JPH0469439B2 - - Google Patents

Info

Publication number
JPH0469439B2
JPH0469439B2 JP20127283A JP20127283A JPH0469439B2 JP H0469439 B2 JPH0469439 B2 JP H0469439B2 JP 20127283 A JP20127283 A JP 20127283A JP 20127283 A JP20127283 A JP 20127283A JP H0469439 B2 JPH0469439 B2 JP H0469439B2
Authority
JP
Japan
Prior art keywords
light
resin
titanium oxide
optical
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20127283A
Other languages
Japanese (ja)
Other versions
JPS6092677A (en
Inventor
Makoto Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP58201272A priority Critical patent/JPS6092677A/en
Publication of JPS6092677A publication Critical patent/JPS6092677A/en
Publication of JPH0469439B2 publication Critical patent/JPH0469439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable to concentrate the optical transfer efficiency in a desired extent and to produce an optical coupler by a method wherein titanium oxide is kneaded in a silicone resin, which is used as a light-reflecting resin, in relation to the respective transfer efficiency of the optical semiconductors and the concentration of titanium oxide in the resin is made higher in such a way as to contain more a light-transmitting resin than that of the surface side. CONSTITUTION:A light-emitting optical semiconductor 1 and a light-receiving optical semiconductor 2 are placed on mutually adjacent lead wires 3 and 3 and an optical coupler is constituted by covering the optical semiconductors 1 and 2 with a light-transmitting resin 4 and a light-reflecting resin 5. The light-reflecting resin 5 has been made to knead titanium oxide of 5-30wt% in the silicone resin, which is used as the light-reflecting resin, in relation to the respective transfer efficiency of the abovementioned semiconductors 1 and 2 and the concentration thereof on the light-transmitting resin 4 side has been made higher than that of the surface side thereof. For example, the kneading amount of titanium oxide is selected between 5-30wt% according to the characteristics of the light-receiving element at a time before or just after the light-transmitting resin 4 is or was adhered, and after being dropped, the light- reflecting resin 5 is left intact for a prescribed time under normal temperatures or at moderate high temperatures, at which the resin viscosity is increased, and is made to cure after titanium oxide settled down.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は特性をあわせた生産のしやすい光結合
器に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an optical coupler that has matched characteristics and is easy to produce.

(ロ) 従来技術 一般に光結合器は第1図に示すように発光およ
び受光の光半導体1,2を近接するリード線3,
3に載置し、透光性樹脂4で覆つたあと、光反射
性樹脂5で覆つて構成している。ところが、この
ような光結合器は光半導体1,2の特性のばらつ
きや樹脂4,5の硬化状態(形状、光学特性等)
によつて伝達効率が大きく変化し、樹脂モールド
前に光半導体1,2の個別の特性を検査し選別し
ておいても、第2図に実線イで示す如く、特性の
ばらつきが大きい。尚、第2図は生産ロツトにお
いて、伝達効率別に数量を調べ、最も多い個数を
1.0として正規化した特性図である。
(b) Prior Art Generally, as shown in Fig. 1, an optical coupler connects optical semiconductors 1 and 2 for emitting and receiving light with lead wires 3,
3, covered with a light-transmitting resin 4, and then covered with a light-reflecting resin 5. However, such optical couplers suffer from variations in the characteristics of the optical semiconductors 1 and 2 and the curing state (shape, optical characteristics, etc.) of the resins 4 and 5.
The transmission efficiency changes greatly depending on the characteristics, and even if the individual characteristics of the optical semiconductors 1 and 2 are inspected and selected before resin molding, the characteristics vary greatly, as shown by the solid line A in FIG. In addition, Figure 2 shows the quantity determined by transmission efficiency in the production lot, and the highest quantity.
It is a characteristic diagram normalized as 1.0.

このような特性のばらつきを種々検討した結
果、光反射性樹脂5にその原因の多くがあること
が明らかとなつた。即ち光反射性樹脂5は主材と
なる樹脂に光反射剤を混練しているが、主材には
二種類ある。まず主材としてエポキシ系樹脂を用
いると、光反射剤の樹脂内での分布は比較的均一
であるが、硬化後に素子にストレスが加わりやす
い。そこで概ね主材としてシリコン系樹脂を用
い、この場合には硬化後にも軟性を残すので素子
にストレスが加わらないが、硬化中にも光反射剤
が樹脂中を移動し、その結果同じ条件で硬化して
も光反射剤の濃度分布にかたよりが生じて伝達効
率を変化させていることがわかつた。
As a result of various studies on such variations in characteristics, it has become clear that the light-reflective resin 5 is responsible for many of them. That is, the light-reflecting resin 5 is made by kneading a light-reflecting agent into a resin as a main material, and there are two types of main materials. First, when an epoxy resin is used as the main material, the distribution of the light reflecting agent within the resin is relatively uniform, but stress is likely to be applied to the element after curing. Therefore, silicone resin is generally used as the main material, and in this case, it remains soft even after curing, so no stress is applied to the element, but the light reflecting agent moves through the resin during curing, and as a result, it hardens under the same conditions. However, it was found that the concentration distribution of the light reflecting agent was biased, which changed the transmission efficiency.

(ハ) 発明の目的 本発明は上述の点を考慮してなされたもので、
光伝達効率を所望の範囲に集中して生産できる光
結合器を提供するものである。
(c) Purpose of the invention The present invention has been made in consideration of the above points, and
The object of the present invention is to provide an optical coupler that can concentrate and produce light transmission efficiency in a desired range.

(ニ) 発明の構成 本発明は上述した光反射性樹脂としてシリコン
樹脂中に酸化チタンを光半導体の伝達効率に関連
させて混練し、さらに好ましくは樹脂中の酸化チ
タン濃度を表面側より透光性樹脂側を高くしたも
のを用いるものである。
(d) Structure of the Invention The present invention is characterized in that titanium oxide is kneaded into a silicone resin as the above-mentioned light-reflecting resin in relation to the transmission efficiency of optical semiconductors, and more preferably the titanium oxide concentration in the resin is adjusted to transmit light from the surface side. The material is made with a higher side of the plastic resin.

(ホ) 実施例 本発明において最も注目するのは第1図の構造
における光反射性樹脂5である。光反射性樹脂5
としてシリコン系樹脂を主材として用いた場合、
それを透光性樹脂4の上に滴下したあと、従来は
そのまますぐに硬化させていたが、本発明におい
ては所定時間だけ未硬化状態で放置してから硬化
させることにより界面の光反射率が安定になるこ
とが判明したことに基づいてなされたものであ
る。従つてまずこの点について詳述する。
(e) Examples In the present invention, the most noteworthy feature is the light-reflecting resin 5 in the structure shown in FIG. Light reflective resin 5
When silicone resin is used as the main material,
Conventionally, after dropping it onto the transparent resin 4, it was immediately cured, but in the present invention, the light reflectance of the interface is reduced by leaving it in an uncured state for a predetermined period of time and then curing it. This was done based on the fact that it was found to be stable. Therefore, this point will be explained in detail first.

第3図はシリコン系樹脂の中に酸化チタンを所
定量混入し透光性樹脂4上に滴下した時、硬化開
始までの未硬化中での放置時間と、硬化後の光伝
達効率との特性図である。この図で示す如く、塗
布後すぐ硬化する場合と、しばらく放置してから
硬化する場合とは伝達効率はほぼ安定している
が、塗布後少し放置してから硬化させると同ロツ
ト内で伝達効率がばらつくことがわかる。さらに
ロツト内で伝達効率が安定する場合でも、しばら
く放置してから硬化する方が高い伝達高率で安定
している。この現象を解析したところ、光反射性
樹脂の滴下による塗布作業は、酸化チタンをかき
まぜる事になり、樹脂中に酸化チタンがほぼ均一
に分散する。また未硬化のまま充分長い間放置す
ると界面に酸化チタンが堆積するという状態がわ
かつた。
Figure 3 shows the characteristics of the standing time in the uncured state until the start of curing and the light transmission efficiency after curing when a predetermined amount of titanium oxide is mixed into silicone resin and dropped onto the transparent resin 4. It is a diagram. As shown in this figure, the transmission efficiency is almost stable when it cures immediately after coating and when it cures after being left for a while, but when it cures after being left for a while after coating, the transmission efficiency decreases within the same lot. It can be seen that there is variation. Furthermore, even if the transmission efficiency is stable within the rod, it is better to leave it for a while and then harden it to achieve a higher and more stable transmission efficiency. Analysis of this phenomenon revealed that applying the light-reflective resin by dropping it stirs up the titanium oxide, and the titanium oxide is almost uniformly dispersed in the resin. It was also found that if left uncured for a sufficiently long time, titanium oxide would accumulate at the interface.

一方、第4図はシリコン系樹脂中にルチル型酸
化チタンを混練した時の混練量と、硬化後の光伝
達効率の特性図であるが、5重量パーセント未満
では極端に光伝達効率が悪く、また30重量パーセ
ント以上では混練増量に対し光伝達効率が増加し
ない。これは低混練量では樹脂に遮光性が得られ
ず、また高混練量では光反射率がほぼ酸化チタン
の光反射率に等しくなるからと判断された。
On the other hand, Fig. 4 is a characteristic diagram of the amount of kneaded rutile-type titanium oxide mixed into silicone resin and the light transmission efficiency after curing. In addition, if the amount exceeds 30% by weight, the light transmission efficiency will not increase even if the amount of kneading is increased. It was determined that this was because the light-shielding properties of the resin could not be obtained at a low kneading amount, and the light reflectance became approximately equal to that of titanium oxide at a high kneading amount.

以上の成果に基づき、例えば第2図の横軸に示
す2種類の伝達効率A,Bが求められた時には次
のように対処する。まず透光性樹脂被着前又は被
着直後の受光素子の特性に応じて酸化チタンの混
練量を5〜30重量パーセントの間で選択(例えば
伝達効率Aに対しては受光量の大きさに応じ20〜
5重量パーセント、同様に伝達効率Bに対しては
受光量の大きさに応じて25〜15重量パーセントを
選択)する。そしてその光反射性樹脂滴下後常温
下で2.5〜3時間、より好ましくは樹脂粘度が上
る中高温で10〜30分放置し、酸化チタンの沈降後
に硬化させる。このようにすることで第2図の点
線ロ,ハで示す如く特性ばらつきの少ないロツト
を生産できた。
Based on the above results, for example, when two types of transmission efficiency A and B shown on the horizontal axis in FIG. 2 are determined, the following steps are taken. First, select the amount of titanium oxide mixed between 5 and 30% by weight depending on the characteristics of the light-receiving element before or immediately after coating the translucent resin (for example, for transmission efficiency A, depending on the amount of light received) 20~
Similarly, for transmission efficiency B, 25 to 15 weight percent is selected depending on the amount of received light). After dropping the light-reflective resin, the resin is left to stand for 2.5 to 3 hours at room temperature, more preferably 10 to 30 minutes at a medium-high temperature where the viscosity of the resin increases, and the titanium oxide is cured after precipitation. By doing this, it was possible to produce lots with less variation in characteristics, as shown by dotted lines B and C in FIG.

(ヘ) 発明の効果 以上の如く本発明では、光反射性樹脂は表面側
より透光性樹脂側の酸化チタン濃度を高くしてあ
る。すなわち透光性樹脂との界面に高濃度酸化チ
タンを堆積させる。故に界面の光反射率が安定す
るので、光伝達効率の特性ばらつきの少ないロツ
トを提供できる。更に本発明は、酸化チタン濃度
を5重量パーセント以上に混練することにより光
反射性樹脂の遮光性を高め光伝達効率を増加させ
る。また酸化チタン濃度を30重量パーセント以下
に混練することにより、十分な光伝達効率を得る
と共に、高価な酸化チタンを不必要に使用しなく
ても良いし、シリコン樹脂中に過剰濃度酸化チタ
ンを混練することによる硬化不良を防止できる。
(F) Effects of the Invention As described above, in the present invention, the light-reflecting resin has a higher concentration of titanium oxide on the light-transmitting resin side than on the surface side. That is, highly concentrated titanium oxide is deposited at the interface with the translucent resin. Therefore, since the light reflectance at the interface is stabilized, it is possible to provide a lot with less variation in characteristics of light transmission efficiency. Further, in the present invention, by kneading the titanium oxide concentration to 5% by weight or more, the light-shielding property of the light-reflecting resin is enhanced and the light transmission efficiency is increased. In addition, by kneading the titanium oxide concentration to 30% by weight or less, sufficient light transmission efficiency can be obtained, and there is no need to use expensive titanium oxide unnecessarily. This can prevent curing defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光結合器の断面図、第2図は生産した
光結合器の特性ばらつきを示す特性図、第3図と
第4図は本発明実施に伴う光結合器の特性図であ
る。 1,2……光半導体、3,3……リード線、4
……透光性樹脂、5……光反射性樹脂。
FIG. 1 is a cross-sectional view of the optical coupler, FIG. 2 is a characteristic diagram showing variations in characteristics of the produced optical coupler, and FIGS. 3 and 4 are characteristic diagrams of the optical coupler according to the implementation of the present invention. 1, 2... Optical semiconductor, 3, 3... Lead wire, 4
...Translucent resin, 5...Light reflective resin.

Claims (1)

【特許請求の範囲】 1 近接するリード線に載置された発光および受
光の光半導体と、該光半導体を覆う透光性樹脂
と、該透光性樹脂を覆う光反射性樹脂を具備した
光結合器において、 前記光反射性樹脂は、シリコン樹脂中に酸化チ
タンを前記光半導体の伝達効率に関連した5乃至
30重量パーセント混練し、表面側より透光性樹脂
側の濃度を高くしてある事を特徴とする光結合
器。
[Scope of Claims] 1. A light including a light-emitting and light-receiving optical semiconductor placed on adjacent lead wires, a light-transmitting resin covering the light-transmitting resin, and a light-reflecting resin covering the light-transmitting resin. In the coupler, the light-reflecting resin contains titanium oxide in a silicone resin with a concentration of 5 to 5, which is related to the transmission efficiency of the optical semiconductor.
An optical coupler characterized by kneading 30% by weight and having a higher concentration on the translucent resin side than on the surface side.
JP58201272A 1983-10-26 1983-10-26 Optical coupler Granted JPS6092677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201272A JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201272A JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Publications (2)

Publication Number Publication Date
JPS6092677A JPS6092677A (en) 1985-05-24
JPH0469439B2 true JPH0469439B2 (en) 1992-11-06

Family

ID=16438203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201272A Granted JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Country Status (1)

Country Link
JP (1) JPS6092677A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749812Y2 (en) * 1990-04-10 1995-11-13 シャープ株式会社 Optical coupling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166971A (en) * 1979-06-14 1980-12-26 Nec Corp Photocoupling device
JPS56121958A (en) * 1980-03-03 1981-09-25 Kiyomitsu Ono Collecting method of solar ray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166971A (en) * 1979-06-14 1980-12-26 Nec Corp Photocoupling device
JPS56121958A (en) * 1980-03-03 1981-09-25 Kiyomitsu Ono Collecting method of solar ray

Also Published As

Publication number Publication date
JPS6092677A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
US4104083A (en) Solar battery package
CN1026919C (en) Coated optical transmission media
US7256428B2 (en) Optoelectronic component and method for the production thereof
DK159026B (en) PROCEDURE FOR MANUFACTURING A SMALL END SURFACE ON AN OPTICAL FIBER AND COVERED CUT OPTIC FIBER CUT
KR950006204B1 (en) Process for the preparation of coated optical fiber
JP2001261367A (en) Glass filler for transparent resin
CN105988151A (en) Light turning film
JPH0469439B2 (en)
JPH1117073A (en) Optical coupler and sealing resin composition
JPH11500545A (en) Infrared transmitting structure including adhesive infrared transmitting polymer layer
JPH05315652A (en) Optical semiconductor device
JPS6322872A (en) Ultraviolet-curing coating compound and optical fiber using same
CN109920901A (en) A kind of LED lamp bead and preparation method thereof of near-infrared no red light point
CN209447844U (en) A kind of LED lamp bead of near-infrared no red light point
JPS59114505A (en) Coated optical plastic fiber
WO1986004376A1 (en) Decorative laminated element for the building industry
JPH05206524A (en) Molding resin for photo-semiconductor
JPS6138878B2 (en)
JP2000223748A (en) Led lamp and its manufacture
EP0302484A3 (en) Molding compounds of unsaturated polyester resins
JPS61287279A (en) Photocoupling element and manufacture thereof
JP2003004993A (en) Optical fiber
US7190863B2 (en) Light-pipe arrangement with reduced fresnel-reflection losses
JPS62252181A (en) Manufacture of optical semiconductor element
JPS62274679A (en) Photocoupler