done for the purpose of providing a method. Means for Solving the Problems Accordingly, the present invention employs a pressure solidification method in which a molten aluminum alloy is solidified under high pressure to produce a billet for extrusion. This was accomplished by discovering that even Si-based alloys can be cast uniformly and with a fine structure without any problems. That is, in the production of the wear-resistant aluminum alloy extruded material according to the present invention, the alloy structure contains Si; 4 to 40%, Fe; 0.5 to 20%, Cr; 0.5 to 20%, and Mn; 20%, Ni; 0.5 to 20%, Ti; 0.5 to 10%, Be; 1 to 20%, V; 1 to 20%, Y; 2 to 20%, Zr; 0.5 to 10% or Contains two or more types, or further contains one of Mg; 0.3 to 2%, Cu; 4 to 20%
In the manufacturing process, the above aluminum alloy is melted and the molten metal is
The method is characterized in that a billet is prepared by pressure solidification under a high pressure of 300 Kgf/cm 2 or more, and then the billet is extruded. The reasons for limiting the above alloy components are as follows. As is well known, Si is an essential component for improving wear resistance. Si: By containing 4% or more, an effect commensurate with the amount added can be obtained, but it is preferably contained in a hypereutectic region of 12% or more. However 40
If the content exceeds %, extrusion becomes difficult. Therefore, in general, in order to find a balance between the requirements for wear resistance and ease of manufacturing,
It is desirable to adjust the amount within a range of about 30%. Fe, Cr, Mn, Ni, Ti, Be, V, Y, Zr are
Both have the significance of being added to improve the heat resistance of the alloy material and the high-temperature properties such as lowering the coefficient of thermal expansion, and in terms of this effect, they can be evaluated as substantially equivalent to each other in this invention. It is.
If the content of any element is less than the adjustment value specified above, the effect of improving the high temperature properties will be insufficient. On the other hand, when the content exceeds the upper limit, extrusion becomes difficult due to the formation of coarse crystallized substances. Further, Mg and Cu contribute to improving the strength of the alloy, but if Mg is less than 0.3% and Cu is less than 4%, the effect is insufficient. Also Mg; 2%,
Cu: Containing more than 20% of each does not significantly increase the above effects, but rather produces coarse crystallized substances and deteriorates mechanical properties. Next, to explain the reason for the limitations on the manufacturing process, aluminum alloys to which high-melting point metal elements are added to improve high-temperature properties cannot be cast using the conventional casting method used to manufacture conventional billets. It is difficult to manufacture billets due to the high casting temperature, and even if billets can be manufactured, it is not possible to obtain a uniform and fine structure, which not only makes extrusion processing difficult, but also makes it difficult to extrude the product. good mechanical properties cannot be obtained. The present invention overcomes these problems by employing a pressure coagulation method for billet production. That is. By melting the above aluminum alloy, pouring the molten metal into a pressurized solidification mold, and pressurizing and solidifying it to a predetermined degree of aggravation, a billet with fine grains and no defects can be produced. be. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly injected into the outer container and solidified while being pressurized by the stem. Of course, in this case, it is necessary to close the entire surface of the container with a blind die to prevent the molten metal from spouting out during pressurized solidification. In addition, when pouring the metal, prepare the mold in advance.
It is desirable to heat it to about 300 to 350°C. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300°C, solidification of the aluminum starts immediately after pouring, making it difficult to fully achieve the effect of pressure solidification. On the other hand, if the material is heated to a high temperature exceeding 350° C., the cooling rate slows down, and crystallized substances tend to grow, making it difficult to sufficiently achieve the above-mentioned refinement effect. Immediately after pouring, the molten metal in the mold is pressurized by a pressurizing piston to advance solidification, thereby producing a billet. That is, a billet is produced by a pressure coagulation method. The pressurizing force at this time must be at least
It is necessary to set it to 300Kgf/cm2 or more ,
Preferably, it is about 500 to 1000 Kgf/cm 2 . In this way, by solidifying the aluminum alloy under a predetermined pressurized state, a small billet of crystallized material can be produced without causing casting cracks. Therefore, when billets are produced by conventional casting methods, it is possible to omit the subsequent heating homogenization treatment required to homogenize and refine the structure, and the thermal energy and treatment required for this purpose can be omitted. Time savings can be achieved. The magnitude of the above-mentioned pressing force does not have a great effect on the quality of the billet. However, 300Kg
If it is less than f/cm 2 , the effect of preventing casting cracks and refining crystal grains by the pressure solidification method is insufficient, but on the other hand, even if a high pressure exceeding, for example, 1500 kg/cm 2 is applied, the energy required increases. Rather, it is useless because it does not show a proportional improvement in effectiveness commensurate with that. One of the reasons why the crystallized material can be made finer by pressurized solidification is that the air space between the mold and the molten metal and within the molten metal disappears due to pressurization, and the cooling rate increases. It is assumed that The billet made by the above pressure coagulation method is
Next, this is extruded to produce the desired wear-resistant aluminum alloy material with excellent heat resistance. Here, the billet may be used in a solid state that has been cooled once, but preferably, as the pressure solidification progresses, the temperature of the billet becomes a temperature suitable for extrusion processing, for example, about 1/1 of the liquidus temperature. It is recommended that the pressure solidification process be completed when the temperature has decreased to about 2,000 ml and it is in a semi-molten state, and that extrusion be started by filling the container of the extruder as is without reheating. Ru. By adopting such a procedure, it is possible to omit the heating step of the billet during extrusion processing, saving energy and time required for heating, preventing coarsening of crystals due to reheating, and improving extrudability. It is possible to enjoy the benefits of improved manufacturing efficiency and reduced manufacturing costs of alloy extruded materials by preventing a decrease in Effects of the Invention As described above, the present invention contains Si as an element for improving wear resistance in a predetermined range in terms of composition, and Fe, Cr, Mn, Ni, Ti, Be, V, Y,
Since it contains a specified amount of one or more of Zr, it has excellent wear resistance and high temperature properties, and is suitable for wear-resistant parts used under high temperature conditions. It is possible to obtain an aluminum alloy material that can be used favorably. Moreover, in the manufacturing process, a billet is first prepared from the molten aluminum alloy by a high-pressure solidification method of 300 Kgf/cm 2 or more, and then extrusion processing is performed, so that it is possible to produce billets with the above-mentioned composition. Although it is a wear-resistant aluminum alloy with excellent high-temperature properties, it is possible to obtain an aluminum alloy material with a uniform microstructure and excellent mechanical properties that cannot be obtained by casting methods. Therefore, forging and cutting as secondary processing can be easily performed, and the cost of wear-resistant parts can be reduced and the manufacturing yield can be improved. Examples Example 1 Next, examples of the present invention will be shown together with comparative examples.

【表】 上記第1表に示す各種化学組成の合金を、液相
温度+100℃に溶解し、その溶湯を予め約280℃に
加熱した加圧凝固溶金型に注湯したのち、すぐさ
まこれを1000Kgf/cm2に加圧し、該加圧下に凝固
させた。そして、およそ液相温度の1/2程度の温
度にまで冷却したとき、加圧凝固工程を終了し、
得られた半溶融状態のビレツト(直径75mm、長さ
100mm)をすぐさま押出機のコンテナーに挿入し、
直径12mmの丸棒に押出した。ここに、該押出しは
いずれの合金による場合も支障なく行いうるもの
であつた。 そこで、次いでこの押出材を490℃で溶体化処
理し、更に180℃×7時間の時効処理を施したの
ち、得られた各試料につき、耐熱性試験として
300℃での引張り強さ、熱膨脹係数を調べると共
に、耐摩耗性試験を行つた。結果を下記第2表に
示す。 なお、耐摩耗性試験は、大越式耐摩耗性試験機
(乾式)を使用し、相手材:FC30、摩擦速度:2
m/secの条件で行つた。
[Table] Alloys with various chemical compositions shown in Table 1 above are melted to a liquidus temperature of +100°C, and the molten metal is poured into a pressurized solidification mold that has been preheated to approximately 280°C. It was pressurized to 1000 Kgf/cm 2 and solidified under the applied pressure. Then, when the temperature has cooled to approximately 1/2 of the liquidus temperature, the pressure solidification process is completed,
The resulting semi-molten billet (diameter 75 mm, length
100mm) into the extruder container,
It was extruded into a round bar with a diameter of 12 mm. Here, the extrusion could be carried out without any problem with any alloy. Therefore, this extruded material was then solution-treated at 490°C, and then aged at 180°C for 7 hours, and each sample obtained was subjected to a heat resistance test.
In addition to examining the tensile strength and coefficient of thermal expansion at 300°C, we also conducted an abrasion resistance test. The results are shown in Table 2 below. The wear resistance test was conducted using an Okoshi type wear resistance tester (dry type), mating material: FC30, friction speed: 2.
The test was carried out under the conditions of m/sec.

【表】【table】

【表】 上記第2表に示されるように、本発明に従つて
製造されたアルミニウム合金押出材は、組成を異
にする比較合金を用いて製造された押出材に較べ
て、製造工程を同じくしながらも一段と耐熱性に
優れ、かつ熱膨脹係数が小さく、しかも耐摩耗性
にも優れたものであつた。 実施例 2 ビレツトの作製を加圧凝固法を用いて行うこと
による押出材の機械的性質の改善効果を確認する
ために、下記第3表の合金組成のAl−10%si−10
%NiからなるAl合金を用いて下記の本発明試料
と比較試料の2種類のアルミニウム合金押出材を
製造した。
[Table] As shown in Table 2 above, the aluminum alloy extrusions manufactured according to the present invention were manufactured using the same manufacturing process compared to the extrusions manufactured using comparative alloys with different compositions. However, it had better heat resistance, a lower coefficient of thermal expansion, and better wear resistance. Example 2 In order to confirm the effect of improving the mechanical properties of the extruded material by producing billets using the pressure solidification method, Al-10% si-10 having the alloy composition shown in Table 3 below was used.
Two types of aluminum alloy extruded materials, a sample of the present invention and a comparative sample, described below, were manufactured using an Al alloy consisting of %Ni.

【表】 (本発明試料) 第3表のAl−Si−Ni合金を用い、ビレツト鋳
造時の加圧力を1300Kgf/cm2としたほかは、実施
例1と同様にして直径12mmの丸棒状押出材からな
る試料を得た。 (比較試料) 第3表のAl−Si−Ni合金溶湯を、金型鋳造法
により、加圧力を加えることなく凝固させてビレ
ツトを作製し、以降実施例1に準じて直径12mmの
丸棒状押出材からなる試料を作成した。 そして、上記本発明試料と比較試料のそれぞれ
につき、鋳造したまゝのビレツトの状態時と押出
加工後の押出材の状態時における金属組織を電子
顕微鏡で調べたところ、第1図および第2図に示
すとおりであつた。第1図aは本発明試料を得る
ときのビレツトの金属組織であり、第2図aに示
す比較試料のビレツトの金属組織に較べ、金属間
化合物、殊にAl3Ni、初晶Siが充分に微細なもの
となつていることが分かる。そしてまた、押出材
においても第1図bに示す本発明試料の金属組織
は、第2図bに示す比較試料のそれに較べて、相
対的に顕著に微細なミクロ組織を有するものであ
ることを確認し得た。 そこで更に、本発明試料と、比較試料につき、
それらの機械的性質を調べたところ、下記第4表
のとおりであつた。
[Table] (Sample of the present invention) A round bar shape of 12 mm in diameter was extruded in the same manner as in Example 1, except that the Al-Si-Ni alloy shown in Table 3 was used and the pressurizing force during billet casting was 1300 Kgf/cm 2 . A sample consisting of wood was obtained. (Comparative sample) The molten Al-Si-Ni alloy shown in Table 3 was solidified using a die casting method without applying pressure to produce a billet, which was then extruded into a round bar shape of 12 mm in diameter according to Example 1. A sample was made of wood. The metal structures of the above-mentioned inventive samples and comparative samples were examined using an electron microscope in the as-cast billet state and in the extruded material state after extrusion processing, and the results are shown in Figures 1 and 2. It was as shown in. Figure 1a shows the metallographic structure of the billet obtained from the sample of the present invention, and compared to the metallographic structure of the billet of the comparative sample shown in Figure 2a, intermetallic compounds, especially Al 3 Ni and primary Si, are sufficient. It can be seen that it has become very minute. Furthermore, in the case of extruded materials, the metal structure of the sample of the present invention shown in FIG. 1b has a relatively significantly finer microstructure than that of the comparative sample shown in FIG. 2b. I was able to confirm it. Therefore, further regarding the present invention sample and the comparative sample,
When their mechanical properties were investigated, they were as shown in Table 4 below.

【表】 上記第4表の結果から分かるように、本発明試
料は、ビレツトを高圧加圧凝固法で鋳造している
ことに基づき、無加圧金型鋳造によりビレツトを
作成した比較試料の押出材に較べ、機械的性質に
おいて顕著に優れたものであることが確認され
た。
[Table] As can be seen from the results in Table 4 above, the samples of the present invention are based on the fact that the billets are cast by the high-pressure solidification method, whereas the extrusion of the comparative samples whose billets are made by non-pressure die casting is It was confirmed that the mechanical properties were significantly superior to those of other materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明による加圧凝固法によつ
て作製したAl−10%Si−10%Ni合金ビレツトと
それによつて製造した押出材(本発明試料)の金
属組織を示す顕微鏡写真(倍率300倍)、第2図
a,bは上記同様の合金を用いて無加圧金型鋳造
法によつて作製したビレツトとそれによつて製造
した押出材(比較試料)の金属組織を示す顕微鏡
写真(倍率300倍)である。
Figures 1a and 1b are micrographs showing the metallographic structure of an Al-10%Si-10%Ni alloy billet produced by the pressure solidification method according to the present invention and an extruded material produced therefrom (sample of the present invention). (Magnification: 300x). Figures 2a and b show the metallographic structure of a billet made by the pressureless die casting method using the same alloy as above, and an extruded material (comparative sample) made from the billet. This is a micrograph (300x magnification).

【特許請求の範囲】[Claims]

1 ポーリングリールに材料を打込むノズル打込
管と、このノズル打込管に材料を導くためのノズ
ル前面ガイドとを備え、圧延後の材料を上記ノズ
ル打込管より順次ポーリングリールに打込んで巻
取りを行う圧延設備において、上記ノズル打込管
の出口方向の延長上の所定点を仮想中心として上
記ノズル打込管を円運動させる第1駆動手段と、
上記ノズル前面ガイドの入口側を支点として上記
ノズル前面ガイドを揺動させる第2駆動手段とを
有し、上記第1駆動手段は上記ノズル打込管の打
込角度を巻取の進行とともに初期設定角度から漸
次水平方向に変化させるようにノズル打込管を駆
動し、上記第2駆動手段は上記ノズル打込管の入
口端と上記ノズル前面ガイドの出口端の軸芯が芯
合せされつつ同一速度で変化するようにノズル前
面ガイドを駆動することを特徴とする圧延設備の
ノズル制御装置。
1 Equipped with a nozzle driving pipe for driving material into the polling reel and a nozzle front guide for guiding the material to the nozzle driving pipe, the material after rolling is sequentially driven into the polling reel from the nozzle driving pipe. In a rolling equipment that performs winding, a first driving means for circularly moving the nozzle driving tube around a predetermined point on the extension of the nozzle driving tube in the exit direction as a virtual center;
and a second driving means for swinging the nozzle front guide using the inlet side of the nozzle front guide as a fulcrum, and the first driving means initializes the driving angle of the nozzle driving tube as winding progresses. The second driving means drives the nozzle driving tube so as to gradually change the angle from the horizontal direction, and the second driving means drives the nozzle driving tube at the same speed while the axes of the inlet end of the nozzle driving tube and the outlet end of the nozzle front guide are aligned. A nozzle control device for rolling equipment, characterized in that the nozzle front guide is driven so as to change in the direction of the nozzle.

Claims (1)

Fe;0.5〜20%、 Cr;0.5〜20%、 Mn;1〜20%、 Ni;0.5〜20%、 Ti;0.5〜10%、 Be;1〜20%、 V;1〜20%、 Y;2〜20%、 Zr;0.5〜10% のうちの1種または2種以上を含有し、残部アル
ミニウム及び不可避不純物からなるアルミニウム
合金を溶解し、その溶湯を300Kgf/cm2以上の高
圧下に加圧凝固せしめることによりビレツトを作
製し、次いで該ビレツトを押出加工することを特
徴とする耐摩耗性アルミニウム合金押出材の製造
法。
Fe; 0.5-20%, Cr; 0.5-20%, Mn; 1-20%, Ni; 0.5-20%, Ti; 0.5-10%, Be; 1-20%, V; 1-20%, Y 2 to 20%, Zr; 0.5 to 10%, an aluminum alloy containing one or more of the following, the balance consisting of aluminum and unavoidable impurities is melted, and the molten metal is subjected to high pressure of 300 kgf/cm 2 or more. 1. A method for producing a wear-resistant aluminum alloy extruded material, which comprises producing a billet by solidifying under pressure, and then extruding the billet.
JP10028385A 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate Granted JPS61259829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10028385A JPS61259829A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10028385A JPS61259829A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25785686A Division JPS62144815A (en) 1986-10-29 1986-10-29 Manufacture of extruded aluminum alloy stock

Publications (2)

Publication Number Publication Date
JPS61259829A JPS61259829A (en) 1986-11-18
JPH0471609B2 true JPH0471609B2 (en) 1992-11-16

Family

ID=14269864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10028385A Granted JPS61259829A (en) 1985-05-10 1985-05-10 Production of wear resistant aluminum alloy extrudate

Country Status (1)

Country Link
JP (1) JPS61259829A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149840A (en) * 1985-12-24 1987-07-03 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPH07113135B2 (en) * 1987-03-09 1995-12-06 株式会社神戸製鋼所 Al alloy for powder metallurgy
JPH02149631A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
US6669792B2 (en) * 1998-09-08 2003-12-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for producing a cast article from a hypereutectic aluminum-silicon alloy
JP3504917B2 (en) 2000-10-11 2004-03-08 日本碍子株式会社 Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637023A (en) * 1979-09-03 1981-04-10 Toshiba Corp Amorphous solid with fixed waste gas
JPS59166661A (en) * 1983-03-11 1984-09-20 Showa Alum Corp Preparation of aluminum alloy material excellent in abrasion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637023A (en) * 1979-09-03 1981-04-10 Toshiba Corp Amorphous solid with fixed waste gas
JPS59166661A (en) * 1983-03-11 1984-09-20 Showa Alum Corp Preparation of aluminum alloy material excellent in abrasion resistance

Also Published As

Publication number Publication date
JPS61259829A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
AU611444B2 (en) Aluminium alloy composites
US4126448A (en) Superplastic aluminum alloy products and method of preparation
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP6670635B2 (en) Aluminum alloy atomized powder for extruded material, method for producing aluminum alloy atomized powder for extruded material, method for producing extruded material, method for producing forged product
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
HUT53681A (en) Process for producing high-strength al-zn-mg-cu alloys with good plastic properties
AU2314501A (en) Die casting magnesium alloy
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
FR2788788A1 (en) Eutectic or hypereutectic aluminum-silicon alloy product for semisolid forming in forging and pressure injection operations
JP2000501995A (en) Manufacturing method of aluminum alloy thin strip with high strength and workability
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
JP2798841B2 (en) High-strength and heat-resistant aluminum alloy solidified material and method for producing the same
JPH0471609B2 (en)
EP1680246B1 (en) Method for producing metal matrix composite materials
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP3829164B2 (en) Semi-melt molding material manufacturing method
JPH0340647B2 (en)
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
JPH0480108B2 (en)
JPS62218527A (en) Manufacture of extruded magnesium alloy material having superior modulus of elasticity
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion