JPH0469219B2 - - Google Patents

Info

Publication number
JPH0469219B2
JPH0469219B2 JP63335491A JP33549188A JPH0469219B2 JP H0469219 B2 JPH0469219 B2 JP H0469219B2 JP 63335491 A JP63335491 A JP 63335491A JP 33549188 A JP33549188 A JP 33549188A JP H0469219 B2 JPH0469219 B2 JP H0469219B2
Authority
JP
Japan
Prior art keywords
strength
impact resistance
materials
amount
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63335491A
Other languages
Japanese (ja)
Other versions
JPH02179839A (en
Inventor
Shinsuke Haneda
Kyoshi Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33549188A priority Critical patent/JPH02179839A/en
Publication of JPH02179839A publication Critical patent/JPH02179839A/en
Publication of JPH0469219B2 publication Critical patent/JPH0469219B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐衝撃性及び熱間加工性に優れた高強
度銅合金に関し、特に耐衝撃特性、摩耗性が要求
される機械部品(例、さく岩機用のライフルナツ
ト)、また、低電気抵抗、非磁性を要求され、且
つ耐衝撃特性を必要とする機械部品(例、超電導
発電機用常温ロータ)用に適している。 (従来の技術及び解決しようとする課題) 近年、連続、高負荷使用の如く産業機械の使用
条件は過酷となつてきている中で、各種産業機械
の動力伝達部品や摺動部品に要求される特性が厳
しくなつている。そのため、従来の材料では十分
に要求を満足できない場合が生じている。具体的
には以下のとおりである。 従来、JISに規定される各種リン青銅材が最も
一般的に用いられている材料であるが、耐摩耗
性、耐衝撃特性が十分とは云えず、また、冷間加
工により強度向上を図つているため、大きさの制
限があり、経済的にも問題がある。また、JISに
規定される各種アルミ青銅材は耐摩耗性の点で十
分でない。一方、耐摩耗銅合金(特願昭61−
044872号)やプラスチツク用銅合金(特願昭61−
16491号)などが提案されているが、前者は耐摩
耗性は十分であるものの、耐衝撃特性が劣り、後
者は耐衝撃特性が劣るという欠点がある。また、
長径間電線用材料として開発されたいわゆるCA
合金(Corson合金)が知られている。このCA合
金は析出硬化に寄与するNi2Si化合物相を有する
Cu−Ni2Si凝二元系合金(3〜6%Al、10%以下
Znを含むものである)で、熱間加工、冷間加工
後に溶体化処理、焼入れ、焼戻し時効硬化処理が
施されるもので、導電率が比較的よい材料である
が、熱間加工性に問題がある。 本発明は、上記従来技術の欠点を解消し、高強
度で耐衝撃特性に優れると共に熱間加工性にも優
れ、大型機械部品用にも適用可能な材料を提供す
ることを目的とするものである。 (課題を解決するための手段) 本発明者は、上記特性を満たすことができる材
料として、まず、 (1) 従来材に比べ耐衝撃特性、耐摩耗性を向上さ
せ、耐久性を上げる。 (2) 冷間加工によらず、強度、耐衝撃特性を向上
させる。 (3) 熱間加工性を向上させることにより、大型機
械部品への適用を可能とする。 などの観点から種々の材料について検討した結
果、前述のCA合金に着目するに至り、これを
ベースにしたCu基合金において、冷間加工に
よらずに高強度化、耐衝撃特性を改善でき、熱
間加工性を向上できる方策を見い出すべく鋭意
研究を重ねた。 その結果、以下〜の知見を得ることがで
き、本発明をなしたものである。 Cu中に析出硬化元素であるNi及びSiを添
加し、Ni2Si等の金属間化合物を分散析出さ
せ、強度の向上を図る。 しかし、の手段では十分な靱性が得られ
ないため、α相固溶強化元素であるAlを添
加し、靱性を改善する。 このCu−Ni−Si−Al系では、高温での絞
り、伸びが小さいために熱間加工性が悪いの
で、Crを添加し熱間加工性を改善する。 耐衝撃特性は、結晶粒度の影響を受けるた
め、結晶粒度微細化元素であるTi、Zr、Nb
等を適宜添加し、靱性、強度の向上を図る。 Siは脆化元素であり、α相中にSiが固溶さ
れると靱性が低下するので、これを防止する
ためには、Ni2Si、CrSi2等でSiを析出物とし
て固定し、過剰な遊離Siを生じないためにSi
量をCr、Ni量との関係で規制する。 すなわち、本発明は、Ni4%超〜10%、Si:0.7
〜2.5%、Al:2〜6%及びCr:0.1〜1.0%を含
有し、且つ次式 1.2Cr+0.24Ni≧0.9Si を満足し、必要に応じて、更にZr、Ti及びNbの
うちの1種又は2種以上を0.05〜0.5%含有し、
残部がCuよりなることを特徴とする耐衝撃特性
及び熱間加工性に優れた高強度銅合金を要旨とす
るものである。 以下に本発明を更に詳述する。 まず、本発明における化学成分の限定理由は以
下のとおりである。 Ni:4%超〜10% NiはSiと析出物(Ni2Si)を形成し、母地組織
であるα相中に分散析出するので、強度向上のた
めに重要な元素である。しかし、4%以下では理
論量のSiが存在したとしても、強度が十分に得ら
れない。また、Niはα相中に固溶することによ
り靱世が向上するので、理論量以上を必要とする
が、10%以上ではその改善効果はほゞ飽和する。
したがたつて、Ni量は4%超〜10%の範囲とす
る。 Si:0.7〜2.5% SiはNi及びCrと析出物(Ni2Si、CrSi2等)を
形成し、強度向上に重要な元素である。しかし、
0.7%未満の場合は析出強化が十分でなく、また
2.5%を超える場合は、強度向上効果が飽和する
と共に析出物量が多くなり、靱性が低下してく
る。したがつて、Si量は0.7〜2.5%の範囲とする。 Cr:0.1〜1.0% Crは高温における絞り及び伸びを改善するた
めに添加され、熱間加工を容易とするために必要
な元素である。その効果は0.1%から認められる
が、1.0%超では改善効果は飽和する。したがつ
て、Cr量は0.1〜1.0%の範囲とする。 但し、Siは上記Ni、Cr量との関係で規制する
必要がある。すなわち、Siは珪化物として固定し
ないと靱性低下の原因となる。したがつて、
Ni2Si、CrSi2の化学量論より計算される量よりも
あまり過剰に含有させてはならず、次式 1.2Cr+0.24Ni≧0.9Si を満足する必要がある。 Al:2.0〜6.0% Alはα相を強化するために必要な元素であり、
靱性向上のためにも不可欠である。また高温下に
曝された場合の耐高温酸化特性を改善する効果も
ある。しかし、2.0%未満では靱性改善効果は認
められず、また6.0%超の場合はα相中に固溶し
きれずに粒界にそつて脆硬な第3相を生ずるため
に靱性が低下する。したがつて、Al量は2.0〜6.0
%の範囲とする。 Zr、Ti及びNbを1種又は2種以上:0.05〜0.5% Zr、Ti、Nbは結晶粒の微細化元素であり、靱
性、強度の向上効果があり、特に結晶粒度の影響
を受ける耐衝撃特性の改善に効果がある。また、
これらの元素はCrと共に熱間加工性改善効果が
認められるので、これらの元素の1種又は2種以
上を適量で添加することができる。添加する場合
には、これらの元素の1種又は2種以上を0.05〜
0.5%の範囲とする。0.05%未満ではそのような
効果は顕著でなく、また0.5%を越えて添加して
も微細化効果は飽和する。 なお、上記Cu基合金は、熱間加工後、溶体化
処理及び時効処理を施すことにより製造される
が、耐衝撃特性に優れ、高強度であり、また熱間
加工性が優れているので、大型部品としても適用
可能である。 (実施例) 次に本発明の実施例を示す。 実施例 1 第1表に示す化学成分を有する銅合金を常法に
より溶製したインゴツトを750〜850℃で約75%の
圧下率で熱間加工した後、溶体化処理及び時効処
理を施した。 但し、比較材No.10は、熱間加工が十分できない
ため、溶体化処理後、冷間加工を行い、時効処理
を施した。また、比較材No.8は約75%の圧下率で
熱間加工した状態で供試し、比較材No.7、No.9は
市販材を供試した。 得られた供試材の引張強さ、伸び、硬さ、衝撃
値及び摩耗量を第1表に併記する。 なお、摩耗量については、以下の試験条件で大
越式摩耗試験法により測定した。その摩耗試験で
は、第1図に示すように、10mmt×20mm×30mm寸
法の試験片1を半径r、径30mmφ×3mmt寸法の
回転円板(相手材)2を一定荷重で押し付け、試
験片1の摩耗量を次式にて測定した。 W0=ab3/12r ここで、W0:試験片の摩耗量(mm3) a:相手材の厚さ(mm) b:摩耗痕幅(mm)(第2図参照) r:相手材の半径(mm) <摩耗試験条件> 相手材:SCM440(浸炭焼入材)、 HRC60 荷 重:19.8Kg(一定) 摩擦速度:0.94m/sec 摩擦距離:600m 潤滑条件:無潤滑 試験数:n=3 第1表より、以下の如く考察される。 No.1〜No.10は比較材であり、No.11〜No.16は本発
明材である。 比較材No.1〜No.2は、本発明材No.12及びNo.14と
比べ、Al量が適正でないために衝撃値が低い。 比較材No.3はSi量が不足しているために十分な
強度が得られず、本発明材No.13と比較して低値で
ある。 比較材No.4は過剰のNi、Siが含まれる場合で
あり、硬さは向上しているが、衝撃値が著しく低
下している。 比較材No.5はSi、Ni、Crのバランスがくずれ、
Siが過剰となつているために衝撃値が低下してい
る。 比較材No.6はNiが適正範囲を下回る場合であ
り、強度、衝撃値の点で十分とは云えない。 比較材No.7とNo.9の市販材は冷間加工によつて
強度向上を図つているが、衝撃値、耐摩耗性の点
で十分とは云えない。 比較材No.8、No.10は衝撃値が十分でない。 一方、本発明材はいずれも衝撃値が高く、強度
も十分であり、耐摩耗性の点でも市販材(No.7、
No.9)を上回つている。
(Industrial Application Field) The present invention relates to a high-strength copper alloy with excellent impact resistance and hot workability, particularly for mechanical parts that require impact resistance and wear resistance (e.g. rifle nuts for rock drilling machines). ), it is also suitable for mechanical parts that require low electrical resistance, non-magnetism, and impact resistance (eg, room temperature rotor for superconducting generator). (Conventional technology and problems to be solved) In recent years, as the operating conditions of industrial machinery have become harsher, such as continuous and high-load use, there are demands for power transmission parts and sliding parts of various industrial machines. The characteristics are becoming stricter. Therefore, there are cases where conventional materials cannot fully satisfy the requirements. Specifically, the details are as follows. Traditionally, various phosphor bronze materials specified by JIS have been the most commonly used materials, but their wear resistance and impact resistance are not sufficient, and they have not been improved in strength through cold working. Because of this, there are size restrictions and there are economical problems. Additionally, various aluminum bronze materials specified by JIS do not have sufficient wear resistance. On the other hand, wear-resistant copper alloy (patent application 1986-
044872) and copper alloys for plastics (patent application 1986-
16491), but the former has sufficient wear resistance but has poor impact resistance, and the latter has poor impact resistance. Also,
So-called CA developed as a material for long span electric wires
Alloys (Corson alloys) are known. This CA alloy has a Ni 2 Si compound phase that contributes to precipitation hardening.
Cu-Ni 2 Si solidified binary alloy (3-6% Al, 10% or less
This material contains Zn) and is subjected to solution treatment, quenching, and tempering age hardening treatment after hot working and cold working, and although it is a material with relatively good electrical conductivity, there are problems with hot workability. be. The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to provide a material that has high strength, excellent impact resistance, and excellent hot workability, and is applicable to large mechanical parts. be. (Means for Solving the Problems) The present inventors first developed a material that can satisfy the above characteristics by: (1) improving impact resistance and abrasion resistance compared to conventional materials, and increasing durability; (2) Improve strength and impact resistance without cold working. (3) By improving hot workability, it can be applied to large machine parts. As a result of studying various materials from these viewpoints, we focused on the aforementioned CA alloy, and found that Cu-based alloys based on this can have high strength and improved impact resistance without cold working. We conducted extensive research to find ways to improve hot workability. As a result, we were able to obtain the following knowledge, which led to the present invention. Ni and Si, which are precipitation hardening elements, are added to Cu to disperse and precipitate intermetallic compounds such as Ni 2 Si to improve strength. However, since sufficient toughness cannot be obtained by the above method, Al, which is an α-phase solid solution strengthening element, is added to improve the toughness. This Cu-Ni-Si-Al system has poor hot workability due to low drawing and elongation at high temperatures, so Cr is added to improve hot workability. Impact resistance properties are affected by grain size, so grain size refining elements such as Ti, Zr, and Nb
etc. are added as appropriate to improve toughness and strength. Si is an embrittlement element, and if Si is dissolved in the α phase, the toughness will decrease. To prevent this, Si is fixed as a precipitate with Ni 2 Si, CrSi 2 , etc., and excessive Si
The amount is regulated in relation to the amount of Cr and Ni. That is, in the present invention, Ni is more than 4% to 10%, Si: 0.7
~2.5%, Al: 2~6%, and Cr: 0.1~1.0%, and satisfies the following formula: 1.2Cr+0.24Ni≧0.9Si, and further contains one of Zr, Ti, and Nb as necessary. Contains 0.05 to 0.5% of a species or two or more species,
The main feature is a high-strength copper alloy with excellent impact resistance and hot workability, characterized by the remainder being Cu. The present invention will be explained in further detail below. First, the reasons for limiting the chemical components in the present invention are as follows. Ni: More than 4% to 10% Ni forms a precipitate (Ni 2 Si) with Si and is dispersed and precipitated in the α phase, which is the parent structure, and is therefore an important element for improving strength. However, if Si is less than 4%, sufficient strength cannot be obtained even if a theoretical amount of Si is present. Further, since Ni improves toughness by solid solution in the α phase, it is required to be in a stoichiometric amount or more, but the improvement effect is almost saturated at 10% or more.
Therefore, the Ni content should be in the range of more than 4% to 10%. Si: 0.7-2.5% Si forms precipitates (Ni 2 Si, CrSi 2 , etc.) with Ni and Cr, and is an important element for improving strength. but,
If it is less than 0.7%, precipitation strengthening is not sufficient and
If it exceeds 2.5%, the strength-improving effect is saturated, the amount of precipitates increases, and the toughness decreases. Therefore, the amount of Si is in the range of 0.7 to 2.5%. Cr: 0.1-1.0% Cr is added to improve drawing and elongation at high temperatures, and is a necessary element to facilitate hot working. The effect is recognized from 0.1%, but the improvement effect is saturated above 1.0%. Therefore, the Cr content should be in the range of 0.1 to 1.0%. However, Si needs to be regulated in relation to the amounts of Ni and Cr mentioned above. That is, unless Si is fixed as a silicide, it causes a decrease in toughness. Therefore,
Ni 2 Si and CrSi 2 must not be contained in an amount in excess of the amount calculated from the stoichiometry, and must satisfy the following formula: 1.2Cr+0.24Ni≧0.9Si. Al: 2.0-6.0% Al is an element necessary to strengthen the α phase,
It is also essential for improving toughness. It also has the effect of improving high temperature oxidation resistance when exposed to high temperatures. However, if it is less than 2.0%, no effect on improving toughness is observed, and if it exceeds 6.0%, it cannot be completely dissolved in the α phase and a brittle third phase is formed along the grain boundaries, resulting in a decrease in toughness. Therefore, the amount of Al is 2.0 to 6.0
% range. One or more types of Zr, Ti, and Nb: 0.05 to 0.5% Zr, Ti, and Nb are elements that refine grains and have the effect of improving toughness and strength, especially impact resistance, which is affected by grain size. Effective in improving characteristics. Also,
Since these elements, together with Cr, have the effect of improving hot workability, one or more of these elements can be added in appropriate amounts. When added, one or more of these elements should be added in an amount of 0.05 to
The range shall be 0.5%. If it is less than 0.05%, such an effect is not significant, and if it is added in excess of 0.5%, the refinement effect is saturated. The above-mentioned Cu-based alloy is produced by subjecting it to solution treatment and aging treatment after hot working, and it has excellent impact resistance, high strength, and excellent hot workability. It can also be applied to large parts. (Example) Next, an example of the present invention will be shown. Example 1 An ingot made by melting a copper alloy having the chemical composition shown in Table 1 by a conventional method was hot worked at 750 to 850°C with a reduction rate of about 75%, and then subjected to solution treatment and aging treatment. . However, Comparative Material No. 10 could not be sufficiently hot worked, so it was subjected to cold working and aging treatment after solution treatment. Comparative material No. 8 was tested after hot working at a reduction rate of about 75%, and comparative materials No. 7 and No. 9 were commercially available materials. The tensile strength, elongation, hardness, impact value, and wear amount of the obtained test materials are also listed in Table 1. The amount of wear was measured by the Okoshi wear test method under the following test conditions. In the wear test, as shown in Fig. 1, a test piece 1 with dimensions of 10 mm x 20 mm x 30 mm was pressed against a rotating disk (mate material) 2 with a radius r and a diameter of 30 mmφ x 3 mm with a constant load. The amount of wear was measured using the following formula. W 0 =ab 3 /12r where, W 0 : Amount of wear on the test piece (mm 3 ) a: Thickness of the mating material (mm) b: Width of wear scar (mm) (see Figure 2) r: Comparing material radius (mm) <Abrasion test conditions> Compatible material: SCM440 (carburized and quenched material), HRC60 Load: 19.8Kg (constant) Friction speed: 0.94m/sec Friction distance: 600m Lubrication conditions: Number of non-lubricated tests: n =3 From Table 1, the following can be considered. No. 1 to No. 10 are comparative materials, and No. 11 to No. 16 are materials of the present invention. Comparative materials No. 1 and No. 2 have lower impact values than inventive materials No. 12 and No. 14 because the amount of Al is not appropriate. Comparative material No. 3 cannot obtain sufficient strength due to insufficient Si content, and has a lower value than Inventive material No. 13. Comparative material No. 4 contains excessive Ni and Si, and although the hardness is improved, the impact value is significantly reduced. Comparison material No. 5 has an imbalance of Si, Ni, and Cr.
The impact value decreases due to excess Si. Comparative material No. 6 has Ni below the appropriate range, and cannot be said to be sufficient in terms of strength and impact value. Comparative materials No. 7 and No. 9, commercially available materials, are improved in strength by cold working, but cannot be said to be sufficient in terms of impact value and abrasion resistance. Comparative materials No. 8 and No. 10 do not have sufficient impact values. On the other hand, all of the materials of the present invention have high impact values and sufficient strength, and also have commercially available materials (No. 7, No. 7,
It exceeds No. 9).

【表】【table】

【表】 実施例 2 本例は熱間加工性に及ぼすCr添加の影響を調
べたものである。 実験では、5.1%Al−5.3%Ni−1.3%Si−残部
Cuの組成をベース材として、これにCrを種々の
量で添加したインゴツトを溶製し、このインゴツ
トについて各種温度(高温)での伸びを調査し
た。その結果を第3図に示す。 第3図より明らかなように、Cr無添加材に比
べ、0.1%Crを添加することにより、高温での伸
びが著しく改善される。0.9%Crの添加でもその
改善度は大差ない。 なお、Crをこれらの各量で添加した銅合金に
ついて実施例1の本発明材と同様の条件で熱間加
工、溶体化処理及び時効処理を施したところ、実
施例1の本発明材と同様の好結果が得られた。 (発明の効果) 以上詳述したように、本発明によれば、耐衝撃
特性に優れ、且つ冷間加工によらずに高強度化す
ることが可能である。また、熱間加工製が改善さ
れるので、大型部品への適用が拡大する。 具体的な特性としては、衝撃値5Kg−m、引張
強さ70Kgf/mm2以上を有するものであり、その工
業的価値は大きい。
[Table] Example 2 In this example, the influence of Cr addition on hot workability was investigated. In the experiment, 5.1%Al−5.3%Ni−1.3%Si−balance
Ingots were prepared by adding various amounts of Cr to the Cu base material, and the elongation of these ingots at various temperatures (high temperatures) was investigated. The results are shown in FIG. As is clear from Fig. 3, the elongation at high temperatures is significantly improved by adding 0.1% Cr compared to the Cr-free material. Even with the addition of 0.9% Cr, the degree of improvement is not much different. In addition, when hot working, solution treatment, and aging treatment were performed on the copper alloys to which Cr was added in each of these amounts under the same conditions as the inventive material of Example 1, the result was the same as that of the inventive material of Example 1. Good results were obtained. (Effects of the Invention) As detailed above, according to the present invention, it is possible to have excellent impact resistance and increase strength without cold working. In addition, since hot processing is improved, the application to large parts is expanded. As specific characteristics, it has an impact value of 5 kg-m and a tensile strength of 70 kgf/mm 2 or more, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は大越式摩耗試験法の要領を
説明する図で、第1図は試験概略を示し、第2図
は摩耗痕幅bを示しており、第3図はCr添加量
と高温伸びの関係を示す図である。
Figures 1 and 2 are diagrams explaining the main points of the Okoshi type wear test method. Figure 1 shows the test outline, Figure 2 shows the wear scar width b, and Figure 3 shows the amount of Cr added. It is a figure showing the relationship between and high temperature elongation.

Claims (1)

【特許請求の範囲】 1 重量%で(以下、同じ)、Ni:4%超〜10
%、Si:0.7〜2.5%、Al:2〜6%及びCr:0.1〜
1.0%を含有し、且つ次式 1.2Cr+0.24Ni≧0.9Si を満足し、残部がCuよりなることを特徴とする
耐衝撃特性及び熱間加工性に優れた高強度銅合
金。 2 Ni:4%超〜10%、Si:0.7〜2.5%、Al:2
〜6%及びCr:0.1〜1.0%を含有し、更にZr、Ti
及びNbのうちの1種又は2種以上を0.05〜0.5%
含有し、且つ次式 1.2Cr+0.24Ni≧0.9Si を満足し、残部がCuよりなることを特徴とする
耐衝撃特性及び熱間加工性に優れた高強度銅合
金。
[Claims] 1% by weight (the same applies hereinafter), Ni: more than 4% to 10
%, Si: 0.7~2.5%, Al: 2~6% and Cr: 0.1~
A high-strength copper alloy with excellent impact resistance and hot workability, which contains 1.0% and satisfies the following formula: 1.2Cr+0.24Ni≧0.9Si, with the remainder being Cu. 2 Ni: more than 4% to 10%, Si: 0.7 to 2.5%, Al: 2
~6% and Cr: 0.1~1.0%, and further contains Zr, Ti
and 0.05 to 0.5% of one or more of Nb
A high-strength copper alloy with excellent impact resistance and hot workability, which satisfies the following formula: 1.2Cr+0.24Ni≧0.9Si, with the remainder being Cu.
JP33549188A 1988-12-29 1988-12-29 High strength copper alloy having excellent impact resistance Granted JPH02179839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33549188A JPH02179839A (en) 1988-12-29 1988-12-29 High strength copper alloy having excellent impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33549188A JPH02179839A (en) 1988-12-29 1988-12-29 High strength copper alloy having excellent impact resistance

Publications (2)

Publication Number Publication Date
JPH02179839A JPH02179839A (en) 1990-07-12
JPH0469219B2 true JPH0469219B2 (en) 1992-11-05

Family

ID=18289167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33549188A Granted JPH02179839A (en) 1988-12-29 1988-12-29 High strength copper alloy having excellent impact resistance

Country Status (1)

Country Link
JP (1) JPH02179839A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116540B2 (en) * 1990-08-03 1995-12-13 株式会社日立製作所 Mold material for plastic molding
JP3304021B2 (en) * 1994-07-20 2002-07-22 日産自動車株式会社 Copper alloy with excellent high-temperature wear resistance
JP3853100B2 (en) * 1998-02-26 2006-12-06 三井金属鉱業株式会社 Copper alloy with excellent wear resistance
EP2653574B1 (en) * 2010-12-13 2017-05-31 Nippon Seisen Co., Ltd. Copper alloy and method for producing copper alloy
TW202246536A (en) 2021-05-26 2022-12-01 國立清華大學 High strength and wear resistant multi-element copper alloy and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776143A (en) * 1980-10-30 1982-05-13 Mitsubishi Metal Corp Mn-si-type intermetallic compound-dispersed high-strength brass having toughness and abrasion-resistance
JPS63238249A (en) * 1987-03-26 1988-10-04 Mitsubishi Metal Corp Synchronous ring made of cu alloy for gearbox
JPS63241131A (en) * 1986-11-20 1988-10-06 Nippon Mining Co Ltd Copper alloy for sliding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776143A (en) * 1980-10-30 1982-05-13 Mitsubishi Metal Corp Mn-si-type intermetallic compound-dispersed high-strength brass having toughness and abrasion-resistance
JPS63241131A (en) * 1986-11-20 1988-10-06 Nippon Mining Co Ltd Copper alloy for sliding material
JPS63238249A (en) * 1987-03-26 1988-10-04 Mitsubishi Metal Corp Synchronous ring made of cu alloy for gearbox

Also Published As

Publication number Publication date
JPH02179839A (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US3912503A (en) Galling resistant austenitic stainless steel
US6942742B2 (en) Copper-based alloy excellent in dezincing resistance
JPH04231431A (en) Mechanically processable copper-containing alloy for forging
JPS6214024B2 (en)
CN102610293A (en) Aluminum alloy wire with high electrical conductivity and high strength and manufacturing method thereof
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
JPH0469219B2 (en)
US20230091831A1 (en) Pb free Cu-Zn alloy
JPS6263637A (en) Aluminum bearing alloy
CN1240863C (en) Titaniferous cuprum-nickel-stannum spinodal decomposition type anti-friction bearing alloy and preparation method thereof
JP3456028B2 (en) Piston ring material with excellent workability
KR101337477B1 (en) Leadless Free Cutting Copper Alloy and Process of Production Same
JPH10130794A (en) Free cutting ferritic stainless steel with high strength
JP2592397B2 (en) Aluminum bronze for sliding materials with excellent seizure resistance and wear resistance
JPS6086236A (en) Cu-alloy for slide member
JPS6086237A (en) Cu-alloy for slide member
US2101625A (en) High strength corrosion resistant copper alloy
JP2952006B2 (en) Piston ring material
JPS58113342A (en) Bearing aluminum alloy
JPH0913133A (en) Aluminum bronze and sliding member using the same
US3224875A (en) Non-magnetic copper base alloys
US2976142A (en) Aluminum alloy for high temperature service
JP3309451B2 (en) Copper alloy valve guide for Ti alloy valve
JPH04329850A (en) High damping material and its manufacture
JPH032340A (en) Wear resistant aluminum bronze