JPH0469199B2 - - Google Patents

Info

Publication number
JPH0469199B2
JPH0469199B2 JP59057266A JP5726684A JPH0469199B2 JP H0469199 B2 JPH0469199 B2 JP H0469199B2 JP 59057266 A JP59057266 A JP 59057266A JP 5726684 A JP5726684 A JP 5726684A JP H0469199 B2 JPH0469199 B2 JP H0469199B2
Authority
JP
Japan
Prior art keywords
coal
tail
deashing
flotation machine
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057266A
Other languages
Japanese (ja)
Other versions
JPS60202193A (en
Inventor
Akira Oosawa
Yoshiomi Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5726684A priority Critical patent/JPS60202193A/en
Publication of JPS60202193A publication Critical patent/JPS60202193A/en
Publication of JPH0469199B2 publication Critical patent/JPH0469199B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭高濃度水スラリの脱灰方法に関
する。より詳しくは、石炭高濃度水スラリの脱灰
方法の炭分回収率を高効率化することに関する。 石炭高濃度水スラリとは、石炭60〜85%(重量
%)、界面活性剤0.01〜5.0重量%(対石炭粉末)、
水分が残りの%で構成されるスラリ燃料である。
石炭濃度、界面活性剤添加率は、石炭の種類によ
つて異なつてくる。石炭には灰分が含まれている
が、石炭高濃度水スラリをボイラで燃焼させる際
灰分があると、ボイラ効率の低下が発生するた
め、できるだけ灰分を燃焼前に除去しておくこと
が好ましい。又、石炭中の残灰分を各炭種毎に値
をそろえるということは、炭種による発熱量、燃
焼効率のばらつきを最少にできるという効果があ
る。このような背景のもとに、従来の脱灰プロセ
スが組み込まれた石炭高濃度水スラリ製造プロセ
スを第1図のフローシートに沿つて説明する。 原炭30を原炭受入槽31に入れ、供給機32に
より石炭破砕機33に供給する。石炭破砕機33
では約30〜50mmの原炭30を約3mm以下の細炭3
4に破砕する。この細炭34は、スクリーン35
により3mm以上の石炭37と3mmより小さい石炭
36に分別される。3mmより小さい石炭36は細
炭受入槽38に貯蔵される。一方、3mm以上の石
炭37は再び原炭受入槽31にもどされる。細炭
受入槽36に貯蔵された3mmより小さい石炭36
は、定量供給機39により一定割合で微粉砕機
(通常、湿式微粉砕機)40に供給され、水43
と混合されながら粒度200メツシユ以下70〜95%
の如き微粉炭41に微粉砕される。微粉炭41
は、水スラリ状状(石灰濃度で約45〜55重量%)
で微粉炭貯槽42に受け入れられる。そして、微
粉炭10は、浮選機1の後の脱水機2より分離さ
れた水14により、約5〜20重量%に濃度調整さ
れ、浮選機1に起泡剤24、捕収剤25とともに
供給され、灰分の少い石炭(精炭)11と、灰分
の多い石炭(テール)12に分別けられる。灰分
の多い石炭(テール)12は排水処理設備へ送ら
れ、廃棄される。灰分の少い石炭(精炭)11
は、脱水機2により約20重量%水分の石炭濃度迄
脱水され、脱水機2より分離された水14は、浮
選機1に供給される微粉炭10の濃度調整に再利
用される。ケーキ状の水分約20%の精炭13は、
スラリ調整槽3で界面活性剤の水溶液26により
石炭高濃度水スラリ15の最終石炭濃度に再調整
される。 以上が従来の脱灰手段が組み込まれた石炭高濃
度水スラリ製造方法である。しかしながら、前記
従来の方法は、炭種により精炭11とテール12
の分かれる比率が大きく異なる。すなわち、石炭
中の精炭11への炭分回収率と脱灰率の関係は第
4図に示すような傾向であるが、炭種によつてか
なり異なることがわかる。脱灰率を一定にする
と、炭分回収率が炭種毎に異なり、一方、炭分回
収率を一定にすると、脱灰率が異なり、石炭高濃
度水スラリを何種類かの石炭で脱灰して製造しよ
うとすると、炭種がせまい範囲にある一定の設備
では、炭種をおさえなければならないと云う欠点
があり、これは、日本の如き輸入炭の比率の多い
国では、大問題である。 又、200メツシユ以下70〜95%の如き微粉炭で
浮選機をつかつて高脱灰率の精炭11を製造しよ
うとすると、炭分回収率が大巾に低下し、効率の
悪い脱灰手段ということとなる。 本発明は、前記従来法の欠点を解消するもので
ある。 本発明は、石炭高濃度水スラリの脱灰するに際
して、粒度200メツシユ以下70〜95%の如き微粒
石炭を浮選機にて先づ脱灰し、浮選機のテール炭
を重油、軽油、灯油などのバインダーを混合し、
フロツク化されたテール炭を含むスラリーを浮選
にかけて炭分を回収し、浮選機で浮選された灰分
の少ない石炭と混合した後、脱水することを特徴
とする、石炭高濃度水スラリの脱灰方法に関す
る。 第2図は、第1図の従来方式における脱灰手段
のみを抜き出したものであり、一方、第3図は、
本発明による脱灰手段を示したものである。 第3図において、微粉炭10は、浮選機1の後
の脱水機2より分離された水14により約5〜20
重量%に濃度調整され、浮選機1に起泡剤24、
捕収剤25とともに供給され、灰分の少い石炭
(精度)11と、灰分の多い石炭(テール)12
に別けられる。灰分の多い石炭(テール)12
は、テール炭分回収装置4に導入される。本発明
に使用されるテール炭分回収装置4の一例を第5
図に示す。すなわち、灰分の多い石炭(テール)
12は、浮選機1の後の脱水機2より分離された
水14により約1〜20重量%に濃度調整され、混
合機5において重油、軽油、灯油等の如きバイン
ダ27の分散・混合が行われ、ライン16によつ
て凝集槽6に送られ、こゝで、灰分の多い石炭
(テール)12中の炭分が、重油、軽油、灯油等
の如きバインダ27によりフロツクを形成する
(但し、フロツク粒径は、浮選分離に最適な粒径
200メツシユ以上80メツシユ以下とする)。このと
き、灰分の多い石炭(テール)12中の灰分は、
そのまま水中に懸濁している。このような状態の
スラリ17を脂肪族アルコール等の起泡剤24及
び重油、軽油、灯油等の捕収剤25(起泡剤と捕
収剤を混合したものを浮選剤という)を添加し
て、浮選分離機7にかけると、重油、軽油、灯油
等の如きバインダ27を含んだ炭分(フロツク)
18とそのまま水中に懸濁している灰分19に分
離され、脱灰ができるわけである。 このようなテール炭分回収装置4での運転デー
タの1例を表1に示す。
The present invention relates to a method for deashing a highly concentrated coal water slurry. More specifically, the present invention relates to increasing the efficiency of the coal recovery rate in a deashing method for highly concentrated coal water slurry. Highly concentrated coal water slurry consists of 60-85% coal (weight%), surfactant 0.01-5.0% by weight (based on coal powder),
It is a slurry fuel with the remaining percentage being water.
Coal concentration and surfactant addition rate vary depending on the type of coal. Coal contains ash, and if ash is present when a high-concentration coal water slurry is burned in a boiler, the efficiency of the boiler will decrease, so it is preferable to remove as much ash as possible before combustion. Further, by making the residual ash content in coal the same for each type of coal, it is possible to minimize variations in calorific value and combustion efficiency depending on the type of coal. Based on this background, a coal high concentration water slurry manufacturing process incorporating a conventional deashing process will be explained along the flow sheet of FIG. Raw coal 30 is put into a raw coal receiving tank 31 and supplied to a coal crusher 33 by a feeder 32. Coal crusher 33
In this case, raw coal 30 of about 30 to 50 mm is mixed with fine coal 3 of about 3 mm or less.
Crush into 4 pieces. This fine coal 34 is
The coal is separated into coal 37 larger than 3 mm and coal 36 smaller than 3 mm. Coal 36 smaller than 3 mm is stored in a fine coal receiving tank 38. On the other hand, coal 37 of 3 mm or more is returned to the raw coal receiving tank 31 again. Coal 36 smaller than 3 mm stored in the fine coal receiving tank 36
is supplied to a pulverizer (usually a wet pulverizer) 40 at a constant rate by a quantitative feeder 39, and water 43
Particle size less than 200 mesh while being mixed with 70-95%
The coal is pulverized into pulverized coal 41 as shown in FIG. Pulverized coal 41
is in the form of water slurry (lime concentration approximately 45-55% by weight)
The pulverized coal is received in the pulverized coal storage tank 42. Then, the pulverized coal 10 is adjusted to a concentration of about 5 to 20% by weight by water 14 separated from the dehydrator 2 after the flotation machine 1, and the flotation machine 1 is fed with a foaming agent 24 and a collecting agent 25. Coal 11 with a low ash content (clean coal) and coal (tail) 12 with a high ash content are separated. Coal (tail) 12 with a high ash content is sent to a wastewater treatment facility and disposed of. Coal with low ash content (clean coal) 11
is dehydrated by a dehydrator 2 to a coal concentration of about 20% water by weight, and water 14 separated by the dehydrator 2 is reused to adjust the concentration of pulverized coal 10 to be supplied to the flotation machine 1. Clean coal 13, which is cake-like and has a moisture content of approximately 20%, is
In the slurry adjustment tank 3, the coal concentration is readjusted to the final coal concentration of the coal high concentration water slurry 15 using a surfactant aqueous solution 26. The above is a method for producing a highly concentrated coal water slurry incorporating a conventional deashing means. However, in the conventional method, clean coal 11 and tail 12 differ depending on the coal type.
The ratio of the divisions differs greatly. In other words, the relationship between the recovery rate of coal to clean coal 11 in coal and the deashing rate tends to be as shown in FIG. 4, but it can be seen that it varies considerably depending on the type of coal. When the deashing rate is held constant, the coal recovery rate differs depending on the type of coal.On the other hand, when the coal recovery rate is held constant, the deashing rate differs, and it is difficult to deash a highly concentrated coal water slurry with several types of coal. However, if you try to produce coal using a small range of coal types, you will have to limit the types of coal you use in certain facilities, which is a big problem in countries like Japan where a large proportion of imported coal is used. be. In addition, when trying to produce clean coal 11 with a high deashing rate by using a flotation machine with pulverized coal of 70 to 95% less than 200 mesh, the coal recovery rate decreases drastically, resulting in inefficient deashing. It is a means. The present invention eliminates the drawbacks of the conventional methods. When deashing a highly concentrated water slurry of coal, the present invention first deashes fine coal with a grain size of 70 to 95% below 200 mesh using a flotation machine, and the tail coal of the flotation machine is used to remove heavy oil, light oil, Mix a binder such as kerosene,
A highly concentrated coal water slurry characterized by flotating a slurry containing flocculated tail coal to recover the coal content, mixing it with coal with a low ash content flotated in a flotation machine, and then dewatering it. Concerning decalcification methods. FIG. 2 shows only the deashing means in the conventional method shown in FIG. 1, while FIG.
1 shows a demineralization means according to the present invention. In FIG. 3, the pulverized coal 10 is mixed with water 14 separated from the dehydrator 2 after the flotation machine 1 to produce about 5 to 20%
The concentration was adjusted to % by weight, and a foaming agent 24 was added to the flotation machine 1.
Coal with a low ash content (accuracy) 11 and coal with a high ash content (tail) 12 are supplied together with the collector 25.
It is divided into Coal with high ash content (tail) 12
is introduced into the tail coal recovery device 4. An example of the tail coal recovery device 4 used in the present invention is shown in the fifth example.
As shown in the figure. i.e. coal with high ash content (tail)
The concentration of 12 is adjusted to about 1 to 20% by weight using water 14 separated from the dehydrator 2 after the flotation machine 1, and a binder 27 such as heavy oil, light oil, kerosene, etc. is dispersed and mixed in the mixer 5. The charcoal in the coal (tail) 12 with a high ash content forms a floc with a binder 27 such as heavy oil, light oil, kerosene, etc. , the floc particle size is the optimum particle size for flotation separation.
200 meshes or more and 80 meshes or less). At this time, the ash content in the coal (tail) 12 with a high ash content is
It remains suspended in water. A foaming agent 24 such as aliphatic alcohol and a collecting agent 25 (a mixture of a foaming agent and a collecting agent is called a flotation agent) such as heavy oil, light oil, kerosene, etc. are added to the slurry 17 in such a state. Then, when it is passed through a flotation separator 7, coal (floe) containing a binder 27 such as heavy oil, light oil, kerosene, etc.
It is separated into ash 18 and ash 19, which is suspended in water as it is, and can be deashed. Table 1 shows an example of operational data for such a tail coal recovery device 4.

【表】 表1の運転データ例よりわかるように、浮選機
1よりの灰分の多い石炭(テール)12をテール
炭分回収装置に導入することにより、灰分の多い
石炭(テール)12中の炭分を高効率で回収する
ことができ、脱灰プロセス全体としても炭分が高
効率で、しかも残灰分の少ない状態で回収できる
という特長をもつている。 本発明による脱灰プロセスは、従来の脱灰プロ
セスに比較して広い範囲の炭種について、炭分が
高効率で残灰分の少ない状態で回収できる。又、
テール炭分回収装置4として油添造粒装置を採用
するのに比較してテール炭分を回収するのに、本
発明では凝集工程で留めるのに対し、油添造粒装
置ではスクリーン等で分別できる粒径(数mm程
度)まで造粒を行う必要がある。従つて、本発明
の方法は、従来の脱灰プロセスに比較して、下記
の特長を有する。 (1) 油添率を低減させることができる。 (2) テール炭分回収処理時間が大巾に短縮できる
(凝集時間のみで、造粒時間の省略を行うこと
ができる)。 (3) 省エネルギ化(撹拌動力の低減)を計ること
ができる。 (4) 脱灰率の向上(造粒工程時における灰分の巻
込み防止)を計ることができる。 このようにして回収された重油、軽油、灯油等
の如きバインダ27を含んだ炭分(フロツク)1
8は、浮選機1より送られてくる灰の少い石炭
(精炭)11とともに脱水機2に送られて水分約
20%まで脱水され、スラリ調整槽3で界面活性剤
の水溶液26とともに撹拌調整され、石炭高濃度
水スラリー15の最終石炭濃度に調整される。 かくして、本発明の方法によれば、石炭高濃度
水スラリの脱灰プロセスで炭分回収率の高い、巾
広い炭種への適用が実現される。
[Table] As can be seen from the operational data example in Table 1, by introducing the coal (tail) 12 with a high ash content from the flotation machine 1 into the tail coal recovery device, the coal (tail) 12 with a high ash content can be removed. The coal content can be recovered with high efficiency, and the deashing process as a whole has the feature that the coal content can be recovered with high efficiency and with little residual ash content. The deashing process according to the present invention can recover a wide range of coal types with high efficiency and low residual ash content compared to conventional deashing processes. or,
Compared to adopting an oil-added granulation device as the tail coal recovery device 4, in the present invention, the tail coal is collected in an agglomeration step, whereas in the oil-added granulation device, it is separated using a screen, etc. It is necessary to carry out granulation to the desired particle size (about several mm). Therefore, the method of the present invention has the following advantages compared to conventional demineralization processes. (1) The oil addition rate can be reduced. (2) The tail coal recovery processing time can be significantly shortened (the granulation time can be omitted by changing only the agglomeration time). (3) Energy saving (reduction of stirring power) can be achieved. (4) It is possible to improve the deashing rate (preventing ash inclusion during the granulation process). Coal (floe) 1 containing a binder 27 such as heavy oil, light oil, kerosene, etc. recovered in this way
Coal 8 is sent to a dehydrator 2 together with the coal (clean coal) 11 with less ash sent from the flotation machine 1 to reduce the moisture content.
It is dehydrated to 20%, stirred and adjusted together with an aqueous surfactant solution 26 in a slurry adjustment tank 3, and adjusted to a final coal concentration of a high coal concentration water slurry 15. Thus, the method of the present invention can be applied to a wide range of coal types with a high coal recovery rate in the deashing process of highly concentrated coal water slurry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の脱灰プロセスが組み込まれた
石炭高濃度水スラリ製造プロセスのフローシート
を示し、第2図は、第1図に示す従来方式の脱灰
プロセスのみを図示したものである。第3図は、
本発明の脱灰プロセスを示したものであり、第4
図は、石炭中の精灰への炭分回収率と脱灰率の関
係を示す。第5図は、本発明に使用されるテール
炭分回収装置の一例を示す。
Figure 1 shows a flow sheet of a coal-concentrated water slurry production process that incorporates a conventional deashing process, and Figure 2 shows only the conventional deashing process shown in Figure 1. . Figure 3 shows
This shows the demineralization process of the present invention, and the fourth
The figure shows the relationship between the recovery rate of coal to refined ash and the deashing rate. FIG. 5 shows an example of a tail coal recovery device used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭高濃度水スラリの脱灰するに際して、粒
度200メツシユ以下70〜95%の如き微粒石炭を浮
選機にて先づ脱灰し、浮選機のテール炭を重油、
軽油、灯油などのバインダーを混合し、フロツク
化されたテール炭を含むスラリーを浮選にかけて
炭分を回収し、浮選機で浮選された灰分の少ない
石炭と混合した後、脱水することを特徴とする、
石炭高濃度水スラリの脱灰方法。
1. When deashing a highly concentrated coal water slurry, fine coal with a particle size of 70 to 95% below 200 mesh is first deashed in a flotation machine, and the tail coal of the flotation machine is mixed with heavy oil,
A slurry containing binders such as light oil and kerosene is mixed, and the slurry containing flocculated tail coal is flotated to recover the coal content. After mixing with low ash coal flotated in a flotation machine, it is dehydrated. Characterized by
Deashing method for highly concentrated coal water slurry.
JP5726684A 1984-03-27 1984-03-27 Deashing of concentrated aqueous slurry of coal Granted JPS60202193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5726684A JPS60202193A (en) 1984-03-27 1984-03-27 Deashing of concentrated aqueous slurry of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5726684A JPS60202193A (en) 1984-03-27 1984-03-27 Deashing of concentrated aqueous slurry of coal

Publications (2)

Publication Number Publication Date
JPS60202193A JPS60202193A (en) 1985-10-12
JPH0469199B2 true JPH0469199B2 (en) 1992-11-05

Family

ID=13050723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5726684A Granted JPS60202193A (en) 1984-03-27 1984-03-27 Deashing of concentrated aqueous slurry of coal

Country Status (1)

Country Link
JP (1) JPS60202193A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743646B1 (en) 2006-04-25 2007-07-27 김정치 Apparatus for processing liquid fuel mixed by coal, oil and water, method of processing mixed liquid fuel and mixed liquid fuel thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162787A (en) * 1981-03-31 1982-10-06 Nippon Kokan Kk <Nkk> Preparation of coal dispesion with low moisture content
JPS5880388A (en) * 1981-11-09 1983-05-14 Electric Power Dev Co Ltd Production of highly concentrated pulverized coal slurry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162787A (en) * 1981-03-31 1982-10-06 Nippon Kokan Kk <Nkk> Preparation of coal dispesion with low moisture content
JPS5880388A (en) * 1981-11-09 1983-05-14 Electric Power Dev Co Ltd Production of highly concentrated pulverized coal slurry

Also Published As

Publication number Publication date
JPS60202193A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
JPH0260714B2 (en)
CN106047426A (en) Method for preparing low-ash and low-sulfur coal-water slurry by using coal slurry
CN107303539A (en) A kind of floatation process of coal gasification fine slag
CN107344141B (en) Process for extracting clean coal from coal slime
US4593859A (en) Preparation of deashed high solid concentration coal-water slurry
DE3537485A1 (en) METHOD FOR ASHING COAL
CA1146893A (en) Process for removal of sulfur and ash from coal
JPH0469199B2 (en)
CA1185792A (en) Dispersion fuel and a method for its manufacture
JPH0367117B2 (en)
JPS59193992A (en) Preparation of de-ashed highly concentrated coal-water slurry
JP2573136B2 (en) Method for producing deashed high concentration coal water slurry
JPH0328475B2 (en)
JPS58191793A (en) Deashing method of coal
JPS62225591A (en) Production of deashed and fine powdered coal slurry in high concentration
JPS60212484A (en) Pretreatment of coal for liquefaction
JPS60212490A (en) Deashing of concentrated aqueous slurry of coal
JPH0412755B2 (en)
JPH0352788B2 (en)
JPS60212483A (en) Pretreatment of coal for liquefaction
CN117797953A (en) Full-flotation lithium separation process method based on combination of petalite and various collectors
JPS62187793A (en) Production of highly concentrated deashed coal slurry
RU2130339C1 (en) Coal processing method
JPS59157185A (en) Preparation of coal-water slurry
JPS62187794A (en) Method of deashing coal