JPH0470078B2 - - Google Patents

Info

Publication number
JPH0470078B2
JPH0470078B2 JP63229755A JP22975588A JPH0470078B2 JP H0470078 B2 JPH0470078 B2 JP H0470078B2 JP 63229755 A JP63229755 A JP 63229755A JP 22975588 A JP22975588 A JP 22975588A JP H0470078 B2 JPH0470078 B2 JP H0470078B2
Authority
JP
Japan
Prior art keywords
sludge
anaerobic digestion
tank
days
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63229755A
Other languages
Japanese (ja)
Other versions
JPH02211298A (en
Inventor
Noboru Nonoyama
Naoaki Uchama
Teruo Nakagawa
Yoshio Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Kk
KENSETSUSHO DOBOKU KENKYU SHOCHO
Original Assignee
Fujita Kk
KENSETSUSHO DOBOKU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Kk, KENSETSUSHO DOBOKU KENKYU SHOCHO filed Critical Fujita Kk
Priority to JP63229755A priority Critical patent/JPH02211298A/en
Priority to DE3919176A priority patent/DE3919176A1/en
Publication of JPH02211298A publication Critical patent/JPH02211298A/en
Publication of JPH0470078B2 publication Critical patent/JPH0470078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、下水汚泥、農水産廃棄物等の有機性
汚泥を嫌気性消化する方法に関するものである。 〔従来の技術〕 下水処理場において発生する初沈汚泥、、余剰
汚泥、消化汚泥等は、そのまま脱水後、焼却され
たり廃棄されることもあるが、近年、嫌気性消化
法により処理されることが多くなつた。嫌気性消
化法は、嫌気状態でいわゆるメタン菌を増殖させ
ることにより汚泥中の有機物を主としてメタンガ
スに分解させ、汚泥固形物の減量を行うものであ
る。汚泥の嫌気性消化処理は、燃料として利用可
能なメタンガスが得られること、消費エネルギー
が少ないこと、病源菌の死滅率が高いこと、消化
済み汚泥の処分が容易なことなど、多くの利点を
持つ。しかしながら、メタン菌の増殖がきわめて
遅いため、処理に長時日を要するという問題があ
つた。たとえば活性汚泥槽から発生する余剰汚泥
をこの方法で処理する場合、アルカリ処理、熱処
理、超音波処理など汚染を可溶化する前処理を施
した場合においても、50%前後の消化率(有機物
分解率を)達成するのに15〜20日という長い滞留
日数が必要であつた。また、それ以上滞留日数を
延ばしても、達成可能な消化率は約45%が上限で
あつた。 同様の問題は、製あんなど農水産物加工工場か
らの廃棄物、家畜糞尿、畜体処理廃棄物、魚腸骨
などを嫌気性消化処理しようとする場合にもあ
り、したがつて、これらの分野における嫌気性消
化法の普及率はまだ極めて低い。 〔発明が解決しようとする課題〕 上述のように、従来の嫌気性消化法は能率が悪
く、そのため大型の消化槽を必要とし、固形物の
減量効果も満足できるものではなかつた。 そこで本発明は、従来の嫌気性消化法における
上述の問題点を解決し、より短時日でより高い消
化率を達成できるよう、嫌気性消化法を改良する
ことを目的とするものである。 〔課題を解決するための手段〕 本発明が提供する嫌気性消化法は、有機性汚泥
にアルカリをその濃度が0.01〜0.1Nになるように
添加して湿式ミル処理し、処理後の汚泥を、下水
汚泥中に存在しPH7.8〜8.5で旺盛に増殖するメタ
ン菌(以下、好アルカリ性高速メタン菌という)
を主要メタン菌叢として存在させた嫌気性消化槽
に供給し、PHを7.8〜8.5、滞留日数を5日以下と
する条件下に、種汚泥の返送を行うことなく嫌気
性消化することを特徴とする。 以下、本発明の嫌気性消化法について更に詳し
く説明する。 本発明の方法において嫌気性消化法の前処理と
して行う湿式ミル処理は、水中に懸濁している固
形物に主として剪断摩擦力を作用させることによ
り固形物の微細化を行なう処理であつて、具体的
には、回転円筒式ミル、振動ボールミル、遠心式
ボールミル、媒体撹拌式ミル、コロイドミル等を
用いて高度の摩砕を行うものである。湿式ミル処
理の中でも、媒体撹拌式ミルは処理効果の点で最
もすぐれているので、特に好ましい。この媒体撹
拌式ミルは、円筒状容器に挿入した撹拌用デイス
クを高速で回転させることによつて容器内の小ボ
ール・ビーズを激しく撹拌し、ビーズ間に剪断摩
擦力を生じさせて摩砕を行うものであつて、用途
に応じて大小様々なビーズが使われるが、汚泥可
溶化に好ましいビーズは、粒径0.05〜1mmのもの
である。その場合、撹拌用デイスクの回転数は
1000〜3000rpm(周速10〜30m/sec)程度、被処
理汚泥の滞留時間は通常の汚泥を処理する場合で
5〜60分程度が適当である。 アルカリを加えて行う本発明の湿式ミル処理
は、アルカリを加えない場合よりも有機成分(蛋
白質、糖など)の可溶化率が著しく向上する。 湿式ミル処理を施した後の汚泥の嫌気性消化処
理は、単一の嫌気性消化槽において、次のように
して行われる。 汚泥は、必要に応じてアルカリまたは酸を加え
て、PHを7.8〜8.5に調整してから消化槽に供給す
る。あるいは、消化槽にアルカリを継続的に注入
して、槽内汚泥のPHを上記範囲内に維持する。通
常、下水汚泥中のメタン菌の増殖に好適なPHは8
未満の弱アルカリ性とされているが、酸生成菌と
メタン菌とを共存させる単一槽消化の場合、PHは
7〜7.6が適当とされており、したがつて、本発
明の消化法においてPHは従来よりもかなり高い値
に設定される。これにより、汚泥成分の可溶化が
更に進み、メタン発酵を生じ易くなる。ただし、
8.5よりも高いPHにすることは、可溶化促進の点
では有利でも、旺盛に増殖するメタン菌の十分量
を槽内に蓄積させることが困難になるので、好ま
しくない。 上述のようにPHが高い状態の汚泥中で旺盛に増
殖する好アルカリ生高速メタン菌は、通常の下水
汚泥や従来の嫌気性消化槽からの消化汚泥の中に
は少ないが、嫌気性消化槽の運転開始に当りたと
えば次のような馴養期間を設けるたことにより、
槽内メタン菌菌叢の大部分を占めるものとするこ
とができる。すなわち、種汚泥とする消化汚泥を
下水処理場から採取して消化槽に入れ、湿式ミル
処理およびアルカリ添加により可溶化した有機性
汚泥の供給を開始する。PHが上記のように高い範
囲に保たれるよう、継続的にアルカリを添加す
る。滞留日数を約10日以上とする運転条件をしば
らく(たとえば2週間程度)維持した後、徐々に
滞留日数を短くし、最終的に滞留日数を5〜1.5
日程度まで短くする。この間、消化槽から排出さ
れる汚泥を種汚泥として返送することはしない。
これにより、好アルカリ性高速メタン菌が優位
に、且つ高い菌数で存在する嫌気性消化槽を用意
することができる。上述のような滞留日数を徐々
に短くする馴養期間を設けることなしに、かつ種
汚泥返送を行いながら、所定のPHに馴化させるだ
けの馴養を行つたのでは、好アルカリ性高速メタ
ン菌の“濃縮”は遅く、かつ低い水準にとどま
る。 訓養が終わつた後は、引続き被処理汚泥を供給
して正常運転としての嫌気性消化を開始すること
ができる。 この処理において、滞留日数は5日を越えない
ようにする。特に好ましい滞留日数は、2〜3日
である。滞留日数がこれより長すぎると、槽内メ
タン菌のうち好アルカリ性高速メタン菌が占める
割合が低下し、消化率の低下を招く。また、従来
の嫌気性消化法において普通に行われている種汚
泥の供給(消化汚泥の一部を返送する)も、槽内
の好アルカリ性高速メタン菌の比率低下を招くの
で、行わない。本発明の消化法においては、用い
るメタン菌が増殖旺盛な好アルカリ性高速メタン
菌であるため、上述のような短い滞留日数でしか
も種汚泥の供給なしに運転を続けても、高率の消
化を可能にする十分な菌数を槽内に維持すること
ができる。 〔実施例〕 都市下水処理場より採取した余剰汚泥および混
合汚泥(余剰汚泥と初沈汚泥との混合物)につい
て、本発明による嫌気性消化とその比較実験を行
なつた。汚泥の組成および実験条件は次のとおり
である。 汚泥組成: TS(%) VS(%) 余剰汚泥 4.2 3.4 混合汚泥 3.9 3.2 湿式ミル処理条件: 使用装置:媒体撹拌式ミル・パールミル(アシザ
ワ株式会社、型式PMISTS、ビーズ径0.2mm、
デイスク回転数1300rpm、周速度6m/sec 滞留時間:5分 添加アルカリ:25%カ性ソーダをNaOH濃度が
0.05Nになるように添加 嫌気性消化条件: 水理学的滞留時間:2日 消化温度:37℃ 消化槽:完全混合型 種汚泥返送なし 実験開始時の馴養:下水処理場から採取した消化
汚泥を最初の種汚泥に用いて次のように都合6
週間実施した。 最初の2週間:滞留日数10日 次の2週間:滞留日数5日 最後の2週間:滞留日数2日 上記実施例と並行して、下記の比較例を実施し
た。 比較例 1 嫌気性消化処理の前処理を全く行わずに同じ嫌
気性消化を行なう。 比較例 2 湿式ミル処理におけるアルカリ添加を行わない
ほかは上記と同様にする。 比較例 3 アルカリは添加する湿式ミル処理を単なる撹拌
に替え他は上記と同様にする。 馴養終了後10日間の各例嫌気性消化処理におけ
る消化率、ガス発生量、ガスのメタン含有率およ
び揮発性有機酸量を測定した。測定値の平均値を
表1および表2に示す。 前処理がアルカリ処理単独の比較例3では、消
化率およびガス発生量のいずれにおいても改善は
認められなかつた。アルカリ無添加のミル処理を
した比較例2では、消化率で1.4〜1.7倍、ガス発
生量で1.5〜1.7倍になる程度であつた。これに対
して、本発明実施例では、消化率で2.1〜2.6倍、
ガス発生量で約3倍に上昇した。
[Industrial Application Field] The present invention relates to a method for anaerobically digesting organic sludge such as sewage sludge and agricultural and fishery waste. [Conventional technology] Initial settling sludge, surplus sludge, digested sludge, etc. generated in sewage treatment plants are sometimes incinerated or disposed of after dehydration, but in recent years, they have been treated using anaerobic digestion methods. has become more common. The anaerobic digestion method is a method in which organic matter in sludge is mainly decomposed into methane gas by growing so-called methane bacteria in an anaerobic state, thereby reducing the amount of sludge solids. Anaerobic digestion of sludge has many advantages, including the ability to obtain methane gas that can be used as fuel, low energy consumption, high kill rate of pathogenic bacteria, and easy disposal of digested sludge. . However, since the growth of methane bacteria is extremely slow, there was a problem in that the treatment required a long time. For example, when surplus sludge generated from an activated sludge tank is treated using this method, the digestibility rate (organic matter decomposition rate ), a long residence time of 15 to 20 days was required. Furthermore, even if the retention period was extended beyond that, the upper limit of the achievable digestion rate was about 45%. Similar problems occur when attempting to anaerobically digest waste from agricultural and marine product processing factories such as mills, livestock manure, livestock processing waste, fish iliac bones, etc. The penetration rate of anaerobic digestion is still extremely low. [Problems to be Solved by the Invention] As described above, the conventional anaerobic digestion method is inefficient, requires a large-sized digestion tank, and has an unsatisfactory effect on solid matter weight loss. Therefore, the present invention aims to solve the above-mentioned problems in the conventional anaerobic digestion method and to improve the anaerobic digestion method so that a higher digestibility can be achieved in a shorter time. [Means for Solving the Problems] The anaerobic digestion method provided by the present invention involves adding alkali to organic sludge to a concentration of 0.01 to 0.1N and subjecting it to wet mill treatment, and the treated sludge is , methane bacteria that exist in sewage sludge and multiply vigorously at pH 7.8 to 8.5 (hereinafter referred to as alkaliphilic fast methane bacteria)
is supplied to an anaerobic digestion tank where methane bacteria exist as the main flora, and anaerobic digestion is performed without returning the seed sludge under conditions where the pH is 7.8 to 8.5 and the residence time is 5 days or less. shall be. The anaerobic digestion method of the present invention will be explained in more detail below. In the method of the present invention, the wet milling process performed as a pretreatment for the anaerobic digestion method is a process in which the solids suspended in water are pulverized by mainly applying shear frictional force to the solids. Specifically, a high degree of grinding is performed using a rotating cylindrical mill, a vibrating ball mill, a centrifugal ball mill, a media stirring mill, a colloid mill, or the like. Among the wet milling methods, the media agitation mill is particularly preferred since it has the best processing effect. This media stirring type mill violently stirs the small balls and beads in the container by rotating a stirring disk inserted in a cylindrical container at high speed, creating a shearing friction force between the beads and grinding them. Beads of various sizes are used depending on the purpose, but beads with a particle size of 0.05 to 1 mm are preferred for sludge solubilization. In that case, the rotation speed of the stirring disk is
Approximately 1000 to 3000 rpm (circumferential speed 10 to 30 m/sec) and residence time of the sludge to be treated is approximately 5 to 60 minutes when ordinary sludge is treated. The wet mill treatment of the present invention, which is performed with the addition of an alkali, significantly improves the solubilization rate of organic components (proteins, sugars, etc.) than when no alkali is added. Anaerobic digestion of sludge after wet milling is carried out in a single anaerobic digestion tank as follows. The pH of the sludge is adjusted to 7.8 to 8.5 by adding alkali or acid as necessary before supplying it to the digestion tank. Alternatively, alkali is continuously injected into the digestion tank to maintain the pH of the sludge in the tank within the above range. Normally, the optimum pH for the growth of methane bacteria in sewage sludge is 8.
However, in the case of single-vessel digestion in which acid-producing bacteria and methane bacteria coexist, a pH of 7 to 7.6 is considered appropriate. is set to a much higher value than before. This further progresses the solubilization of the sludge components, making it easier for methane fermentation to occur. however,
Although setting the pH higher than 8.5 is advantageous in terms of promoting solubilization, it is not preferable because it makes it difficult to accumulate a sufficient amount of actively proliferating methane bacteria in the tank. As mentioned above, alkaliphilic fast methane bacteria, which proliferate vigorously in sludge with high pH, are rare in normal sewage sludge and digested sludge from conventional anaerobic digestion tanks, but in anaerobic digestion tanks. By providing the following acclimatization period for the start of operation,
The methane bacteria can account for most of the methane bacterial flora in the tank. That is, digested sludge to be used as seed sludge is collected from a sewage treatment plant and put into a digestion tank, and supply of organic sludge solubilized by wet milling and addition of alkali is started. Continuously add alkali to keep the PH in the high range mentioned above. After maintaining operating conditions for a while (for example, about 2 weeks) with a residence time of approximately 10 days or more, the residence time is gradually shortened until the residence time is 5 to 1.5 days.
Shorten it to about a day. During this time, the sludge discharged from the digestion tank will not be returned as seed sludge.
Thereby, it is possible to prepare an anaerobic digestion tank in which alkaliphilic fast methane bacteria are predominant and present in a high number of bacteria. If acclimatization was carried out to the specified pH without providing an acclimatization period to gradually shorten the retention period as described above, and by returning the seed sludge, the alkaliphilic fast methane bacteria would be “concentrated”. is slow and remains at a low level. After the training is completed, anaerobic digestion can be started as normal operation by continuing to supply the sludge to be treated. In this process, the number of days of residence should not exceed 5 days. A particularly preferred residence time is 2 to 3 days. If the retention period is too long, the ratio of alkaliphilic fast methane bacteria to the methane bacteria in the tank will decrease, leading to a decrease in digestibility. In addition, the supply of seed sludge (returning a portion of the digested sludge), which is commonly done in conventional anaerobic digestion methods, is not carried out because it causes a decrease in the proportion of alkaliphilic fast methane bacteria in the tank. In the digestion method of the present invention, since the methane bacteria used are alkaliphilic fast methane bacteria that proliferate vigorously, a high rate of digestion can be achieved even with a short retention period as described above and even if the operation is continued without the supply of seed sludge. A sufficient number of bacteria can be maintained in the tank. [Example] Anaerobic digestion according to the present invention and comparative experiments were conducted on surplus sludge and mixed sludge (mixture of surplus sludge and initial settling sludge) collected from a city sewage treatment plant. The composition of the sludge and the experimental conditions are as follows. Sludge composition: TS (%) VS (%) Surplus sludge 4.2 3.4 Mixed sludge 3.9 3.2 Wet mill processing conditions: Equipment used: Media stirring mill/pearl mill (Ashizawa Co., Ltd., model PMISTS, bead diameter 0.2 mm,
Disk rotation speed 1300 rpm, peripheral speed 6 m/sec Residence time: 5 minutes Added alkali: 25% caustic soda with NaOH concentration
Anaerobic digestion conditions: Hydraulic residence time: 2 days Digestion temperature: 37℃ Digestion tank: Fully mixed type No return of seed sludge Acclimatization at start of experiment: Digested sludge collected from a sewage treatment plant Use the initial seed sludge as follows:
It was conducted for a week. First 2 weeks: 10 days of residence Next 2 weeks: 5 days of residence Last 2 weeks: 2 days of residence In parallel with the above examples, the following comparative examples were carried out. Comparative Example 1 The same anaerobic digestion is performed without any pretreatment for the anaerobic digestion treatment. Comparative Example 2 Same as above except that no alkali was added in the wet milling process. Comparative Example 3 The procedure was the same as above except that the wet milling process for adding alkali was replaced with simple stirring. Digestion efficiency, amount of gas generated, methane content of gas, and amount of volatile organic acids in each case were measured for 10 days after acclimatization. The average values of the measured values are shown in Tables 1 and 2. In Comparative Example 3, in which the pretreatment was solely alkali treatment, no improvement was observed in either the digestibility or the amount of gas generated. In Comparative Example 2, which was milled without adding alkali, the digestibility was 1.4 to 1.7 times higher, and the amount of gas generated was 1.5 to 1.7 times higher. In contrast, in the examples of the present invention, the digestibility was 2.1 to 2.6 times higher.
The amount of gas generated increased approximately three times.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の嫌気性消化性によれば、上述のように
極めて短い滞留日数で従来の最高の水準と同等ま
たはそれ以上の高い消化率を達成することができ
るから、従来と比べて消化槽の単位体積当たりの
処理能力の大幅な向上、あるいは消化槽の著しい
小型化が可能になるとともに、消化汚泥発生量が
減少してその後処理が容易になるという、顕著な
効果が奏される。
According to the anaerobic digestibility of the present invention, as mentioned above, it is possible to achieve a high digestibility that is equal to or higher than the highest level of conventional methods with an extremely short residence time. Not only can the processing capacity per volume be greatly improved or the size of the digester tank significantly reduced, the amount of digested sludge generated can also be reduced, making subsequent treatment easier.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性汚泥にアルカリをその濃度が0.01〜
0.1Nになるように添加して湿式ミル処理し、処
理後の汚泥を、下水汚泥中に存在しPH7.8〜8.5で
旺盛に増殖するメタン菌を主要メタン菌叢として
存在させた嫌気性消化槽に供給し、PHを7.8〜
8.5、滞留日数を5日以下とする条件下に、種汚
泥の返送を行うことなく嫌気性消化することを特
徴とする汚泥の嫌気性消化法。
1 Add alkali to organic sludge at a concentration of 0.01~
The sludge was added to a concentration of 0.1N and subjected to wet mill treatment, and the treated sludge was subjected to anaerobic digestion in which methane bacteria, which exist in sewage sludge and proliferate vigorously at pH 7.8 to 8.5, were present as the main methane flora. Supply to the tank and adjust the pH to 7.8~
8.5. A sludge anaerobic digestion method characterized by anaerobic digestion without returning seed sludge under conditions where the retention period is 5 days or less.
JP63229755A 1988-09-16 1988-09-16 Anaerobic digestion of sludge Granted JPH02211298A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63229755A JPH02211298A (en) 1988-09-16 1988-09-16 Anaerobic digestion of sludge
DE3919176A DE3919176A1 (en) 1988-09-16 1989-06-12 Anaerobic breakdown of sludge - by solubilisation of sludge, feeding to anaerobic putrefaction tank etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229755A JPH02211298A (en) 1988-09-16 1988-09-16 Anaerobic digestion of sludge

Publications (2)

Publication Number Publication Date
JPH02211298A JPH02211298A (en) 1990-08-22
JPH0470078B2 true JPH0470078B2 (en) 1992-11-09

Family

ID=16897174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229755A Granted JPH02211298A (en) 1988-09-16 1988-09-16 Anaerobic digestion of sludge

Country Status (1)

Country Link
JP (1) JPH02211298A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211299A (en) * 1988-09-16 1990-08-22 Fujita Corp Anaerobic digestion of sludge
JP5066340B2 (en) * 2006-03-22 2012-11-07 一般財団法人石油エネルギー技術センター Organic wastewater treatment method
CN107337328B (en) * 2017-07-24 2021-04-06 南阳理工学院 Method and reactor for breaking sludge by injecting alkali liquor back in cooperation with ultrasonic waves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211299A (en) * 1988-09-16 1990-08-22 Fujita Corp Anaerobic digestion of sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211299A (en) * 1988-09-16 1990-08-22 Fujita Corp Anaerobic digestion of sludge

Also Published As

Publication number Publication date
JPH02211298A (en) 1990-08-22

Similar Documents

Publication Publication Date Title
US4342650A (en) Organic sludge-energy recycling method
JPS5864200A (en) Anaerobic digestion of cellulose-containing waste matter
KR101793236B1 (en) Recycling system of organic waste
US4728517A (en) Conversion of biological sludge and primary float sludge to animal protein supplement
CN112441859B (en) Method for treating epidemic animal wastewater by aerobic-anaerobic two-step fermentation
JPS61263699A (en) Method and apparatus for generating gaseous methane
JPH0470079B2 (en)
JP2004082017A (en) Methane fermentation method of organic waste and system therefor
JPH0470078B2 (en)
US4314904A (en) Anaerobic digestion of waste and biomass by use of lactobacillus culture additives
JP4313525B2 (en) Manufacturing method of compost fertilizer
JP2001269656A (en) Method for treating food waste
JPS63224798A (en) Anaerobic digestion process
JPH0470080B2 (en)
JPH02211297A (en) Treatment of sludge
JPH0438480B2 (en)
JPH08132009A (en) Phytochip decomposition device and decomposition method thereof
JP3735222B2 (en) Excess sludge treatment method
KR101553307B1 (en) A Method for operating single type thermophilic anaerobic digestion equipment by using organic waste and a method for generating methane by using it
CN115724697B (en) Treatment method for improving phosphorus recovery rate and plant available phosphorus in goose manure
JPH05192132A (en) Reaction method for immobilized microorganism
TWI759010B (en) A quick way to turn organic waste into organic fertilizer
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
JP2593493Y2 (en) Kitchen waste digestion and decomposition equipment
KR20020029017A (en) Feedstuff manufacturing method of domestic animals

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 16

EXPY Cancellation because of completion of term