JPS6092677A - Optical coupler - Google Patents

Optical coupler

Info

Publication number
JPS6092677A
JPS6092677A JP58201272A JP20127283A JPS6092677A JP S6092677 A JPS6092677 A JP S6092677A JP 58201272 A JP58201272 A JP 58201272A JP 20127283 A JP20127283 A JP 20127283A JP S6092677 A JPS6092677 A JP S6092677A
Authority
JP
Japan
Prior art keywords
light
resin
titanium oxide
optical
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201272A
Other languages
Japanese (ja)
Other versions
JPH0469439B2 (en
Inventor
Makoto Yamane
真 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58201272A priority Critical patent/JPS6092677A/en
Publication of JPS6092677A publication Critical patent/JPS6092677A/en
Publication of JPH0469439B2 publication Critical patent/JPH0469439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • H01L31/0203
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • H01L31/12
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable to concentrate the optical transfer efficiency in a desired extent and to produce an optical coupler by a method wherein titanium oxide is kneaded in a silicone resin, which is used as a light-reflecting resin, in relation to the respective transfer efficiency of the optical semiconductors and the concentration of titanium oxide in the resin is made higher in such a way as to contain more a light-transmitting resin than that of the surface side. CONSTITUTION:A light-emitting optical semiconductor 1 and a light-receiving optical semiconductor 2 are placed on mutually adjacent lead wires 3 and 3 and an optical coupler is constituted by covering the optical semiconductors 1 and 2 with a light-transmitting resin 4 and a light-reflecting resin 5. The light-reflecting resin 5 has been made to knead titanium oxide of 5-30wt% in the silicone resin, which is used as the light-reflecting resin, in relation to the respective transfer efficiency of the abovementioned semiconductors 1 and 2 and the concentration thereof on the light-transmitting resin 4 side has been made higher than that of the surface side thereof. For example, the kneading amount of titanium oxide is selected between 5-30wt% according to the characteristics of the light-receiving element at a time before or just after the light-transmitting resin 4 is or was adhered, and after being dropped, the light- reflecting resin 5 is left intact for a prescribed time under normal temperatures or at moderate high temperatures, at which the resin viscosity is increased, and is made to cure after titanium oxide settled down.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は特性をあわせた生産のしやすい光結合器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an optical coupler that is easy to produce and has matched characteristics.

(ロ)従来技術 一般に光結合器は第1図に示すように発光および受光の
光半導体+IH2)を近接するリード線13+ 131
に載置し、透光性樹脂(4)で覆ったあと、光反射性樹
11115+で覆って構成している。ところが、このよ
うな光結合器は光半導体(1)+21の特性のばらつき
や樹脂+41151の硬化状態(形状、光学特性等)に
よって伝達効率が太き(変化し、樹脂モールド前に光半
導体(1)+21の個別の特性を検査し選別しておいて
も、第2図に実線(イ)で示す如く、特性のばらつきが
大きい、尚、第2図は生産ロフトにおいて、伝達効率別
に数量を調べ、最も多い個数を1.0として正規化した
特性図である。
(b) Prior art Generally, as shown in Fig. 1, an optical coupler consists of lead wires 13+131 that connect optical semiconductors for emitting and receiving light + IH2).
After placing it on the board and covering it with a light-transmitting resin (4), it is covered with a light-reflecting tree 11115+. However, the transmission efficiency of such an optical coupler increases (changes) depending on variations in the characteristics of the optical semiconductor (1) +21 and the curing state (shape, optical properties, etc.) of the resin +41151, and the optical coupler (1) is )+21, even if the individual characteristics are inspected and sorted, there is a large variation in the characteristics as shown by the solid line (A) in Figure 2.In addition, Figure 2 shows the results of examining the quantities by transmission efficiency in the production loft. , is a characteristic diagram normalized with the largest number being 1.0.

このような特性のばらつきを種々検討した結果、光反射
性樹脂(5)にその原因の多くがあるCとが明らかとな
った。即ち光反射性樹脂(5)は主材となるj 樹脂に光反射剤を混練しているが、主材に二種類ハ ある。まず主材としてエポキシ系樹脂を用いると、光反
射剤の樹脂内での分布は比較的均一であるが、硬化後に
素子にストレスが加わりやすい。そこで概ね主材として
シリコン系樹脂を用い、この場合には硬化後にも軟性を
残すので素子にストレスが加わらないが、硬化中にも光
反射剤が樹脂中を多動し、その結果同じ条件で硬化して
も光反射剤の濃度分布にかたよりが生じて伝達効率を変
化させていることがわかった。
As a result of various studies on such variations in characteristics, it has become clear that the light-reflective resin (5) is largely responsible for this variation. That is, the light-reflecting resin (5) is made by kneading a light-reflecting agent into the main resin, and there are two types of main materials. First, when an epoxy resin is used as the main material, the distribution of the light reflecting agent within the resin is relatively uniform, but stress is likely to be applied to the element after curing. Therefore, silicone-based resin is generally used as the main material, and in this case, it remains soft even after curing, so no stress is applied to the element, but the light-reflecting agent moves rapidly in the resin even during curing, and as a result, even under the same conditions It was found that even after curing, the concentration distribution of the light-reflecting agent was uneven, changing the transmission efficiency.

l/→ 発明の目的 本発明は上述の点を考慮してなされたもので、光伝達効
率を所望の範囲に集中して生産できる光結合器を提供す
るものである。
l/→ Purpose of the Invention The present invention has been made in consideration of the above-mentioned points, and provides an optical coupler that can concentrate and produce light transmission efficiency within a desired range.

に)発明の構成 本発明は上述した光反射性樹脂としてシリコン樹脂中に
酸化チタンを光半導体の伝達効率に関連させて混練し、
さらに好ましくは樹脂中の酸化チタン濃度を表面側より
透光性樹脂側を高くしたものを用いるものである。
B) Structure of the Invention The present invention is characterized by kneading titanium oxide into silicone resin as the above-mentioned light-reflecting resin in relation to the transmission efficiency of optical semiconductors,
More preferably, the titanium oxide concentration in the resin is higher on the translucent resin side than on the surface side.

(羽 実施例 本発明において最も注目するのは第1図の構造における
光反射性樹脂(5)である。光反射性樹脂15)として
シリコン系樹脂を主材として用いた場合。
(Feather Example) What is most noteworthy in the present invention is the light-reflecting resin (5) in the structure shown in FIG. 1.A case in which silicon-based resin is used as the main material as the light-reflecting resin (15).

それを透光性樹脂(4)の上に滴下したあと、従来はそ
のまますぐに硬化させていたが1本発明においては所定
時間だけ未硬化状態で放置してから硬化させることによ
り界面の光反射率が安定になることが判明したことに基
づいてなされたものである。
After dropping it onto the translucent resin (4), it was conventionally cured immediately, but in the present invention, it is left uncured for a predetermined period of time and then cured to reflect light at the interface. This was done based on the fact that the rate was found to be stable.

従ってまずこの点について詳述する。Therefore, this point will be explained in detail first.

第3図はシリコン系樹脂の中に酸化チタンを所定量混入
し透光性樹脂(4)上に滴下した時、硬化開始までの未
硬化中での放置時間と、硬化後の光伝達効率との特性図
である。この図で示す如(、塗布後丁ぐ硬化する場合と
、しばら(放置してから硬化する場合とは伝達効率はほ
ぼ安定しているが。
Figure 3 shows the relationship between the standing time in the uncured state until the start of curing and the light transmission efficiency after curing when a predetermined amount of titanium oxide is mixed into silicone resin and dropped onto the transparent resin (4). FIG. As shown in this figure, the transmission efficiency is almost stable in cases where the coating hardens immediately after application and cases where it hardens after being left for a while.

塗布後少し放置してから硬化させると同ロフト内で伝達
効率がばらつくことがわかる。さらにロフト内で伝達効
率が安定する場合でも、しばらく放置してから硬化する
方が高い伝達効率で安定している。−の現象を解析した
ところ、光反射性樹脂の滴下による塗布作業は、酸化チ
タンをかきまぜる事になり、樹脂中に酸化チタンがほぼ
均一に分散する。また未硬化のまま充分長い間装置する
と界面に酸化チタンが堆積するという状態がわかった。
It can be seen that if you leave it for a while after application and then allow it to harden, the transmission efficiency varies within the same loft. Furthermore, even if the transmission efficiency is stable within the loft, the transmission efficiency will be higher and more stable if it is left for a while to harden. - Analysis of the phenomenon revealed that applying the light-reflective resin by dropping it stirs the titanium oxide, and the titanium oxide is almost uniformly dispersed in the resin. It was also found that titanium oxide was deposited on the interface if the device was left uncured for a sufficiently long period of time.

一方、第4図はシリコン系樹脂中にルチル型酸化チタン
を混練した時の混線量と、硬化後の光伝達効率の特性図
であるが、5車量パ一セント未満では極端に光伝達効率
が悪く、また30重量パーセント以りでは混線増量に対
し光伝達効率が増加しない。これは低混線量では樹脂に
遮光性が得られず、また高湿線盪では光反射率がほぼ酸
化チタンの光反射率に等しくなるからと判断された。
On the other hand, Figure 4 is a characteristic diagram of the amount of crosstalk when rutile titanium oxide is kneaded into silicone resin and the light transmission efficiency after curing. Moreover, if the amount exceeds 30 weight percent, the optical transmission efficiency does not increase with respect to the increase in crosstalk. It was determined that this is because the resin does not have a light-shielding property when the amount of crosstalk is low, and the light reflectance becomes approximately equal to that of titanium oxide when the crosstalk is high.

以上の成果に基づき、例えば第2図の横軸に示す2種類
の伝達効率A、Bがめられた時には次のように対処する
。まず透光性樹脂被着前又は被着11後の受光素子の特
性に応じて酸化チタンの混線量を5〜30重、1社パー
セントの間で選択(例えば伝達効率Aに対しては受光量
の大きさに応じ20〜5重敬パーセント、同様に伝達効
率Bに対しては受光量の大きさに応じ25〜15重置バ
ーセントを選択)する。そしてその光反射性樹脂滴下後
當温下で2.5〜3時間、より好ましくは樹脂粘度が上
る中高温で10〜50分放置し、酸化チタンの沈降後に
硬化させる。このようにすることで第2図の点線(ロ)
(ハ)で示す如(特性ばらつきの少ないロフトを生産で
きた。
Based on the above results, for example, when two types of transmission efficiency A and B shown on the horizontal axis in FIG. 2 are found, the following steps are taken. First, select the amount of crosstalk of titanium oxide between 5 and 30 times and 1 percent according to the characteristics of the light-receiving element before coating the translucent resin or after coating 11 (for example, for transmission efficiency A, the amount of light received 20 to 5 weight percentage is selected depending on the magnitude of the transmission efficiency B, and similarly, 25 to 15 weight percentage is selected depending on the size of the amount of light received for the transmission efficiency B. After dropping the light-reflective resin, the resin is allowed to stand for 2.5 to 3 hours at a normal temperature, more preferably for 10 to 50 minutes at a medium-high temperature where the viscosity of the resin increases, and the titanium oxide is cured after precipitation. By doing this, the dotted line (b) in Figure 2
As shown in (c), we were able to produce a loft with less variation in characteristics.

(へ)発明の効果 以上の如(本発明は、近接するリード線に載て、前記光
反射性樹脂は、シリコン樹脂中に酸化チタンを前記光半
導体の伝達効率に関連した5乃至30重量パーセント混
練し、表面側より透光性樹脂側の濃度を高くしたもので
あるから、特性をあわせた生産が行なえる。
(f) Effects of the Invention As described above (the present invention provides that the light-reflecting resin is placed on adjacent lead wires, the light-reflecting resin contains titanium oxide in a silicone resin at a concentration of 5 to 30 weight percent, which is related to the transmission efficiency of the optical semiconductor. Since it is kneaded and the concentration on the translucent resin side is higher than on the surface side, production with matching properties can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光結合器の断面図、第2図は生産した光結合器
の特性ばらつきを示す特性図、第3図と第4図は本発明
実施に伴う光結合器の特性図である。 111(2)・・・光半導体、+31131・・・リー
ド線、+41・・・透光性樹脂、(5)・・・光反射性
樹脂。
FIG. 1 is a cross-sectional view of the optical coupler, FIG. 2 is a characteristic diagram showing variations in characteristics of the produced optical coupler, and FIGS. 3 and 4 are characteristic diagrams of the optical coupler according to the implementation of the present invention. 111(2)...Optical semiconductor, +31131...Lead wire, +41...Transparent resin, (5)...Light reflective resin.

Claims (1)

【特許請求の範囲】[Claims] (1) 近接するリード線に載置された発光および受光
の光半導体と、該光半導体を覆う透光性樹脂と、該透光
性樹脂を覆う光反射性樹脂を具備した光結合器において
、 前記光反射性樹脂は、シリコン樹脂中に酸化チタンを前
記光半導体の伝達効率に関連した5乃至30重量パーセ
ント混練し、表面側より透光性樹脂側の濃度を高(しで
ある事を特徴とする光結合器。
(1) In an optical coupler comprising a light-emitting and light-receiving optical semiconductor placed on adjacent lead wires, a light-transmitting resin covering the optical semiconductor, and a light-reflecting resin covering the light-transmitting resin, The light-reflecting resin is characterized by kneading 5 to 30 weight percent of titanium oxide in silicone resin, which is related to the transmission efficiency of the optical semiconductor, and making the concentration higher on the light-transmitting resin side than on the surface side. optical coupler.
JP58201272A 1983-10-26 1983-10-26 Optical coupler Granted JPS6092677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201272A JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201272A JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Publications (2)

Publication Number Publication Date
JPS6092677A true JPS6092677A (en) 1985-05-24
JPH0469439B2 JPH0469439B2 (en) 1992-11-06

Family

ID=16438203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201272A Granted JPS6092677A (en) 1983-10-26 1983-10-26 Optical coupler

Country Status (1)

Country Link
JP (1) JPS6092677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128956U (en) * 1990-04-10 1991-12-25

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166971A (en) * 1979-06-14 1980-12-26 Nec Corp Photocoupling device
JPS56121958A (en) * 1980-03-03 1981-09-25 Kiyomitsu Ono Collecting method of solar ray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166971A (en) * 1979-06-14 1980-12-26 Nec Corp Photocoupling device
JPS56121958A (en) * 1980-03-03 1981-09-25 Kiyomitsu Ono Collecting method of solar ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128956U (en) * 1990-04-10 1991-12-25

Also Published As

Publication number Publication date
JPH0469439B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
US4104083A (en) Solar battery package
CN1026919C (en) Coated optical transmission medium
KR950006204B1 (en) Process for the preparation of coated optical fiber
FR2483628A1 (en) OPTICAL FIBER FOR INFRARED LIGHT
CA2215456A1 (en) Radio-opaque tooth pivot made of composite material
US4728999A (en) Light emitting diode assembly
US20110254030A1 (en) Liquid reflector
JPS6092677A (en) Optical coupler
JPH11500545A (en) Infrared transmitting structure including adhesive infrared transmitting polymer layer
CN105988151A (en) Light turning film
US4264129A (en) Fiber bundle termination
US7315048B2 (en) Method and apparatus for mixing light emitted by a plurality of solid-state light emitters
CN108538987A (en) Optical semiconductor device and package for optical semiconductor device
JPS6322872A (en) Ultraviolet-curing coating compound and optical fiber using same
CN105552193A (en) LED filament preparation method
JPH0744292B2 (en) Mold resin for optical semiconductors
CN109920901A (en) A kind of LED lamp bead and preparation method thereof of near-infrared no red light point
JPS63126203A (en) Self-control type heating unit and manufacture of the same
KR101395106B1 (en) Method for manufacturing artificial marble with breakage pattern
CN209447844U (en) A kind of LED lamp bead of near-infrared no red light point
CN107606583A (en) Area source ultraviolet LED lamp and its manufacture method
CN205828424U (en) A kind of monitoring device and LED light source thereof
JPS5958881A (en) Semiconductor light emitting device
JPS61287279A (en) Photocoupling element and manufacture thereof
Park et al. Comparison analysis on the properties of the phosphor film according to the various composition ratio of phosphor slurry