JPH047131B2 - - Google Patents

Info

Publication number
JPH047131B2
JPH047131B2 JP57030011A JP3001182A JPH047131B2 JP H047131 B2 JPH047131 B2 JP H047131B2 JP 57030011 A JP57030011 A JP 57030011A JP 3001182 A JP3001182 A JP 3001182A JP H047131 B2 JPH047131 B2 JP H047131B2
Authority
JP
Japan
Prior art keywords
josephson
current
josephson element
magnetically coupled
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030011A
Other languages
Japanese (ja)
Other versions
JPS58147238A (en
Inventor
Toshihiro Nakamura
Hideo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3001182A priority Critical patent/JPS58147238A/en
Publication of JPS58147238A publication Critical patent/JPS58147238A/en
Publication of JPH047131B2 publication Critical patent/JPH047131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Description

【発明の詳細な説明】 1 発明の技術分野 本発明は論理回路に係り、特に磁界結合ジヨセ
フソン素子を論理素子としたジヨセフソン論理回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Technical Field of the Invention The present invention relates to a logic circuit, and particularly to a Josephson logic circuit using a magnetically coupled Josephson element as a logic element.

2 技術の背景 ジヨセフソン素子は超伝導におけるトンネル効
果を応用した素子である。このジヨセフソン素子
の特徴は流れる電流と端子に発生する電圧の関係
はヒステリシスを有していることである。ジヨセ
フソン素子に電流を流した場合、その電流が素子
固有の臨界電流値より、少ない時には端子に発生
する電圧は零であり、電流が臨界電流値より大き
くなつたときには端子に電圧が発生する。この状
態すなわち、電圧が発生した状態はその素子に流
れる電流がほぼ零とならない限り保たれる。換言
すると、素子に流れる電流がほぼ零の時にこの状
態はリセツトされる。
2 Background of the technology The Josephson device is a device that applies the tunnel effect in superconductivity. A feature of this Josephson element is that the relationship between the flowing current and the voltage generated at the terminal has hysteresis. When a current is passed through a Josephson element, when the current is less than the critical current value specific to the element, the voltage generated at the terminal is zero, and when the current becomes larger than the critical current value, a voltage is generated at the terminal. This state, that is, the state in which a voltage is generated, is maintained unless the current flowing through the element becomes approximately zero. In other words, this state is reset when the current flowing through the element is approximately zero.

ジヨセフソン素子は他にもう一つの特徴を有し
ている。その特徴とは外部磁界によつて臨界電流
値が変化することである。この特徴を利用した素
子として、磁界結合ジヨセフソン素子がある。こ
の素子はジヨセフソン素子の近傍に入力信号線を
配置したものであり、入力信号線に流れる電流に
よつてジヨセフソン素子とヒステリシス特性が変
化し、電流状態(電流が流れても端子電圧は零)
から電圧状態(電流が流れると端子に電圧が発
生)にスイツチする。
The Josephson device has another feature. Its feature is that the critical current value changes depending on the external magnetic field. A magnetically coupled Josephson device is an element that takes advantage of this feature. This element has an input signal line placed near the Josephson element, and the hysteresis characteristics of the Josephson element change depending on the current flowing through the input signal line, resulting in a current state (even if current flows, the terminal voltage is zero).
Switch from to voltage state (when current flows, voltage is generated at the terminals).

3 従来技術と問題点 磁界結合ジヨセフソン素子はスイツチする機能
から論理素子として用いられている。第1図は従
来の論理回路を示す。磁界結合ジヨセフソン素子
J1のバイアス端子は負荷抵抗Rと並列に接続さ
れ、その一端は接地されている。
3. Prior Art and Problems Magnetically coupled Josephson devices are used as logic devices due to their switching function. FIG. 1 shows a conventional logic circuit. Magnetic field coupling Josephson element
The bias terminal of J1 is connected in parallel with the load resistor R, and one end thereof is grounded.

第2図は前述の動作を示す電圧電流特性であ
る。A点は電流IBを示し、直線Rtは抵抗Rの負荷
特性、曲線Jtは磁界結合ジヨセフソン素子の特性
曲線である。B点は電圧状態における動作点を示
している。
FIG. 2 shows voltage-current characteristics showing the above-mentioned operation. Point A indicates the current I B , the straight line R t is the load characteristic of the resistor R, and the curve J t is the characteristic curve of the magnetically coupled Josephson element. Point B indicates the operating point in the voltage state.

次に信号入力端子Cに電流ICを流すと臨界電流
値に(第2図D点)は小さくなり、矢印E方向に
移動する。ここで、磁界結合ジヨセフソン素子の
臨界電流値(D点)が回路に流れる電流IB(A点)
より小さくなると、磁界結合ジヨセフソン素子J1
は電圧状態となり、動作点はB点に移動する。前
述の動作によりジヨセフソン素子は論理素子とし
て動作する。
Next, when a current I C is applied to the signal input terminal C, the critical current value (point D in FIG. 2) decreases and moves in the direction of arrow E. Here, the critical current value (point D) of the magnetically coupled Josephson element is the current I B flowing through the circuit (point A).
When smaller, the magnetically coupled Josephson element J 1
becomes a voltage state, and the operating point moves to point B. Due to the above-described operation, the Josephson device operates as a logic device.

従来ジヨセフソン論理回路における負荷素子は
前述の如く抵抗である。この負荷素子には金−イ
ンジウム(AuIn2)が一般的に用いられている
が、抵抗値の大きい負荷の場合には抵抗面積が大
きくなつてしまつていた。そのため、高密度のジ
ヨセフソン論理回路を得ることはできなかつた。
The load elements in conventional Josephson logic circuits are resistors as described above. Gold-indium (AuIn 2 ) is generally used for this load element, but in the case of a load with a large resistance value, the resistance area becomes large. Therefore, it was not possible to obtain a high-density Josephson logic circuit.

4 発明の目的 本発明は前記問題点を解決するものであり、そ
の目的はジヨセフソン素子を用いた論理回路の高
密度集積化を可能にするジヨセフソン素子を提供
することにある。
4. Object of the Invention The present invention solves the above-mentioned problems, and its purpose is to provide a Josephson device that enables high-density integration of logic circuits using the Josephson device.

5 発明の構成 本発明の特徴とするところは、一端が接地側に
接続され他端がバイアス電流源に接続される磁界
結合された第1のジヨセフソン素子と、一端が接
地側に接続され他端が前記磁界結合された第1の
ジヨセフソン素子と同一のバイアス電流源に接続
される第2のジヨセフソン素子とを有し、前記第
1と第2のジヨセフソン素子の前記バイアス電流
源側の接続点と、前記第2のジヨセフソン素子側
の接地電極との間の電流経路にのみ永久電流防止
抵抗を設けると共に、前記磁界結合された第1の
ジヨセフソン素子のギヤツプ電圧が前記第2のジ
ヨセフソン素子のギヤツプ電圧よりも高く調整さ
れ、前記第2のジヨセフソン素子は、前記磁界結
合された第1のジヨセフソン素子が電圧状態にな
つた時に共に電圧状態となつて、当該論理回路の
動作点を電流状態から所定の電圧状態に移動せし
める如く、前期磁界結合された第1のジヨセフソ
ン素子とは異なる臨界電流値を有していることを
特徴とするジヨセフソン論理回路にある。
5. Structure of the Invention The present invention is characterized by a magnetically coupled first Josephson element having one end connected to the ground side and the other end connected to a bias current source; has a second Josephson element connected to the same bias current source as the first Josephson element which is magnetically coupled, and a connection point of the first and second Josephson elements on the bias current source side; , a persistent current prevention resistor is provided only in the current path between the second Josephson element and the ground electrode, and the gap voltage of the magnetically coupled first Josephson element is equal to the gap voltage of the second Josephson element. The second Josephson element is adjusted to a voltage state when the magnetically coupled first Josephson element becomes a voltage state, and changes the operating point of the logic circuit from the current state to a predetermined value. The Josephson logic circuit is characterized in that it has a different critical current value than the magnetically coupled first Josephson element so as to cause it to move to a voltage state.

6 発明の実施例 以下、図面を用いて本発明を詳細に説明する。6 Examples of the invention Hereinafter, the present invention will be explained in detail using the drawings.

第3図は本発明の第1の実施例である。磁界結
合ジヨセフソン素子J1とジヨセフソン素子J2は並
列に接続されており、その一端は電流源に他端は
接地されている。第4図は前述の本発明の第1の
実施例の動作点を示す特性曲線である。
FIG. 3 shows a first embodiment of the invention. The magnetically coupled Josephson element J 1 and the Josephson element J 2 are connected in parallel, with one end connected to a current source and the other end grounded. FIG. 4 is a characteristic curve showing the operating point of the first embodiment of the invention described above.

横軸は電圧、縦軸は電流であり、曲線Jtは磁界
結合ジヨセフソン素子の特性曲線,曲線Jt′は磁
界結合ジヨセフソン素子J1より負荷側すなわちジ
ヨセフソン素子J2を見た負荷曲線である。この回
路に電流IBを流したときの動作点はA点である。
この状態のときに入力信号線ICに電流を流すと磁
界結合ジヨセフソン素子J1の臨界電流値は低下
し、磁界結合ジヨセフソン素子J1は電圧状態とな
り、電流はジヨセフソン素子J2に流れる。このと
きジヨセフソン素子J2の臨界電流値をあらかじめ
回路に流す電流IBより小さい値に設定しておく
と、ジヨセフソン素子J2も電圧状態となり、動作
点はB点に移動する。これらの動作点すなわちA
点、B点は前述の抵抗負荷としたときの動作点と
同じである。換言すれば、A点とB点以外の動作
点は存在しないから、ジヨセフソン素子を負荷素
子として用いても抵抗負荷と同様の動作をする。
さらに本発明の論理回路は従来SQUID型ジヨセ
フソン素子で問題となつていたレゾナンス状態へ
のスイツチを避けることができる。
The horizontal axis is the voltage, and the vertical axis is the current. The curve J t is the characteristic curve of the magnetically coupled Josephson element, and the curve J t ' is the load curve looking at the load side of the magnetically coupled Josephson element J 1 , that is, the Josephson element J 2 . . The operating point when current I B flows through this circuit is point A.
When a current is passed through the input signal line I C in this state, the critical current value of the magnetically coupled Josephson element J 1 decreases, the magnetically coupled Josephson element J 1 enters a voltage state, and the current flows to the Josephson element J 2 . At this time, if the critical current value of the Josephson element J 2 is set in advance to a value smaller than the current I B flowing through the circuit, the Josephson element J 2 will also be in a voltage state and the operating point will move to point B. These operating points, namely A
Point and point B are the same as the operating point when using a resistive load as described above. In other words, since there are no operating points other than points A and B, even if a Josephson element is used as a load element, it will operate in the same way as a resistive load.
Furthermore, the logic circuit of the present invention can avoid switching to a resonance state, which has been a problem with conventional SQUID Josephson devices.

第5図は本発明の第2の実施例である。第1の
実施例の負荷素子はジヨセフソン素子J2であつた
が、第2の実施例では磁界結合ジヨセフソン素子
J2′を用いている。回路的には前述の素子が異な
つただけである。
FIG. 5 shows a second embodiment of the invention. The load element in the first embodiment was a Josephson device J2 , but in the second embodiment, it was a magnetically coupled Josephson device.
J 2 ′ is used. In terms of circuitry, only the aforementioned elements are different.

磁界結合ジヨセフソン素子J2′の入力信号線に
は常に電流を流し、臨界電流を抑制しておく。動
作に関しては第4図に示した動作点で動作する。
前述の本発明の第1の実施例では回路に流れる電
流をオフとした場合、磁界結合ジヨセフソン素子
J1とジヨセフソン素子J2とによつて形成された閉
ループに電流が流れる場合があつた。その電流値
は各ジヨセフソンJ2、J1の臨界電流より少ないの
で、永久電流となつていた。本発明の第2の実施
例では磁界結合ジヨセフソン素子を常に入力信号
電流によつて臨界電流を抑制するようにするので
永久電流が少なくなる。
A current is always passed through the input signal line of the magnetically coupled Josephson element J 2 ' to suppress the critical current. Regarding the operation, it operates at the operating points shown in FIG.
In the first embodiment of the present invention described above, when the current flowing through the circuit is turned off, the magnetic field coupling Josephson element
In some cases, current flowed through the closed loop formed by J 1 and Josephson element J 2 . Since the current value was less than the critical current of each Josephson J 2 and J 1 , it was a persistent current. In the second embodiment of the present invention, the magnetically coupled Josephson element always suppresses the critical current by the input signal current, so that the persistent current is reduced.

第6図は本発明の第3の実施例であり、前述の
本発明の第2の実施例の磁界結合ジヨセフソン素
子J2′の入力信号線に常に流す電流にバイアス電
流すなわち電流IBを用いた場合である。電流源に
磁界結合ジヨセフソン素子J2′の入力信号線の一
端が接続され、他が並列に接続された磁界結合ジ
ヨセフソン素子J1の一端に接続されている。
FIG. 6 shows a third embodiment of the present invention, in which a bias current, that is, a current I B is used as the current that is constantly passed through the input signal line of the magnetically coupled Josephson device J 2 ' of the second embodiment of the present invention. This is the case. One end of the input signal line of the magnetically coupled Josephson element J2 ' is connected to the current source, and the other end is connected to one end of the magnetically coupled Josephson element J1 connected in parallel.

第7図は本発明の第4の実施例である。本発明
の第1の実施例では、永久電流が流れるが、第4
の実施例ではジヨセフソン素子J2に直列に抵抗
RLを挿入して永久電流が流れるのを防止してい
る。尚、この永久電流防止用の抵抗R1としては、
小面積の抵抗値の低いものでも十分にその役割を
果たすから、何ら本願発明の特徴を阻害するもの
ではない。
FIG. 7 shows a fourth embodiment of the present invention. In the first embodiment of the invention, a persistent current flows;
In the example, a resistance is placed in series with Josephson element J2
R L is inserted to prevent persistent current from flowing. The resistance R1 for preventing persistent current is as follows:
Even a small-area, low-resistance device can sufficiently fulfill its role, so it does not impede the features of the present invention in any way.

前述の本発明の実施例では負荷素子すなわちジ
ヨセフソン素子や磁界結合ジヨセフソン素子によ
つて動作点Bが決つていた。この動作点は第8図
に示す動作曲線より明らかなようにスイツチング
用すなわち磁界結合ジヨセフソン素子J1のジヤン
クシヨン面積及びギヤツプ電圧を変える(第8図
曲線Jtp)ことにより負荷に流れる電流を調整す
ることができる。
In the embodiments of the present invention described above, the operating point B was determined by the load element, that is, the Josephson element or the magnetically coupled Josephson element. As is clear from the operating curve shown in Figure 8, this operating point is determined by adjusting the current flowing to the load by changing the junction area and gap voltage of the switching, ie, magnetically coupled Josephson element J1 (curve J tp in Figure 8). be able to.

この第8図は、第7図に示す第4の実施例にお
いて、磁界結合ジヨセフソン素子J1のギヤツプ電
圧が負荷回路のジヨセフソン素子J2のギヤツプ電
圧より高く調整されている場合の、特性曲線であ
る。
This FIG. 8 is a characteristic curve when the gap voltage of the magnetically coupled Josephson element J 1 is adjusted higher than the gap voltage of the Josephson element J 2 in the load circuit in the fourth embodiment shown in FIG. 7. be.

各ジヨセフソン素子J1,J2のギヤツプ電圧が上
記のように調整されているから、入力信号線IC
電流が流れておらず磁界結合ジヨセフソン素子J1
が電流状態にあるときは、電流IBの殆どは磁界結
合ジヨセフソン素子J1側を流れ、負荷回路のジヨ
セフソン素子J2側を流れる電流はほぼ0となる。
これは、負荷回路に抵抗RLが設けられているた
め磁界結合ジヨセフソン素子J1が電流状態にある
とき、電流IBが該抵抗RLに妨げらてジヨセフソン
素子J2側に流れないからである。
Since the gap voltage of each Josephson element J 1 and J 2 is adjusted as described above, no current flows in the input signal line I C and the magnetic field coupling Josephson element J 1
When is in a current state, most of the current I B flows through the magnetically coupled Josephson element J 1 side, and the current flowing through the Josephson element J 2 side of the load circuit becomes almost zero.
This is because when the magnetically coupled Josephson element J 1 is in a current state because the load circuit is provided with a resistor R L , the current I B is blocked by the resistor R L and does not flow to the Josephson element J 2 . be.

次に、入力信号線ICに電流が流れて磁界結合ジ
ヨセフソン素子J1が電圧状態となると、第8図に
示すように動作点はB点となり、この時負荷回路
のジヨセフソン素子J2には電流IBの殆どである電
流IJ2が流れ、磁界結合ジヨセフソン素子J1には僅
かの電流IJ1が流れるにすぎない。従つて、0か
らIBまでの広い範囲の出力電流を得ることができ
る。ゆえに、本願発明においては、出力マージン
が大きくとれるという効果を有する。
Next, when a current flows through the input signal line I C and the magnetically coupled Josephson element J 1 becomes in a voltage state, the operating point becomes point B as shown in Figure 8, and at this time the Josephson element J 2 in the load circuit A current I J2 , which is most of the current I B, flows, and only a small current I J1 flows through the magnetic field coupling Josephson element J 1 . Therefore, a wide range of output current from 0 to I B can be obtained. Therefore, the present invention has the effect of increasing the output margin.

7 発明の効果 以上述べたように、本発明は従来の抵抗負荷の
代わりにジヨセフソン素子を用いたことにより、
高密度集積ジヨセフソン論理素子を可能とした。
7 Effects of the Invention As described above, the present invention uses Josephson elements instead of conventional resistive loads, thereby achieving
This enabled high-density integrated Josephson logic elements.

さらに負荷にジヨセフソン素子と直列に抵抗を
用いることによつて、発生する永久電流を防止す
る機能も有し、電流転送の確実性を高めている。
Furthermore, by using a resistor in series with the Josephson element in the load, it also has the function of preventing persistent current from occurring, increasing the reliability of current transfer.

さらにまた、磁界結合ジヨセフソン素子のギヤ
ツプ電圧を負荷回路のジヨセフソン素子のギヤツ
プ電圧より高く調整しているので、出力マージン
を大きくとれる。
Furthermore, since the gap voltage of the magnetically coupled Josephson element is adjusted to be higher than the gap voltage of the Josephson element of the load circuit, a large output margin can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のジヨセフソン論理回路図、第2
図は従来のジヨセフソン論理回路の動作を示す特
性並びに負荷曲線図、第3図,第5図,第6図,
第7図は本発明の第1〜第4の実施例のジヨセフ
ソン論理回路、第4図,第8図は本発明の動作を
示す特性ならびに負荷曲線図をそれぞれ示す。 J1、J2′……磁界結合ジヨセフソン素子、J2……
ジヨセフソン素子、RL……抵抗。
Figure 1 is a conventional Josephson logic circuit diagram, Figure 2
The figures show characteristics and load curve diagrams showing the operation of conventional Josephson logic circuits, Figures 3, 5, 6,
FIG. 7 shows Josephson logic circuits of the first to fourth embodiments of the present invention, and FIGS. 4 and 8 show characteristics and load curve diagrams showing the operation of the present invention, respectively. J 1 , J 2 ′...Magnetic field coupling Josephson element, J 2 ...
Josefson element, R L ...Resistance.

Claims (1)

【特許請求の範囲】 1 一端が接地側に接続され他端がバイアス電流
源に接続される磁界結合された第1のジヨセフソ
ン素子と、 一端が接地側に接続され他端が前記磁界結合さ
れた第1のジヨセフソン素子と同一のバイアス電
流源に接続される第2のジヨセフソン素子とを有
し、 前記第1と第2のジヨセフソン素子の前記バイ
アス電流源側の接続点と、前記第2のジヨセフソ
ン素子側の接地電極との間の電流径路にのみ永久
電流防止抵抗を設けると共に、 前記磁界結合された第1のジヨセフソン素子の
ギヤツプ電圧が前記第2のジヨセフソン素子のギ
ヤツプ電圧よりも高く調整され、 前記第2のジヨセフソン素子は、前記磁界結合
された第1のジヨセフソン素子が電圧状態になつ
た時に共に電圧状態となつて、当該論理回路の動
作点を電流状態から所定の電圧状態に移動せしめ
る如く、前記磁界結合された第1のジヨセフソン
素子とは異なる臨界電流値を有していることを特
徴とするジヨセフソン論理回路。
[Claims] 1. A magnetically coupled first Josephson element having one end connected to a ground side and the other end connected to a bias current source; one end connected to a ground side and the other end magnetically coupled; a second Josephson element connected to the same bias current source as the first Josephson element, and a connection point of the first and second Josephson elements on the bias current source side; A persistent current prevention resistor is provided only in the current path between the ground electrode on the element side, and the gap voltage of the first Josephson element that is magnetically coupled is adjusted to be higher than the gap voltage of the second Josephson element, The second Josephson element is in a voltage state when the magnetically coupled first Josephson element is in a voltage state, and moves the operating point of the logic circuit from a current state to a predetermined voltage state. , a Josephson logic circuit having a critical current value different from that of the magnetically coupled first Josephson element.
JP3001182A 1982-02-26 1982-02-26 Josephson logical circuit Granted JPS58147238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3001182A JPS58147238A (en) 1982-02-26 1982-02-26 Josephson logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3001182A JPS58147238A (en) 1982-02-26 1982-02-26 Josephson logical circuit

Publications (2)

Publication Number Publication Date
JPS58147238A JPS58147238A (en) 1983-09-02
JPH047131B2 true JPH047131B2 (en) 1992-02-10

Family

ID=12291921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3001182A Granted JPS58147238A (en) 1982-02-26 1982-02-26 Josephson logical circuit

Country Status (1)

Country Link
JP (1) JPS58147238A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212212A (en) * 1985-07-10 1987-01-21 Hitachi Ltd Superconduction circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558828A (en) * 1978-07-05 1980-01-22 Hitachi Ltd Flock size determining device
JPS5721131A (en) * 1980-07-15 1982-02-03 Fujitsu Ltd Josephson logical gate
JPS5733490A (en) * 1980-08-06 1982-02-23 Ibm Superconductive latch circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558828A (en) * 1978-07-05 1980-01-22 Hitachi Ltd Flock size determining device
JPS5721131A (en) * 1980-07-15 1982-02-03 Fujitsu Ltd Josephson logical gate
JPS5733490A (en) * 1980-08-06 1982-02-23 Ibm Superconductive latch circuit

Also Published As

Publication number Publication date
JPS58147238A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
JPS6010451B2 (en) Switching circuit using Josephson effect
CA1198484A (en) Circuit utilizing josephson effect
JPH047131B2 (en)
EP0074604B1 (en) Circuit utilizing josephson effect
JPH023326B2 (en)
JPH0425639B2 (en)
JPH0425640B2 (en)
JPH0417566B2 (en)
JPH0218619B2 (en)
JPS60260225A (en) Josephson or circuit
JPS59188235A (en) Current injection type logical gate circuit using josephson effect
JP2765326B2 (en) Josephson polarity switching type drive circuit
JPH047132B2 (en)
JPS59191938A (en) Current injection type not signal generating circuit using josephson effect
JPS60125018A (en) Superconductive logical gate
JPH012416A (en) superconducting logic gate circuit
JPH03234121A (en) Current injection type josephson gate
JPS58115934A (en) Superconduction logical circuit
JPS6053966B2 (en) josephson logic gate
JPS64850B2 (en)
JPH0226417B2 (en)
JPS60254912A (en) Josephson latch circuit
JPS6347369B2 (en)
JPH0754900B2 (en) Josephson resistor-coupling negation circuit
JPH0342809B2 (en)