JPH0470328B2 - - Google Patents

Info

Publication number
JPH0470328B2
JPH0470328B2 JP63040969A JP4096988A JPH0470328B2 JP H0470328 B2 JPH0470328 B2 JP H0470328B2 JP 63040969 A JP63040969 A JP 63040969A JP 4096988 A JP4096988 A JP 4096988A JP H0470328 B2 JPH0470328 B2 JP H0470328B2
Authority
JP
Japan
Prior art keywords
resin
epoxy
epoxy resin
formula
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63040969A
Other languages
Japanese (ja)
Other versions
JPH01215819A (en
Inventor
Eisaku Saito
Tokio Yoshimitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4096988A priority Critical patent/JPH01215819A/en
Publication of JPH01215819A publication Critical patent/JPH01215819A/en
Publication of JPH0470328B2 publication Critical patent/JPH0470328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Landscapes

  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上に利用分野】[Industrial application field]

本発明は積層板等に使用するエポキシ変性ポリ
イミド樹脂プレポリマーを含浸させたプリプレグ
に関する。
The present invention relates to a prepreg impregnated with an epoxy-modified polyimide resin prepolymer for use in laminates and the like.

【従来の技術】[Conventional technology]

従来よりポリイミド樹脂やエポキシ樹脂は、積
層板用の樹脂ワニスとして多用されている。積層
板の場合、樹脂選択の基準として、積層数が10層
以上か以下かでポリイミド樹脂とエポキシ樹脂が
使い分けされている。 しかしながら、近時、積層板の用途が多様化
し、ポリイミド樹脂とエポキシ樹脂の使い分けで
は充分な対応ができなくなつてきている。ポリイ
ミド樹脂においては、高Tg化、高難燃性化、低
温度硬化化、低コスト化等を満たすことが要求さ
れており、エポキシ樹脂においては、高純度化、
速硬化性、スミヤー性、UV遮蔽性等が優れてい
ることが求められている。特に、最近ではポリイ
ミド樹脂とエポキシ樹脂の中間に位置する性能が
求められており、両樹脂をブレンドしたものと
か、ポリイミド樹脂プレポリマーをエポキシ樹脂
で変性したエポキシ樹脂変性ポリイミド樹脂プレ
ポリマーが開発されており、本発明者等も既にこ
の種のプレポリマーを開発して、特願昭62−
168219号、特願昭62−168220号、特願昭62−
168221号として出願している。
Conventionally, polyimide resins and epoxy resins have been widely used as resin varnishes for laminated boards. In the case of laminates, polyimide resins and epoxy resins are used depending on whether the number of laminated layers is 10 or more or less, as a criterion for resin selection. However, in recent years, the uses of laminates have diversified, and it is no longer possible to adequately handle the use of polyimide resins and epoxy resins. Polyimide resins are required to have high Tg, high flame retardancy, low temperature curing, low cost, etc., and epoxy resins are required to have high purity,
It is required to have excellent fast curing properties, smear properties, UV shielding properties, etc. In particular, recently there has been a demand for performance that is between polyimide resin and epoxy resin, and blends of both resins and epoxy resin-modified polyimide resin prepolymers, which are polyimide resin prepolymers modified with epoxy resins, have been developed. The present inventors have already developed this type of prepolymer and filed a patent application in 1982-
No. 168219, Special Application No. 168220, Special Application No. 1982-
It has been filed as No. 168221.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来のポリイミド樹脂とエポキシ樹脂のブレン
ド物あるいはエポキシ変性ポリイミド樹脂プレポ
リマーにあつては、層間接着力を高めるために、
エポキシ樹脂の配合量を多くしているが、そうす
ると硬化後の樹脂のTgが低くなつてしまうとい
う問題があつた。 本発明は上記事情に鑑みて為されたものであ
り、その目的とするところは、Tgが高く耐熱性
に優れ、積層板にした場合にも充分な層間接着力
が得られるエポキシ変性ポリイミド樹脂プレポリ
マーを含浸させたプリプレグを提供することにあ
る。
In the case of conventional blends of polyimide resin and epoxy resin or epoxy-modified polyimide resin prepolymers, in order to increase interlayer adhesion,
Although the amount of epoxy resin blended is large, there is a problem that the Tg of the resin after curing becomes low. The present invention was made in view of the above circumstances, and its purpose is to provide an epoxy-modified polyimide resin preform with a high Tg and excellent heat resistance, and which can provide sufficient interlayer adhesion even when made into a laminate. An object of the present invention is to provide a prepreg impregnated with a polymer.

【課題を解決するための手段】 本発明のプリプレグの製造方法は、一般式 (式中、Xは末端官能基を表し、Ar1,Ar2
2価の芳香族基、R1は水素原子、炭素数1〜10
のアルキル基、R2は水素原子、炭素数1〜20の
アルキル基、アルコキシ基あるいは水酸基を表
し、nは0〜80の整数を示す)で表される末端官
能型イミドと 一般式 (式中、R1,R2は水素原子、ハロゲン原子又
はアルキル基を示し、R1,R2のうちの少なくと
も一方は常にアルキル基であり、nは正の整数を
示す)で表される多官能マレイミド樹脂を反応さ
せ、次いでエポキシ樹脂とを反応させて得られた
エポキシ変成ポリイミド樹脂プレポリマーを基材
に含浸させることを特徴とするものであり、この
構成により上記目的が達成されたものである。 本発明における末端官能基イミドは1分子内に
イミド基とアミノ基を各々複数個有するもので、
一般式 (式中、Xは末端官能基を表し、Ar1,Ar2
2価の芳香族基、R1は水素原子、炭素数1〜10
のアルキル基、R2は水素原子、炭素数1〜20の
アルキル基、アルコキシ基あるいは水酸基を表
し、nは0〜80の整数を示す)で表される。 又、多官能マレイミド樹脂は1分子内にイミド
基を3個以上有するもので一般式 (式中、R1,R2は水素原子、ハロゲン原子又
はアルキル基を示し、R1,R2のうちの少なくと
も一方は常にアルキル基であり、nは正の整数を
示す)で表される。 又、本発明において使用するエポキシ樹脂とし
ては、ビスフエノールAとエピクロルヒドリンを
反応させて得られたものとか、プリント配線板用
としてノボラツク型のフエノール、o−クレゾー
ルとエピクロルヒドリンを反応させたエポキシ樹
脂が使用される。又、ブロム化エポキシ樹脂とし
ては一般式 (式中、nは正の整数) で表されるブロム化ノボラツクエポキシ樹脂や、
で表されるテトラブロムビスフエノールAのジア
リルエステル化物や、式 で表わされるテトラブロムビスフエノールAのジ
グリシジルエーテル化物などが使用される。 このブロム化エポキシ樹脂に含まれる臭素は全
樹脂分に対して6重量%以上の範囲にあるのが好
ましい。6重量%未満であると、充分な難燃性を
確保できない。 本発明にあつては、末端官能イミド樹脂と多官
能マレイミド樹脂を反応させて得られた反応生成
物とエポキシ樹脂を反応させるのであるが、ま
ず、末端官能イミド樹脂と多官能マレイミド樹脂
をDMF,DMAc,MCのような有機溶媒に溶解
させ反応させる。末端官能イミド樹脂と多官能マ
レイミドの重量比は10〜20:1である。反応温度
は80〜120℃で、反応時間は10〜30分である。温
度が80℃よりも低いと反応成分が溶解しない場合
があり、一方120℃を超えると反応が進み過ぎ、
プリプレグ用樹脂ワニスの調製が困難となる傾向
にある。次に、得られた反応生成物に同一の反応
条件でエポキシ樹脂を反応させる。エポキシ樹脂
の配合割合は多官能マレイミド樹脂に対して重量
比で2:1まで可能である。 このようにして製造したエポキシ変性ポリイミ
ド樹脂プレポリマーから樹脂ワニスが調製され、
ガラス布、不織布、紙などの基材に含浸され、乾
燥されてプリプレグが製造される。このプリプレ
グが複数枚積層成形され、その片面又は両面に銅
箔、アルミニウム箔などの金属箔が貼着されてプ
リント配線板用の耐熱性に優れ層間接着力に優れ
た積層板が得られるのである。 又、このエポキシ変性ポリイミド樹脂プレポリ
マーに硬化剤、シリカ等の充填剤、ガラス繊維、
カツプリング剤、着色剤、ステアリン酸カルシウ
ム等の離型剤、希釈剤などが添加されて電子部品
封止用材料が製造される。 次に本発明の実施例を説明する。以下において
部とあるのは重量部を示す。 (実施例 1) 1分子内にイミド基とアミノ基を各々複数個有
する末端官能イミド樹脂「“Best Lex”SM−20」
(商品名、住友化学工業(株)製)375部と1分子
内にイミド基を3個以上有する多官能マレイミド
「MP−2000X」(商品名、三菱油化(株)製)42
部をDMFに溶解し、80℃で10分間反応させた。 次いで、得られた反応液中にビスフエノールA
型エポキシ樹脂「R−140Q」(商品名、三井石油
化学(株)製)280部及びブロム化ビスフエノー
ルA型エポキシ樹脂「BREN」(商品名、日本化
薬(学)製)291部を投入して80℃で10分間反応
させた。 このようにしてエポキシ変性ポリイミド樹脂プ
レポリマーを製造した。このもののガラス転移温
度Tg(℃)及び熱分解開始温度T.G.A(℃)を測
定した。結果を第1表に示す。 次いで、エポキシ変性ポリイミド樹脂プレポリ
マーからワニスを調製し、ガラス布基材に含浸さ
せ乾燥させてプリプレグを作成し、このプリプレ
グを複数枚積層成形して厚み0.4mmの銅張積層板
を得た。この積層板の層間接着力及び銅箔引き剥
がし強度を測定した。結果を第1表に示す。 (実施例 2) 多官能マレイミド「MP−2000X」21部とした
以外は実施例1と同様にしてエポキシ変性ポリイ
ミド樹脂プレポリマーを製造し、銅張積層板を作
成し、同様の測定を行つた。結果を第1表に示
す。 (比較例 1) 「“Best Lex”SM−20」410部と「R−140Q」
280部及び「BREN」291部をDMFに溶解し80℃
で10分間反応させてエポキシ変性ポリイミド樹脂
プレポリマーを製造し、実施例1と同様にして銅
張積層板を作成し、同様の測定を行つた。結果を
第1表に示す。 (比較例 2) Tgが250℃のポリイミド樹脂ワニスを使用した
以外は実施例と同様にして積層板を製造し、同様
の測定を行つた。結果を第1表に示す。 (比較例 3) Tgが150℃のエポキシ樹脂ワニスを使用した以
外は実施例と同様にして積層板を製造し、同様の
測定を行つた。結果を第1表に示す。
[Means for Solving the Problems] The prepreg manufacturing method of the present invention is based on the general formula (In the formula, X represents a terminal functional group, Ar 1 and Ar 2 are divalent aromatic groups, R 1 is a hydrogen atom, and has a carbon number of 1 to 10
( R2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a hydroxyl group, and n represents an integer of 0 to 80) and a terminally functional imide represented by the general formula (In the formula, R 1 and R 2 represent a hydrogen atom, a halogen atom, or an alkyl group, at least one of R 1 and R 2 is always an alkyl group, and n represents a positive integer) This method is characterized by impregnating a base material with an epoxy-modified polyimide resin prepolymer obtained by reacting a polyfunctional maleimide resin and then reacting with an epoxy resin, and with this configuration, the above object is achieved. It is. The terminal functional imide in the present invention has a plurality of imide groups and a plurality of amino groups in one molecule,
general formula (In the formula, X represents a terminal functional group, Ar 1 and Ar 2 are divalent aromatic groups, R 1 is a hydrogen atom, and has a carbon number of 1 to 10
R2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a hydroxyl group, and n represents an integer of 0 to 80. In addition, polyfunctional maleimide resin has three or more imide groups in one molecule and has the general formula (In the formula, R 1 and R 2 represent a hydrogen atom, a halogen atom, or an alkyl group, at least one of R 1 and R 2 is always an alkyl group, and n represents a positive integer) . In addition, the epoxy resin used in the present invention is one obtained by reacting bisphenol A with epichlorohydrin, or an epoxy resin obtained by reacting novolac type phenol, o-cresol, and epichlorohydrin for printed wiring boards. be done. In addition, as a brominated epoxy resin, the general formula (In the formula, n is a positive integer) Brominated novolac epoxy resin,
formula The diallyl ester of tetrabromobisphenol A represented by the formula A diglycidyl ether of tetrabromobisphenol A represented by the following formula is used. The bromine contained in this brominated epoxy resin is preferably in the range of 6% by weight or more based on the total resin content. If it is less than 6% by weight, sufficient flame retardancy cannot be ensured. In the present invention, the reaction product obtained by reacting a terminally functional imide resin and a polyfunctional maleimide resin is reacted with an epoxy resin. First, the terminally functional imide resin and the polyfunctional maleimide resin are mixed in DMF, Dissolve in an organic solvent such as DMAc or MC and react. The weight ratio of the terminally functional imide resin to the polyfunctional maleimide is 10 to 20:1. The reaction temperature is 80-120°C and the reaction time is 10-30 minutes. If the temperature is lower than 80℃, the reaction components may not dissolve, while if it exceeds 120℃, the reaction will proceed too much.
Preparation of resin varnish for prepreg tends to be difficult. Next, the obtained reaction product is reacted with an epoxy resin under the same reaction conditions. The ratio of the epoxy resin to the polyfunctional maleimide resin can be up to 2:1 by weight. A resin varnish is prepared from the epoxy-modified polyimide resin prepolymer produced in this way,
A prepreg is produced by impregnating a base material such as glass cloth, nonwoven fabric, or paper and drying it. Multiple sheets of this prepreg are laminated and molded, and metal foil such as copper foil or aluminum foil is adhered to one or both sides of the prepreg to obtain a laminate with excellent heat resistance and interlayer adhesion for printed wiring boards. . In addition, this epoxy-modified polyimide resin prepolymer is coated with a curing agent, fillers such as silica, glass fiber,
A coupling agent, a coloring agent, a mold release agent such as calcium stearate, a diluent, and the like are added to produce an electronic component sealing material. Next, embodiments of the present invention will be described. In the following, parts indicate parts by weight. (Example 1) Terminal functional imide resin “Best Lex” SM-20 having multiple imide groups and multiple amino groups in one molecule
(Product name, manufactured by Sumitomo Chemical Co., Ltd.) 375 parts and polyfunctional maleimide "MP-2000X" having 3 or more imide groups in one molecule (Product name, manufactured by Mitsubishi Yuka Co., Ltd.) 42
part was dissolved in DMF and reacted at 80°C for 10 minutes. Then, bisphenol A was added to the resulting reaction solution.
Injected 280 parts of type epoxy resin "R-140Q" (trade name, manufactured by Mitsui Petrochemical Co., Ltd.) and 291 parts of brominated bisphenol A type epoxy resin "BREN" (trade name, manufactured by Nippon Kayaku). and reacted at 80°C for 10 minutes. In this way, an epoxy-modified polyimide resin prepolymer was produced. The glass transition temperature Tg (°C) and thermal decomposition onset temperature TGA (°C) of this material were measured. The results are shown in Table 1. Next, a varnish was prepared from an epoxy-modified polyimide resin prepolymer, impregnated into a glass cloth base material and dried to create a prepreg, and a plurality of sheets of this prepreg were laminated and molded to obtain a 0.4 mm thick copper-clad laminate. The interlayer adhesive strength and copper foil peel strength of this laminate were measured. The results are shown in Table 1. (Example 2) An epoxy-modified polyimide resin prepolymer was produced in the same manner as in Example 1 except that 21 parts of the polyfunctional maleimide "MP-2000X" was used, a copper-clad laminate was made, and the same measurements were performed. . The results are shown in Table 1. (Comparative example 1) 410 copies of “Best Lex” SM-20 and “R-140Q”
Dissolve 280 parts and 291 parts of "BREN" in DMF at 80℃
An epoxy-modified polyimide resin prepolymer was produced by reacting for 10 minutes, and a copper-clad laminate was prepared in the same manner as in Example 1, and the same measurements were performed. The results are shown in Table 1. (Comparative Example 2) A laminate was manufactured in the same manner as in the example except that a polyimide resin varnish having a Tg of 250° C. was used, and the same measurements were performed. The results are shown in Table 1. (Comparative Example 3) A laminate was manufactured in the same manner as in the example except that an epoxy resin varnish having a Tg of 150° C. was used, and the same measurements were performed. The results are shown in Table 1.

【表】 〈測定方法〉 Tg及びT.G.A 粘弾性スペクトロメータによる。 層間接着力及び銅箔引き剥がし強度 表面から一層目のプリプレグ及び銅箔を引き 剥がしオートグラフにより強度を測定した。 第1表の結果より明らかなように、本発明の実
施例にあつては、比較例1に比してエポキシ樹脂
分が多く層間接着力が大きいにも拘わらず、Tg
が高く耐熱性に優れていることが判る。
[Table] <Measurement method> Tg and TGA by viscoelastic spectrometer. Interlayer adhesion strength and copper foil peel strength The strength was measured by peeling off the first layer of prepreg and copper foil from the surface and using an autograph. As is clear from the results in Table 1, in the example of the present invention, although the epoxy resin content was higher than that of Comparative Example 1, and the interlayer adhesive strength was greater, Tg
It can be seen that it has high heat resistance and excellent heat resistance.

【発明の効果】【Effect of the invention】

本発明にあつては、特定の末端官能型イミドと
特定の多官能マレイミド樹脂を反応させ、次いで
エポキシ樹脂とを反応させて得られたエポキシ変
成ポリイミド樹脂プレポリマーを基材に含浸させ
るので、末端官能型イミドと多官能マレイミド樹
脂との反応により骨格の剛性が大きくなり、その
結果、Tgが高くなり、耐熱性に優れるものであ
り、又、エポキシ樹脂分により積層板にした場合
にも充分な層間接着力が確保され、多様な用途に
適用できるものである。
In the present invention, since a base material is impregnated with an epoxy-modified polyimide resin prepolymer obtained by reacting a specific terminal functional imide with a specific polyfunctional maleimide resin and then reacting with an epoxy resin, the terminal The reaction between the functional imide and the polyfunctional maleimide resin increases the rigidity of the skeleton, resulting in a high Tg and excellent heat resistance.The epoxy resin content also provides sufficient strength when made into a laminate. It ensures interlayer adhesion and can be applied to a variety of applications.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Xは末端官能基を表し、Ar1,Ar2
2価の芳香族基、R1は水素原子、炭素数1〜10
のアルキル基、R2は水素原子、炭素数1〜20の
アルキル基、アルコキシ基あるいは水酸基を表
し、nは0〜80の整数を示す)で表される末端官
能型イミドと 一般式 (式中、R1,R2は水素原子、ハロゲン原子又
はアルキル基を示し、R1,R2のうち少なくとも
一方は常にアリキル基であり、nは正の整数を示
す)で表される多官能マレイミド樹脂を反応さ
せ、次いでエポキシ樹脂とを反応させて得られた
エポキシ変成ポリイミド樹脂プレポリマーを基材
に含浸させることを特徴とするプリプレグの製造
方法。 2 エポキシ樹脂にブロム化エポキシ樹脂を含ま
せることを特徴とする請求項1記載のプリプレグ
の製造方法。
[Claims] 1. General formula (In the formula, X represents a terminal functional group, Ar 1 and Ar 2 are divalent aromatic groups, R 1 is a hydrogen atom, and has a carbon number of 1 to 10
( R2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, or a hydroxyl group, and n represents an integer of 0 to 80) and a terminally functional imide represented by the general formula (In the formula, R 1 and R 2 represent a hydrogen atom, a halogen atom, or an alkyl group, at least one of R 1 and R 2 is always an alkyl group, and n represents a positive integer.) A method for producing a prepreg, which comprises impregnating a base material with an epoxy-modified polyimide resin prepolymer obtained by reacting a functional maleimide resin and then reacting with an epoxy resin. 2. The prepreg manufacturing method according to claim 1, wherein the epoxy resin contains a brominated epoxy resin.
JP4096988A 1988-02-24 1988-02-24 Epoxy-modified polyimide resin prepolymer Granted JPH01215819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096988A JPH01215819A (en) 1988-02-24 1988-02-24 Epoxy-modified polyimide resin prepolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096988A JPH01215819A (en) 1988-02-24 1988-02-24 Epoxy-modified polyimide resin prepolymer

Publications (2)

Publication Number Publication Date
JPH01215819A JPH01215819A (en) 1989-08-29
JPH0470328B2 true JPH0470328B2 (en) 1992-11-10

Family

ID=12595294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096988A Granted JPH01215819A (en) 1988-02-24 1988-02-24 Epoxy-modified polyimide resin prepolymer

Country Status (1)

Country Link
JP (1) JPH01215819A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477555A (en) * 1990-07-14 1992-03-11 Matsushita Electric Works Ltd Polyimide resin composition
JP7474064B2 (en) * 2019-02-18 2024-04-24 積水化学工業株式会社 Resin materials and multilayer printed wiring boards

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115322A (en) * 1980-02-14 1981-09-10 Hitachi Chem Co Ltd Preparation of thermosetting maleimide prepolymer
JPS61223021A (en) * 1985-03-29 1986-10-03 Agency Of Ind Science & Technol Production of prepreg

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115322A (en) * 1980-02-14 1981-09-10 Hitachi Chem Co Ltd Preparation of thermosetting maleimide prepolymer
JPS61223021A (en) * 1985-03-29 1986-10-03 Agency Of Ind Science & Technol Production of prepreg

Also Published As

Publication number Publication date
JPH01215819A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US4393188A (en) Thermosetting prepolymer from polyfunctional maleimide and bis maleimide
KR101508083B1 (en) Halogen-free resin composition and method for fabricating halogen-free copper clad laminate using the same
US5160783A (en) Epoxy resin-impregnated glass cloth sheet having adhesive layer
JP4027560B2 (en) Flame retardant resin composition, prepreg and laminate using the same
JPH05163373A (en) Production of laminate board
JPH05239238A (en) Production of prepreg and laminate made therefrom
JP2000239525A (en) Flame-retardant resin composition and layer insulation adhesive
JP3724047B2 (en) Laminated board for printed wiring boards
JPH0470328B2 (en)
JP2005015616A (en) Resin composition for laminated board, organic base prepreg, metallic foil-clad laminated board, and printed wiring board
JPH0959346A (en) Epoxy resin composition for laminate
JP3720337B2 (en) Organic base prepreg, laminate and printed wiring board
JP3009947B2 (en) Epoxy resin composition
JPS6330520A (en) Epoxy resin composition for laminated sheet
JPS60252620A (en) Resin composition for laminating
JP3326862B2 (en) Manufacturing method of prepreg
JP3089522B2 (en) Method for producing prepreg for electric laminate, electric laminate using the prepreg, and printed wiring board using the laminate
JPH0275676A (en) Thermosetting epoxy resin varnish
JPH0717729B2 (en) Substrates for electrical and electronic equipment laminates impregnated with an epoxy resin composition
JP2715853B2 (en) Manufacturing method of copper-clad laminate
JPH04342720A (en) Epoxy resin composition for wiring substrate
JPH07316267A (en) Epoxy resin composition, prepreg and laminate
JPH05301941A (en) Epoxy resin composition
JPH05140268A (en) Epoxy resin composition
JPH07224147A (en) Epoxy resin composition, prepreg and laminated sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees