JPS60212490A - Deashing of concentrated aqueous slurry of coal - Google Patents

Deashing of concentrated aqueous slurry of coal

Info

Publication number
JPS60212490A
JPS60212490A JP6923684A JP6923684A JPS60212490A JP S60212490 A JPS60212490 A JP S60212490A JP 6923684 A JP6923684 A JP 6923684A JP 6923684 A JP6923684 A JP 6923684A JP S60212490 A JPS60212490 A JP S60212490A
Authority
JP
Japan
Prior art keywords
coal
ash content
deashing
tail
flotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6923684A
Other languages
Japanese (ja)
Inventor
Akira Osawa
大澤 旭
Yoshiomi Hibino
日比野 吉臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6923684A priority Critical patent/JPS60212490A/en
Publication of JPS60212490A publication Critical patent/JPS60212490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To effect the deashing of coal in high ash removal and high recovery, by crushing a concentrated aqueous slurry of coal with a wet-pulverizer, recovering the coal having low ash content by flotation, collecting the coal having high ash content from the tail of the flotation apparatus, and recovering the coal from the collected coal by a classifier in the form of flock. CONSTITUTION:A concentrated aqueous slurry of coal composed of 60-85wt% coal, 0.01-5.0wt% surfactant (based on the coal) and remaining part of water, is deashed by the following procedures. The powdery coal 4 prepared by the wetpulverization with a wet-pulverizer is diluted with water 5 in the concentration adjusting tank 41, added with the collecting agent 11 and frothing agent 12 in the conditioning tank 42, sent to the flotation apparatus 43 after agitation, and separated into the coal 13 having low ash content (refined coal) and the coal 14 having high ash content (tail). The tail 14 in the flotation appratus 43 is mixed with a binder 15 such as heavy oil, etc. in the mixer 44. Only the carbon component in the tail 14 having high ash content is coagulated in the form of flock in the coagulation tank 45, and is recovered in the form of flock by a classifier 46 capable of classifying at a particle diameter of 200 mesh.

Description

【発明の詳細な説明】 本発明は、石炭高濃度水スラリーの脱灰方法に関する。[Detailed description of the invention] The present invention relates to a method for deashing a highly concentrated coal water slurry.

より詳しくは、脱灰プロセスが組込1れた石炭高濃度水
スラリー製造に当シ、炭分回収率が高く、シかも高説灰
率で、かつ石炭の種類に対して適応性の高い脱灰方法に
関する。
More specifically, we use a deashing process that incorporates a deashing process to produce high-concentration coal water slurry, which has a high coal recovery rate, a high ash rate, and is highly adaptable to the type of coal. Regarding the method.

石炭高濃度水スラリーとは、石炭60へ85itチ、界
面活性剤α01〜5.0重量%(対石炭)、水分残りの
重量%で構成される石炭−水スラリー燃料である。石炭
濃度、界面活性剤添〃口率は、炭種等によって異なって
くる。石炭には灰分が含まれているが、石炭高磯に水ス
ラリー’にボイラで燃焼させる際、灰分があるとボイラ
効率の低下が発生するため、できるだけ灰分を燃焼前に
除去しておくことが好ましい。又、石炭中の残灰分を各
炭種毎に値を揃えることは、炭種による発熱量、燃焼効
率のばらつきを最小にできるという効果がある。この工
うな背景のもとに、従来の脱灰プロセスが組込まれた石
炭高1!に度水スラリー製造方法を図面に従って説明す
る。
The high-concentration coal water slurry is a coal-water slurry fuel composed of 60 to 85 liters of coal, 01 to 5.0% by weight of a surfactant (based on coal), and the remaining weight of water. Coal concentration and surfactant addition ratio vary depending on the type of coal, etc. Coal contains ash, but when combusting coal in a water slurry in a boiler, the presence of ash will reduce boiler efficiency, so it is best to remove as much ash as possible before combustion. preferable. Further, by making the residual ash content in coal the same for each type of coal, it is possible to minimize variations in calorific value and combustion efficiency depending on the type of coal. Based on this unconventional background, Coal High 1, which incorporates the conventional deashing process! The method for producing water slurry will be explained according to the drawings.

第1図は、脱灰プロセスが組込まれた石炭高濃度水スラ
リー製造10セスを示すフローシートでおり、第2図は
、該脱灰プロセスの詳細?示すフローシートである。
Figure 1 is a flow sheet showing 10 processes for producing highly concentrated coal water slurry incorporating a deashing process, and Figure 2 shows details of the deashing process. This is a flow sheet showing.

第1図において、原炭受入伶21に貯積されている原炭
1は、定量払出機22により破砕機23に供給される。
In FIG. 1, raw coal 1 stored in a raw coal receiving container 21 is supplied to a crusher 23 by a quantitative dispenser 22.

原炭1は、破砕機25で純炭2に破砕され、純炭受入槽
24へ送られ、ここで貯槽される。純炭受入槽241C
fg槽された純炭2は、定量供給装置25により湿式微
粉砕機26に水6とともに定量供給され、ここで石炭濃
度が所定の石炭濃度(10〜60重量%)に調整され、
所定粒度(粒径200メツシュパス70〜95重31%
)の微粉炭4に湿式微粉砕される。微粉炭4は、石炭−
水スラリー状態となり、原炭スラリー受入槽27に受入
れられ、ポンプ28によジ脱灰装置29に送られる。該
脱灰装置29の詳#Iは第2図に示す通ジであp、該脱
灰装置へ送られた微粉炭4は、第2図に示すように、濃
度調整槽41で脱水機(第1図中の51)にニジ分離さ
れfCC50より、再度所定の石炭濃度(5〜20重i
i%)に濃度調整され、条件僧42で捕収剤11と起泡
剤12が添加され、攪拌混合された後、浮選機45に送
られ、灰分の少ない石炭(情炎)6と灰分の多い石炭(
テール)7に浮選分離されて、微粉炭4中から灰分り多
い石炭(テール)7が除去(脱灰)される。灰分の多い
石炭(テール)7は、そのまま廃水処理設備30へ送ら
れ、廃棄される。
Raw coal 1 is crushed into pure coal 2 by a crusher 25, sent to a pure coal receiving tank 24, and stored there. Pure coal receiving tank 241C
The pure coal 2 subjected to the fg tank is quantitatively supplied together with water 6 to a wet pulverizer 26 by a quantitative supply device 25, where the coal concentration is adjusted to a predetermined coal concentration (10 to 60% by weight),
Specified particle size (particle size 200 mesh pass 70-95 weight 31%
) is wet pulverized into pulverized coal 4. Pulverized coal 4 is coal-
The water becomes a slurry, is received in a raw coal slurry receiving tank 27, and is sent to a deashing device 29 by a pump 28. Details #I of the deashing device 29 are shown in FIG. 51) in Figure 1, and from fCC50, the predetermined coal concentration (5 to 20
The concentration is adjusted to 1%), the collecting agent 11 and the foaming agent 12 are added in the conditioner 42, and after being stirred and mixed, it is sent to the flotation machine 45, and the coal with a low ash content (Jingen) 6 and the ash content are Coal with a lot of
The coal (tail) 7 with a high ash content is removed (deashed) from the pulverized coal 4 by flotation. The coal (tail) 7 with a high ash content is directly sent to the wastewater treatment facility 30 and disposed of.

一方、灰分の少ない石炭(情炎)6は、第1図に示す脱
水機51により所定の石炭濃度(65〜90重量%)ま
で脱水され、脱水機31により分離された水5は、上記
の濃度調整槽41での微粉炭4の濃度調整用等に再利用
される。所定の石炭濃度(65〜90重11%)まで脱
水されたケーキ状の灰分の少ない石炭(情炎)14は、
高濃度スラリー調整槽32で界面活性剤8が添加、攪拌
混合され、石炭高濃度水スラリー9の最終石炭濃度(6
0〜85重童チンに濃度調整される。
On the other hand, coal with a low ash content (Jin'en) 6 is dehydrated to a predetermined coal concentration (65 to 90% by weight) by a dehydrator 51 shown in FIG. 1, and the water 5 separated by the dehydrator 31 is It is reused for adjusting the concentration of pulverized coal 4 in the concentration adjustment tank 41. The cake-like coal with low ash content (Jingen) 14 that has been dehydrated to a predetermined coal concentration (65 to 90% by weight and 11%) is
The surfactant 8 is added and stirred in the high concentration slurry adjustment tank 32, and the final coal concentration (6
The concentration is adjusted to between 0 and 85 densities.

以上が従来の脱灰プロセスが組込まれた石炭高濃度水ス
ラリー製造方法である。しかるに、上記従来の方法は、
炭種により灰分り少ない石炭(情炎)6と灰分の多い石
炭(テール)7に分かれる比率が大きく変動する。すな
わち、灰分の少ない石炭(情炎)6への石炭中の炭分回
収率と脱灰率の関係は、第4図に示す如き傾向にあり、
炭種によってかなり異なる。例えば、炭種に工っては脱
灰率全高くすると、炭分回収率が低くなり、灰分の多い
石炭(テール)Z中への炭分ロスが大となる。又、炭分
回収率?高くすると、脱灰率が低くなジ、脱灰の効果は
薄くなる。特定の炭種に限定して石炭高濃度水スラリー
e脱灰製造することは、日本の如き輸入炭の比率が高い
国では大問題である。従って、種々の炭種に対して、炭
分回収率が高く、しかも脱灰率が高く、適応性の高い脱
灰方法の実現が望まれている。
The above is a method for producing highly concentrated coal water slurry incorporating a conventional deashing process. However, the above conventional method
Depending on the type of coal, the ratio of coal with a low ash content (Jin'en) 6 and coal with a high ash content (Tail) 7 varies greatly. In other words, the relationship between the coal recovery rate and the deashing rate for coal with a low ash content (Jin'en) 6 tends to be as shown in Figure 4.
It varies considerably depending on the type of coal. For example, if the total deashing rate is increased by changing the type of coal, the coal recovery rate will be lowered and the loss of coal content into the coal (tail) Z with a high ash content will be large. Also, what about the coal recovery rate? If it is increased, the demineralization rate will be low and the demineralization effect will be weakened. Producing highly concentrated coal water slurry e-deashing limited to a specific type of coal is a big problem in a country like Japan where the ratio of imported coal is high. Therefore, it is desired to realize a deashing method that has a high coal recovery rate, a high deashing rate, and is highly adaptable to various types of coal.

そこで、本発明者等は、上記従来の脱灰方法の欠点?解
消し、種々の炭種に対して、炭分回収率が高く、しかも
高説入車で、かつ適応性の高い脱灰方法の開発につき鋭
意研究の結果、本発明全完成した。
Therefore, the present inventors investigated the drawbacks of the above conventional deashing method. As a result of intensive research into the development of a deashing method that has a high coal recovery rate for various types of coal, requires high input, and is highly adaptable, the present invention has been completed.

本発明は、石炭60〜85重量%、界面活性剤001〜
5.9重量%(対石灰ン、水分残りの重量%で構成され
る石炭高濃度水スラリーの脱灰方法において、湿式微粉
砕機にて湿式粉砕された微粉炭を先ず浮選法によって高
効率で脱灰して灰分の少ない石炭を回収し、次に浮選機
のテールより発生する灰分の多い石炭中から炭分を、粒
径200メツシユでの分級可能な分級機の適用により、
)四ツク状で回収することを特徴とする、高濃度水スラ
リー用脱灰方法に関する。
The present invention uses coal 60 to 85% by weight, surfactant 001 to
In the deashing method for highly concentrated water slurry of coal, which is composed of 5.9% by weight (based on lime and the remaining water content), pulverized coal wet-pulverized in a wet pulverizer is first processed with high efficiency by flotation. By deashing and recovering coal with a low ash content, and then extracting the coal from the coal with a high ash content generated from the tail of the flotation machine, by applying a classifier that can classify the coal with a particle size of 200 mesh,
) Relating to a deashing method for highly concentrated water slurry, which is characterized in that it is collected in the form of four blocks.

第5図は、本発明による脱灰プロセスの一実施態様例を
示すフローシートであり、ここでは前記第1図の石炭高
濃度水スラリー製造プロセス中の脱灰プロセス29に本
発明による脱灰方法を適用した場合を示している。
FIG. 5 is a flow sheet showing an embodiment of the deashing process according to the present invention, and here, the deashing process 29 in the coal high concentration water slurry production process of FIG. This shows the case where .

第1図と同様の工程を経て第1図中の脱灰装置29へ送
られた微粉炭4は、第3図において、濃度調整槽41で
第1図中の脱水機31により分離された水5により、再
度所定の石炭濃度(5%20重量%ンに濃度pI整され
、条件偕42で捕収剤11と起泡剤12が添加され、攪
拌混合された後、浮選機45に送られ、灰分の少ない石
炭(鞘炭)15と灰分の多い石炭(テール)14に浮選
分離されて、微粉炭4中から灰分の多い石炭(テール)
14が除去(脱灰Jされる。灰分の多い石炭(テール2
14は、混合機44において重油、軽油、灯油等の如き
バインダー15が分散・混合され、更に凝集槽45にお
いて、分散・混合された重油、軽油、重油等の如きバイ
ンダー15に工p1灰分り多い石炭(テール)14中の
炭分のみがフロックを形成する(但し、フロック粒径は
前述した微粉炭4の粒径が200メツシユ以下という点
から200メツシユ(74μm)以上とする)。
In FIG. 3, the pulverized coal 4 sent to the deashing device 29 in FIG. 1 through the same process as in FIG. 5, the concentration pI is adjusted again to a predetermined coal concentration (5% 20% by weight), and the collecting agent 11 and the foaming agent 12 are added under conditions 42, and after stirring and mixing, the coal is sent to the flotation machine 45. The pulverized coal 4 is separated by flotation into coal with a low ash content (sheath coal) 15 and coal with a high ash content (tail) 14, and the coal with a high ash content (tail) is extracted from the pulverized coal 4.
14 is removed (deashed). Coal with high ash content (tail 2
14, a binder 15 such as heavy oil, light oil, kerosene, etc. is dispersed and mixed in a mixer 44, and further in a flocculation tank 45, a binder 15 such as heavy oil, light oil, heavy oil, etc. that has been dispersed and mixed has a high ash content. Only the coal content in the coal (tail) 14 forms flocs (however, the particle size of the flocs is set to 200 mesh (74 μm) or more since the particle size of the pulverized coal 4 mentioned above is 200 mesh or less).

このとき、灰分り多い石炭(テールン14中の灰分は、
そのまま単体粒子の状態で水中に懸濁している。このよ
うな状態のスラリー16を、粒径200メツシユにて分
級可能な分級機46にかけると、重油、軽油、灯油等の
如きバインダー15會含んだ上記炭分(フロック)17
と、水中に懸濁している灰分7に分離されて、灰分り多
い石炭(テール)14中から炭分(フロック)17が回
収される。粒径200メツシユにて分級可能な分級機4
6の1例を第5図に示す。
At this time, coal with a high ash content (the ash content in Tailn 14 is
It remains suspended in water as a single particle. When the slurry 16 in such a state is passed through a classifier 46 capable of classifying particles with a particle size of 200 mesh, the above-mentioned coal (floc) 17 containing binder 15 such as heavy oil, light oil, kerosene, etc.
Then, it is separated into ash 7 suspended in water, and coal (floc) 17 is recovered from coal (tail) 14 with a high ash content. Classifier 4 capable of classifying particles with a particle size of 200 mesh
An example of 6 is shown in FIG.

第5図において、分R機46は、中心軸51にそれぞれ
独立してアーム52を介して取付けられた平鍋状のパン
55よジ構成される。該パン56は、内側に篩54が貼
付けられ、中心軸510円周方向に回転すると共に、ア
ーム52によって該パン55自体も逆転可能となってい
る。
In FIG. 5, the minute R machine 46 includes pan-shaped pans 55 each independently attached to a central shaft 51 via arms 52. A sieve 54 is attached to the inside of the pan 56, and the pan 55 can be rotated in the circumferential direction of a central shaft 510, and the pan 55 itself can be reversed by the arm 52.

このような構成の分級機46に供給されたスラリー16
は、先ず脱水工程(A)において、平鍋状のパン55上
に導入され、水中に懸濁している灰分7の大部分が篩5
4を通過し、一部が篩54上の炭分(フロック)17に
付着する。
Slurry 16 supplied to the classifier 46 having such a configuration
In the dehydration step (A), the water is first introduced onto a flat pan 55, and most of the ash 7 suspended in the water passes through the sieve 5.
4 and a part of it adheres to the charcoal (floc) 17 on the sieve 54.

次の洗浄工程(B)において、炭分(フロック)17に
付着した一部の灰分7は、水噴霧55によジ洗い流され
、1154i通過して、上記の脱水工程(A)にて分離
された灰分7とともに下部へ排出される。更に、炭分回
収工程(0)において、#54土にある炭分(フロラク
ン17は、アーム521Cよる平鍋状のパン53の逆転
ならびに水[gs6によって洗い流されることにより、
篩54土から回収される。最後に、復帰工程(D) に
おいて、平鍋状のパン56は、再度アーム52によって
逆転され、元の位置にもどって再び次の脱水工程(ん)
に入る。このように、XF−絹状のパン53は、中心軸
510回転によって、順次次の工程へ移動し、(A)→
(B)→(0)→(D)の工程が繰返される。
In the next washing step (B), some of the ash 7 adhering to the coal (floc) 17 is washed away by water spray 55, passes through 1154i, and is separated in the dehydration step (A). It is discharged to the bottom together with the ash content 7. Furthermore, in the coal recovery step (0), the coal (floracne 17) in the #54 soil is washed away by the reversal of the pan 53 by the arm 521C and by water [gs6].
Sieve 54 is recovered from the soil. Finally, in the return step (D), the pan-shaped pan 56 is reversed again by the arm 52, returns to its original position, and is again used for the next dehydration step (N).
to go into. In this way, the XF-silk bread 53 is sequentially moved to the next process by the rotation of the central axis 510, (A)→
The steps (B)→(0)→(D) are repeated.

上記のような本発明に係る分級機によれば、前述した一
般の石炭高濃度水スラリー製造法における湿式微粉砕機
(第1図中の26)での粉砕粒径200メツシユに応じ
た粒径での分級が可能であり、従来のスクリーン等の分
級機により灰分の多い石炭から炭分全回収分離する際に
必要であった重油、軽油、灯油等のバインダーによる0
、5醜以上、好ましくは1.0 =以上のベレット状へ
の造粒操作を不要とすることができる。
According to the classifier according to the present invention as described above, the particle size corresponds to the pulverized particle size of 200 mesh in the wet pulverizer (26 in Fig. 1) in the general coal high concentration water slurry production method described above. It is possible to classify heavy oil, light oil, kerosene, etc. with a binder, which was necessary when recovering and separating the entire coal content from coal with a high ash content using a conventional classifier such as a screen.
, 5 = or more, preferably 1.0 = or more, it is possible to eliminate the need for granulation into a pellet shape.

なお、本発明において、分級機としては、上記以外のも
のとして、200メツシユの篩目を有するスクリーン分
R機であって、振動篩、遠心分離機といった動的分級機
も使用できるが、フロックの強度が弱いため、上記し友
第5図の静的篩分数機(すなわち、フロック自体に分級
のために必要な大きな力を加えることなく、分級全可能
とするものλが好ましい。
In addition, in the present invention, as a classifier other than the above, a screen R machine having a sieve mesh of 200 meshes, a dynamic classifier such as a vibrating sieve or a centrifugal separator can also be used. Since the strength is weak, the static sieve fractionator λ shown in Figure 5 (that is, the one that allows complete classification without applying a large force necessary for classification to the flocs itself) is preferred.

このような脱灰プロセスでの運転データ例を表1、表2
の運転データかられかるように、本発明では、浮選機4
5よジ分離された灰分の多い石炭(テール)14中から
、炭分(フロック)17全高効率で、しかも残灰分の少
ない状態で回収でき、又、脱灰方法全体として炭分回収
率が高く、しかも高脱灰率で脱灰できるという効果を奏
し得る。
Examples of operational data for such a deashing process are shown in Tables 1 and 2.
As can be seen from the operation data of the present invention, the flotation machine 4
5. The coal (floc) 17 can be recovered from the separated coal (tail) 14 with a high ash content with high overall efficiency and with a small amount of residual ash, and the deashing method as a whole has a high coal recovery rate. Moreover, it is possible to perform decalcification at a high demineralization rate.

このように、本発明による脱灰方法は、従来の脱灰技術
に比較し、広い炭種について炭分が高効率で残灰分の少
ない状態で回収でき、又、浮選法とテール油添造粒法の
組合せ脱灰方法に比較しても、下記のような効果をもた
らす。
As described above, the deashing method according to the present invention can recover a wide range of coal types with high efficiency and low residual ash content compared to conventional deashing techniques. Even compared to the combination demineralization method using the grain method, it brings about the following effects.

(1) バインダー添加率の低減。(1) Reduction of binder addition rate.

(2) テール回収炭分処理時間の大巾な短縮。(2) Significant reduction in tail recovery coal processing time.

(凝集時間のみで、造粒時間の省略。)(3) 省エネ
ルギ化(造粒攪拌動力の削減)。
(Only the agglomeration time, omitting the granulation time.) (3) Energy saving (reduction of granulation stirring power).

(4) 脱灰率の向上(炭分造粒時の灰分の巻込防止 
ン 。
(4) Improvement of deashing rate (prevention of ash entrainment during coal granulation)
hmm .

このようにりて回収された重油、軽油、灯油等の如きバ
インダー15を含んだ炭分(フロック)17は、第5図
において、浮選機45ニジ送られてくる灰分の少ない石
炭(精成)15とともに第1図の脱水機31に送られる
。−力、分級機46の下方に排出された水中に懸濁して
いる灰分7は、一旦、灰分受槽47に受入れられた後、
ポンプ48にエフそのまま廃水処理設備50へ送られ、
廃棄される。第1図の脱水機31へ送られた精成6は、
所定の石炭濃度(65〜95重量%)まで脱水され、第
1図に示すように高濃度スラリー調整槽52で界面活性
剤8が添加・攪拌混合され、石炭高濃度水スラリー9の
最終石炭濃度(60〜85重量%)に濃度調整される。
The coal (floc) 17 containing a binder 15 such as heavy oil, light oil, kerosene, etc. recovered in this way is shown in FIG. ) 15 is sent to the dehydrator 31 in FIG. - After the ash 7 suspended in the water discharged below the classifier 46 is once received in the ash receiving tank 47,
The F is directly sent to the wastewater treatment facility 50 by the pump 48,
Will be discarded. The refined 6 sent to the dehydrator 31 in Fig. 1 is
The coal is dehydrated to a predetermined coal concentration (65 to 95% by weight), and as shown in FIG. (60 to 85% by weight).

又、脱水機61に工υ分離された水5は、第5図に示す
ように濃度調整槽41での微粉炭4の濃度調整用等に再
利用される。
Further, the water 5 separated by the dehydrator 61 is reused for adjusting the concentration of the pulverized coal 4 in the concentration adjusting tank 41, as shown in FIG.

このようにして、石炭高濃度水スラリー全製造する脱灰
プロセスにおいて、本発明の炭分回収率の高い、高脱灰
率の脱灰プロセスの採用によって幅広い炭種へ6適用が
実現される。
In this way, in the deashing process for producing a highly concentrated coal water slurry, the present invention can be applied to a wide range of coal types by employing the deashing process with a high coal recovery rate and high deashing rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱灰プロセスが組込まれた石炭高濃度水スラ
リー製造プロセス金示すフローシートであり、第2図は
、従来の脱灰プロセスの詳細を示すフローシート、第3
図は、本発明の脱灰方法の一実施態様例金示すフローシ
ートである。第4図は、灰分の少ない石炭(精成)中へ
の炭分回収率と脱灰率の関係を示し、第5図は、本発明
方法に用いる分級機の1例全示す。 復代理人 内 1) 明 復代理人 萩 原 亮 − 第1図 第4園 月見 灰 率 (%〕
Figure 1 is a flow sheet showing the coal-rich water slurry manufacturing process incorporating a deashing process, Figure 2 is a flow sheet showing details of a conventional deashing process, and Figure 3 is a flow sheet showing details of a conventional deashing process.
The figure is a flow sheet showing an example of an embodiment of the deashing method of the present invention. FIG. 4 shows the relationship between the recovery rate of coal into coal with a low ash content (refined) and the deashing rate, and FIG. 5 shows an example of a classifier used in the method of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara - Figure 1, Figure 4 Sono Tsukimi Ash Rate (%)

Claims (1)

【特許請求の範囲】[Claims] 石炭60〜85重量%、界面活性剤[1L01〜5.0
重量%(対石灰)、水分残りの重量%で構成される石炭
高濃度水スラリーの脱灰方法において、湿式微粉砕機に
て湿式粉砕された微粉炭を先ず浮選法によって高効率で
脱灰して灰分の少ない石炭全回収し、次に浮選機のテー
ルより発生する灰分の多い石炭中から炭分を、粒径20
0メツシユでの分級可能な分級機の適用により、フロッ
ク状で回収することを特徴とする、高濃度水スラリー用
脱灰方法。
Coal 60-85% by weight, surfactant [1L01-5.0
In the deashing method for highly concentrated water slurry of coal, which is composed of % by weight (based on lime) and % by weight of water remaining, pulverized coal wet-pulverized in a wet pulverizer is first deashed with high efficiency by a flotation method. All of the coal with a low ash content is recovered, and then the coal content is extracted from the coal with a high ash content generated from the tail of the flotation machine.
A deashing method for highly concentrated water slurry, which is characterized in that it is recovered in the form of flocs by applying a classifier capable of classifying at 0 mesh.
JP6923684A 1984-04-09 1984-04-09 Deashing of concentrated aqueous slurry of coal Pending JPS60212490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6923684A JPS60212490A (en) 1984-04-09 1984-04-09 Deashing of concentrated aqueous slurry of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6923684A JPS60212490A (en) 1984-04-09 1984-04-09 Deashing of concentrated aqueous slurry of coal

Publications (1)

Publication Number Publication Date
JPS60212490A true JPS60212490A (en) 1985-10-24

Family

ID=13396904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6923684A Pending JPS60212490A (en) 1984-04-09 1984-04-09 Deashing of concentrated aqueous slurry of coal

Country Status (1)

Country Link
JP (1) JPS60212490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105277A (en) * 2012-11-27 2014-06-09 Kobe Steel Ltd Dusting suppression method for coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105277A (en) * 2012-11-27 2014-06-09 Kobe Steel Ltd Dusting suppression method for coal

Similar Documents

Publication Publication Date Title
US3665066A (en) Beneficiation of coals
JP2007054773A (en) Unburned carbon removal method in coal ash
JPH0260714B2 (en)
GB1575413A (en) Method for agglomeration of coal fines
CN107344141B (en) Process for extracting clean coal from coal slime
CA1119106A (en) Coal agglomeration by nonintensive mixing with hydrocarbons
GB2141135A (en) Preparation of deashed high solid concentration coal-water slurry
JPH0711268A (en) Production of deashed high-concentration coal-water slurry
JP7211318B2 (en) Desalination cleaning method and desalination cleaning apparatus for chlorine-containing ash
JPS60212490A (en) Deashing of concentrated aqueous slurry of coal
US3043426A (en) Black water clarification
HU199068B (en) Method for simultaneous gaining wheat starch and aleurone
US2781904A (en) Method of dewatering and dressing very fine-grained mineral substances
CN216024099U (en) Production device for preparing liquid environment-friendly alkali from carbide slag
JPH0367117B2 (en)
JPS60202193A (en) Deashing of concentrated aqueous slurry of coal
JPH0328476B2 (en)
JPH0328475B2 (en)
JPS59157185A (en) Preparation of coal-water slurry
JPS62187793A (en) Production of highly concentrated deashed coal slurry
JPS6157688A (en) Production of coal-water slurry
JPS61126198A (en) Process for preparing deashed high-concentration slurry
JPS606789A (en) Wet granulation of dust coal
CN113908619A (en) Production method and device for preparing liquid environment-friendly alkali from carbide slag
CN116727099A (en) Method and device for extracting quartz products from quartz type fluorite ore