JPH047033A - Active molecule producing apparatus - Google Patents

Active molecule producing apparatus

Info

Publication number
JPH047033A
JPH047033A JP2108259A JP10825990A JPH047033A JP H047033 A JPH047033 A JP H047033A JP 2108259 A JP2108259 A JP 2108259A JP 10825990 A JP10825990 A JP 10825990A JP H047033 A JPH047033 A JP H047033A
Authority
JP
Japan
Prior art keywords
pulse
molecular beam
discharge
active molecules
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2108259A
Other languages
Japanese (ja)
Inventor
Masazumi Taura
昌純 田浦
Masaru Fukushima
勝 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2108259A priority Critical patent/JPH047033A/en
Publication of JPH047033A publication Critical patent/JPH047033A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Abstract

PURPOSE:To produce active molecules efficiently by installing a pulse molecular- beam source to generate pulse molecular beam and discharging a raw material gas lead as pulses to a vacuum container in a microwave resonator which can discharge at a high pressure. CONSTITUTION:A pulse molecular beam source is composed of an electromagnetic valve 13 which works pulse-wise to lead a raw material gas as pulse molecular beam to a vacuum container 1 and a driving apparatus 12 for the valve. The pulse molecular beam source and the vacuum containers are connected each other through a small hole. Then active molecules are generated in the vacuum container 1 using a resonator-type microwave discharge tube 14 which can discharge in atmospheric pressure. As a result, active molecules with high controllability and few impurities are produced efficiently. The apparatus is thus applicable for thin film growth such as thin films for semiconductor devices, surface reformation of adsorbents, etc., amorphous thin films, plasma etching, and excitation apparatus for superfine particle production and analysis of component elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロ波による活性分子の生成法に関し、
本装置によって生成した活性分子を利用して薄膜成長や
、分析用原子化装置として利用可能である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing active molecules using microwaves,
The active molecules generated by this device can be used for thin film growth and as an atomization device for analysis.

〔従来の技術〕[Conventional technology]

従来、活性分子、例えば、ラジカルやイオンのビームを
発生する方法としては、気体試料を放電によって解離し
、生成する方法が知られている。その第1の方法として
、試料導入ノズルから原料ガスを吹き出し、ノくルス状
のガスの流れを作り、ノズルの下流に設置した電極に高
圧を印加し、放電させる方法がある。かかる従来の方法
を第3図によシ説明する。真空容器1に試料導入ノズル
2と排気ポンプ3が設置されている。試料は、電磁弁駆
動装置5によって制御される電磁弁6を介して、試料導
入ノズル2を通り、真空容器1に導入される。この時、
電極8aと8bの間に高電圧発生器4によって高電圧が
印加され、放電がおこり、ラジカル分子が発生し、排気
ポンプ3によって排気される。電磁弁駆動装置5と高電
圧発生器4は、/くルス制御装置7によってタイミング
を調整する。
BACKGROUND ART Conventionally, as a method for generating a beam of active molecules, such as radicals or ions, a method is known in which a gas sample is dissociated by electric discharge. The first method is to blow out the source gas from a sample introduction nozzle to create a nozzle-like gas flow, and apply high pressure to an electrode installed downstream of the nozzle to cause discharge. This conventional method will be explained with reference to FIG. A sample introduction nozzle 2 and an exhaust pump 3 are installed in a vacuum container 1. The sample is introduced into the vacuum vessel 1 through the sample introduction nozzle 2 via the electromagnetic valve 6 controlled by the electromagnetic valve drive device 5 . At this time,
A high voltage is applied between the electrodes 8a and 8b by the high voltage generator 4, causing discharge and generating radical molecules, which are exhausted by the exhaust pump 3. The timing of the electromagnetic valve drive device 5 and the high voltage generator 4 is adjusted by a pulse control device 7.

第2の方法として、原料ガスを減圧状態で連続流にして
、マイクロ波放電の様な無電極放電を行い、その下流で
、ラジカルの連続流を真空容器に導く方法がある。第4
図によりかかる方法を説明する。真空容器1に試料導入
ノズル2と排気ポンプ3が設置されている。試料は、試
料導入ノズル2を通シ、真空容器1に導入され、排気ポ
ンプ3で真空排気される。この時、ノズル2内は減圧に
なり、マイクロ波電源9によって共振器10にマイクロ
波が印加され、放電がおこシ、活性分子が生成する。
As a second method, there is a method in which a raw material gas is made into a continuous flow under reduced pressure, an electrodeless discharge such as a microwave discharge is performed, and a continuous flow of radicals is introduced into a vacuum container downstream of the discharge. Fourth
This method will be explained with reference to the drawings. A sample introduction nozzle 2 and an exhaust pump 3 are installed in a vacuum container 1. A sample is introduced into a vacuum container 1 through a sample introduction nozzle 2, and is evacuated by an exhaust pump 3. At this time, the pressure inside the nozzle 2 is reduced, microwaves are applied to the resonator 10 by the microwave power source 9, a discharge occurs, and active molecules are generated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の技術では、制御性の高いパルス状
の活性分子ビームを得る時には、電極が必要であシ、放
電によって電極が消耗し、さらに、電極の消耗により不
純物が混入するという問題があった。また、電極を必要
としない放電では、安定な放電を得る為には、連続でし
かも低圧でガスを流す必要があシ、制御性が悪く、衝突
の少ない活性分子ビームは得にくいという問題点があっ
た。本発明は、上記従来の問題点を解決する為になされ
たもので、制御性の良い、不純物の少ない活性分子ビー
ムの生成法を提供しようとするものである。
However, with conventional technology, when obtaining a highly controllable pulsed active molecular beam, electrodes are required, and the electrodes are worn out due to discharge, and furthermore, impurities are mixed in due to the wear of the electrodes. . In addition, in discharges that do not require electrodes, in order to obtain stable discharges, it is necessary to flow gas continuously and at low pressure, resulting in poor controllability and difficulty in obtaining active molecular beams with few collisions. there were. The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a method for generating an active molecular beam with good controllability and with few impurities.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、原料ガスを、電磁弁を介して真空容器内に導
き、パルス状の分子線を発生させる為のパルス分子線源
を有し、真空容器内にノ(ルス状で導入された原料ガス
を、高圧で放電可能なマイクロ波共振器内で放電し、効
率良く活性分子を生成することを特徴とする活性分子生
成装置である。
The present invention has a pulsed molecular beam source for guiding raw material gas into a vacuum container via a solenoid valve and generating pulsed molecular beams, and the raw material gas is introduced in the form of a nozzle into the vacuum container. This active molecule generating device is characterized in that gas is discharged in a microwave resonator capable of discharging at high pressure to efficiently generate active molecules.

ここで使用するマイクロ波は、大気圧でも放電可能なマ
イクロ波共振器を使用することによって、従来放電が困
難であったパルス状分子線の放電を可能にするものであ
る。
The microwave used here uses a microwave resonator capable of discharging even at atmospheric pressure, making it possible to discharge pulsed molecular beams that were previously difficult to discharge.

〔作 用〕[For production]

本発明によれば、1気圧の気体試料が、10−6からI
Q−”I’orrに保たれた真空容器の入口に設置した
パルス分子線源を介して、真空容器内に導入される。パ
ルス分子線源は例えば、1〜100H2の繰シ返しで、
パルス幅1〜10μ秒のパルス幅で開閉し、径01〜1
mmの穴からガスが導入される。この条件では、導入さ
れた気体試料は、超音速分子線として衝突の無い状態で
輸送される。
According to the invention, a gas sample at 1 atm is applied from 10-6 to I
The pulsed molecular beam source is introduced into the vacuum vessel through a pulsed molecular beam source installed at the entrance of the vacuum vessel maintained at Q-''I'orr.
Opens and closes with a pulse width of 1 to 10 μs, diameter 01 to 1
Gas is introduced through the mm hole. Under this condition, the introduced gas sample is transported as a supersonic molecular beam without collisions.

この時、ガス導入口で大気圧で放電可能な共振器型の出
力10〜500Wのマイクロ波放電管によって放電する
ことによシ、ラジカルなどの活性分子を生成することが
可能である。生成した活性分子は、衝突がない状態で輸
送されるので、再び結合したシすることなく、下流にお
いて、成膜などに利用可能である。パルス分子線源は、
パルスの繰シ返し回数とパルス幅を設定することによシ
、細かい制御が可能である。
At this time, active molecules such as radicals can be generated by discharging at the gas inlet using a resonator-type microwave discharge tube with an output of 10 to 500 W capable of discharging at atmospheric pressure. Since the generated active molecules are transported without collision, they can be used downstream for film formation, etc., without being recombined. The pulsed molecular beam source is
Fine control is possible by setting the number of pulse repetitions and pulse width.

また、マイクロ波による無電極の放電を行うことにより
、電極の消耗や、不純物の混入が押さえられる。
Further, by performing electrodeless discharge using microwaves, consumption of electrodes and contamination of impurities can be suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の1実施例を第1図、第2図により詳細に
説明すると、第1図は、本発明の第1実施としての活性
分子の生成装置を示す概略図である。図中の12は、パ
ルス動作の電磁弁駆動装置であり、13の電磁弁を駆動
し、パルス状に試料を送シ出す。14は円筒型のマイク
ロ波共振器であり、周波数2450MHzに同調させて
あり、中心部でマイクロ波の電界が最も強くなるように
設定しである。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram showing an active molecule production apparatus as a first embodiment of the present invention. Reference numeral 12 in the figure is a pulse-operated electromagnetic valve driving device, which drives the electromagnetic valve 13 and sends out the sample in a pulsed manner. Reference numeral 14 denotes a cylindrical microwave resonator, which is tuned to a frequency of 2450 MHz, and is set so that the microwave electric field is strongest at the center.

次に上述した第1図図示の生成装置を用いて活性分子の
生成方法を印明する。
Next, a method for producing active molecules will be explained using the above-described production apparatus shown in FIG.

まず、試料がガスボンベ1】がら供給され、電磁弁の入
口圧力は、1〜2気圧に設定される。
First, a sample is supplied from a gas cylinder 1, and the inlet pressure of the solenoid valve is set to 1 to 2 atmospheres.

電磁弁駆動装置12から、パルスの繰シ返しが10〜1
00H2でパルス幅が1〜10μ秒のパルス電流が流れ
ると、電磁弁13が間欠的に開き、圧力が10−6〜1
0−’ Torrに設定されたマイクロ波共振器14お
よび真空容器1に試料が吹き出す。吹き出し口付近に設
置しであるマイクロ波共振器にマイクロ波電源9から、
出力1o〜soowで周波数2450MHzのマイクロ
波を印加して、放電を起こさせる。ここで、印加する高
周波の周波数は2450MH2に限定する必要はないが
、周波数に対応して共振器の形状が決まる。上記の条件
下では、気体は超音速分子線となシ、数cm下流では衝
突の無い流れとなる。従って、吹き出し口付近で、マイ
クロ波放電によって生成した活性分子は、衝突が無い為
、再び反応することなく、目的の場所まで輸送できる。
The pulse repetition rate from the electromagnetic valve drive device 12 is 10 to 1.
When a pulse current with a pulse width of 1 to 10 μs flows at 00H2, the solenoid valve 13 opens intermittently, and the pressure increases from 10-6 to 1
A sample is blown out into the microwave resonator 14 and the vacuum container 1 set at 0-' Torr. A microwave power source 9 is connected to a microwave resonator installed near the air outlet.
A microwave with a frequency of 2450 MHz is applied with an output of 1o to soow to cause discharge. Here, the frequency of the applied high frequency does not need to be limited to 2450 MH2, but the shape of the resonator is determined depending on the frequency. Under the above conditions, the gas becomes a supersonic molecular beam and flows several centimeters downstream without collisions. Therefore, the active molecules generated by the microwave discharge near the outlet can be transported to the target location without reacting again because there is no collision.

なお16は弁体17の下端に設けられパルス線源2と真
空容器1との間の小さな穴を開閉する0リングである。
Note that 16 is an O-ring provided at the lower end of the valve body 17 for opening and closing a small hole between the pulsed radiation source 2 and the vacuum vessel 1.

第2図は、本発明の第2実施例としての活性分子の生成
装置を示す概略図である。図中の12は、パルス動作の
電磁弁駆動装置であシ、13の電磁弁を駆動し、パルス
状に試料を送り出す。
FIG. 2 is a schematic diagram showing an active molecule generating apparatus as a second embodiment of the present invention. 12 in the figure is a pulse-operated electromagnetic valve drive device, which drives the electromagnetic valve 13 and sends out the sample in a pulsed manner.

14′は円筒型のマイクロ波共振器であシ、周波数24
50MHzに同調させてあシ、中心部でマイクロ波の電
界が最も強くなるように設定しである。
14' is a cylindrical microwave resonator with a frequency of 24
It is tuned to 50MHz and set so that the microwave electric field is strongest at the center.

本実施例では、ノズル2と真空容器1の間に、石英また
は、アルミナの様なマイクロ波の吸収の少ない材料で製
作した放電管15を設置してあり、放電による不純物の
混入を極力押さえることが可能である。
In this embodiment, a discharge tube 15 made of a material with low absorption of microwaves, such as quartz or alumina, is installed between the nozzle 2 and the vacuum vessel 1 to minimize the incorporation of impurities due to discharge. is possible.

次に上述した第2実施例の活性分子の生成装置を用いて
活性分子の生成方法を説明する。
Next, a method for producing active molecules will be explained using the active molecule producing apparatus of the second embodiment described above.

まず、試料が試料容器11から供給され、電磁弁の入り
口王力は、1〜2気圧に設定される。
First, a sample is supplied from the sample container 11, and the inlet force of the solenoid valve is set to 1 to 2 atmospheres.

電磁弁駆動装置鴇・ら、パルスの繰シ返しが1〜100
Hzでパルス幅が1〜10μ秒のパルス電流が流れると
、電磁弁13が開き、圧力が10−6〜1O−9Tor
rに設定されたマイクロ波共振器14′および真空容器
1に試料が吹き出す。吹き出し口付近に設置しであるマ
イクロ波共振器にマイクロ波電源9から、出力10〜5
00Wで周波数2450MHzのマイクロ波を印加して
、放電管15の内部で放電を起こさせる。上記の条件下
では、気体は、超音速分子線となり、数cm下流では、
衝突の無い、流れとなる。従って、吹き出し口付近で、
マイクロ波放電によって生成した活性分子は、衝突が無
い為、再び反応することなく、目的の場所まで輸送でき
る。
Solenoid valve drive device Toki et al. Pulse repetition is 1 to 100
When a pulse current with a pulse width of 1 to 10 microseconds flows at Hz, the solenoid valve 13 opens and the pressure increases to 10-6 to 1O-9 Torr.
The sample is blown out into the microwave resonator 14' and the vacuum container 1, which are set at r. Output 10 to 5 from microwave power supply 9 to the microwave resonator installed near the air outlet.
Microwaves of 00 W and a frequency of 2450 MHz are applied to cause discharge inside the discharge tube 15. Under the above conditions, the gas becomes a supersonic molecular beam, and several cm downstream,
It becomes a flow without collision. Therefore, near the air outlet,
Active molecules generated by microwave discharge can be transported to the desired location without reacting again because there is no collision.

〔発明の効果〕〔Effect of the invention〕

以上詳述したごとく、本発明の活性分子生成装置によれ
ば、高い制御性で、高効率に目的とする活性分子を生成
することが可能である。従って、半導体用薄膜、ガス分
離膜、酸化物被膜などの薄膜成長、吸着剤、触媒などの
表面改質、アモルファス薄膜、プラズマエンチング、ま
たは、超微粒子生成や、構成元素の分析用の励起装置と
して利用できる等顕著な効果を発揮する。
As described in detail above, according to the active molecule generating device of the present invention, it is possible to generate target active molecules with high controllability and high efficiency. Therefore, it is suitable for use in the growth of thin films such as semiconductor thin films, gas separation films, and oxide films, surface modification of adsorbents and catalysts, amorphous thin films, plasma etching, ultrafine particle generation, and excitation equipment for analysis of constituent elements. It has remarkable effects such as being able to be used as a.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例としての活性分子生成装
置を示す概略図、第2図は、本発明の第2実施例として
の活性分子生成装置を示す概略図である。第3図と第4
図は、従来の活性分子生成装置を示す概略図である。 1・・・真空容器、2・・・試料導入ノズル、3・・・
排気ポンプ、4・・・高電圧発生器、5・・・電磁弁駆
動装置、6・・・電磁弁、7・・・パルス制御装置、8
・・・電極、9・・・マイクロ電源、10・・・マイク
ロ波共振器、11・・・試料容器、12・・・電磁弁駆
動用パルス発生器、13・・・ソレノイドパルプ、14
・・・大気圧対応マイクロ波共振器、15・・・放電管
FIG. 1 is a schematic diagram showing an active molecule generating apparatus as a first embodiment of the present invention, and FIG. 2 is a schematic diagram showing an active molecule generating apparatus as a second embodiment of the present invention. Figures 3 and 4
The figure is a schematic diagram showing a conventional active molecule generation device. 1... Vacuum container, 2... Sample introduction nozzle, 3...
Exhaust pump, 4... High voltage generator, 5... Solenoid valve drive device, 6... Solenoid valve, 7... Pulse control device, 8
... Electrode, 9 ... Micropower source, 10 ... Microwave resonator, 11 ... Sample container, 12 ... Solenoid valve driving pulse generator, 13 ... Solenoid pulp, 14
...Atmospheric pressure compatible microwave resonator, 15...Discharge tube.

Claims (1)

【特許請求の範囲】[Claims] 原料ガスをパルス分子線として真空容器内に導く為のパ
ルス動作の電磁弁およびその駆動装置からなるパルス分
子線源と、該パルス分子線源と小さな穴を介して結合さ
れている真空容器と、該真空容器内で活性分子を生成せ
しめる為の大気圧で放電可能な共振器型のマイクロ波放
電管を有することを特徴とする活性分子生成装置。
A pulsed molecular beam source consisting of a pulse-operated electromagnetic valve and its driving device for guiding source gas as a pulsed molecular beam into a vacuum vessel; a vacuum vessel coupled to the pulsed molecular beam source through a small hole; An active molecule generation device comprising a resonator-type microwave discharge tube capable of discharging at atmospheric pressure for generating active molecules within the vacuum container.
JP2108259A 1990-04-24 1990-04-24 Active molecule producing apparatus Pending JPH047033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108259A JPH047033A (en) 1990-04-24 1990-04-24 Active molecule producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108259A JPH047033A (en) 1990-04-24 1990-04-24 Active molecule producing apparatus

Publications (1)

Publication Number Publication Date
JPH047033A true JPH047033A (en) 1992-01-10

Family

ID=14480123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108259A Pending JPH047033A (en) 1990-04-24 1990-04-24 Active molecule producing apparatus

Country Status (1)

Country Link
JP (1) JPH047033A (en)

Similar Documents

Publication Publication Date Title
US6059935A (en) Discharge method and apparatus for generating plasmas
CN100371491C (en) Pulsed plasma processing method and apparatus
JPS60175351A (en) X rays generation device and x rays exposure method
JP4414765B2 (en) Plasma processing apparatus and plasma processing method
EP3069577B1 (en) Method for producing an atmospheric plasma jet and atmospheric pressure plasma minitorch device
US20040154541A1 (en) Method and apparatus for sequential plasma treatment
JPH09223598A (en) High speed atomic beam source
WO2008072390A1 (en) Plasma producing apparatus and method of plasma production
JP3561080B2 (en) Plasma processing apparatus and plasma processing method
JP2016134461A (en) Plasma processing method and plasma processing device
JP2003080058A (en) Method for producing reactive gas and producing apparatus therefor
JPS63155728A (en) Plasma processor
JP2002289581A (en) Neutral particle beam treatment device
CN108115148B (en) Method for preparing liquid nano-gold particles by adopting atmospheric pressure low-temperature plasma plume
KR900019219A (en) Beam deposition method and apparatus for performing the same
US20030006130A1 (en) Method and apparatus for inductively coupled plasma treatment
JPH047033A (en) Active molecule producing apparatus
JP3768854B2 (en) Plasma jet generator
JP2603331B2 (en) Pulse gas nozzle device and pulse gas nozzle reaction device
JP2005036255A (en) Method and apparatus for producing composite structure
JPH0523579A (en) Surface processing and its device
JPS62116775A (en) Plasma cvd device
JPH09223594A (en) Beam source and micro-working method
JPH0982494A (en) Plasma processing device and method
JP4365595B2 (en) Ozone generation method and ozone generator