JPH046884A - Laminated unimorph type piezoelectric element - Google Patents

Laminated unimorph type piezoelectric element

Info

Publication number
JPH046884A
JPH046884A JP2108193A JP10819390A JPH046884A JP H046884 A JPH046884 A JP H046884A JP 2108193 A JP2108193 A JP 2108193A JP 10819390 A JP10819390 A JP 10819390A JP H046884 A JPH046884 A JP H046884A
Authority
JP
Japan
Prior art keywords
plate
shaped piezoelectric
piezoelectric ceramic
polarization
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2108193A
Other languages
Japanese (ja)
Inventor
Hiroaki Saigo
宏明 西郷
Yoshihisa Ushida
善久 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2108193A priority Critical patent/JPH046884A/en
Publication of JPH046884A publication Critical patent/JPH046884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get a unimorph type piezoelectric element wherein both displacement and generated force are great by so constituting it as to laminate plural sheets of plate-shaped piezoelectric ceramics, which are polarized vertically to the surface direction, on one side of a substrate and apply an electric field in the same direction as the polarizing direction. CONSTITUTION:A first plate-shaped piezoelectric ceramic is laminated on one side of a substrate 1, and further a second plate-shaped piezoelectric ceramic 3 is laminated on the first plate-shaped piezoelectric ceramics 2. For the first and second plate-shaped piezoelectric ceramics 2 and 3, silver paste is printed on both sides each and is baked, and then polarization is applied vertically to the surface side. At the time of lamination, in the first plate-shaped piezoelectric ceramic 2, + side of the polarization is made the side of the substrate 1, and in the second plate-shaped piezoelectric ceramic 3, - side of the polarization is made the side of the first plate-shaped piezoelectric ceramic 2. And an electric field is applied in the same direction as the polarization of each plate-shaped piezoelectric ceramic 2 and 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層ユニモルフ型圧電素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a laminated unimorph piezoelectric element.

〔従来の技術〕[Conventional technology]

電気的エネルギーを機械的エネルギーに変換するPZT
などの圧電体を利用した屈曲変位型圧電素子として、従
東 バイモルフを圧電素子や、ユニモルフ型圧電素子が
知られている。
PZT converts electrical energy into mechanical energy
As a bending displacement type piezoelectric element using a piezoelectric material such as the Juto bimorph piezoelectric element and the unimorph type piezoelectric element, the unimorph type piezoelectric element is known.

バイモルフ型圧電素子鷹 例えは 第2図のようく 2
枚の矩形状の圧電体10.11を分極方向が同方向とな
るようをミ 金属板などによって形成された弾性基板1
2の両面に張り合わせ、基板12を境に互いに反対方向
の電界を印加することで、一方の圧電体10を分極方向
と垂直に収縮させ、他方の圧電体11を分極方向と垂直
に伸張させ、その結果、屈曲変位するようになっている
Bimorph type piezoelectric element hawk For example, as shown in Figure 2 2
Elastic substrate 1 formed of a metal plate or the like, so that the two rectangular piezoelectric bodies 10 and 11 are polarized in the same direction.
By applying electric fields in opposite directions with the substrate 12 as a boundary, one piezoelectric body 10 is contracted perpendicular to the polarization direction, and the other piezoelectric body 11 is expanded perpendicular to the polarization direction. As a result, it is bent and displaced.

一方、ユニモルフ型圧電素子頃 第3図のように基板1
5の片面にのべ 分極された圧電体16を張り合わせた
構造で、分極方向と同一方向の電界を印加して圧電体1
6を分極方向と垂直に収縮させ、その結策 屈曲変位す
るようになっている。
On the other hand, around the unimorph type piezoelectric element, as shown in Figure 3, the substrate 1
It has a structure in which a polarized piezoelectric material 16 is pasted on one side of the piezoelectric material 16, and an electric field in the same direction as the polarization direction is applied to the piezoelectric material 16.
6 is contracted perpendicular to the polarization direction, resulting in bending displacement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし バイモルフ型でミ 一方の圧電体にはその分極
方向と同一方向に電界が印加されるが、他方の圧電体に
はその分極方向と逆方向の電界が印加されるため、この
逆向きの印加電界が圧電体の抗電界に近くなると分極反
転が起こり、変位量や発生力が著しく低下するという問
題があり、また、逆方向に電界をかけているので、長期
に使用していると分極が弱まってしまう。
However, in the bimorph type, an electric field is applied to one piezoelectric body in the same direction as its polarization direction, but an electric field is applied to the other piezoelectric body in the opposite direction to its polarization direction. When the electric field approaches the coercive electric field of the piezoelectric material, polarization reversal occurs, resulting in a significant decrease in the amount of displacement and generated force.Also, since the electric field is applied in the opposite direction, the polarization may change over a long period of time. It weakens.

この点、分極方向と逆方向の電界を印加することがなく
、分極反転のないユニモルフ型が有利であるが、ユニモ
ルフ型は分極と同一方向のみに電界を印加し 圧電体を
収縮させるだけであるから、圧電体の収縮と伸張を組み
合わせたバイモルフ型に比較L−変位量が少ない。
In this respect, the unimorph type is advantageous because it does not apply an electric field in the opposite direction to the polarization direction, and there is no polarization reversal, but the unimorph type only applies an electric field in the same direction as the polarization, causing the piezoelectric material to contract. Therefore, the amount of L-displacement is small compared to the bimorph type, which combines contraction and expansion of the piezoelectric material.

本発明はこのような背景の下になされたもので、ユニモ
ルフ型の利点を活かし、その欠点を改良して、変位量も
発生力も大きいユニモルフ型圧電素子を提供するもので
ある。
The present invention has been made against this background, and aims to provide a unimorph piezoelectric element that takes advantage of the advantages of the unimorph type, improves its drawbacks, and has a large amount of displacement and large generated force.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、基板の片面に、面方向と垂直に分
極された板状圧電セラミックスを複数枚積層し 電界を
分極方向と同一方向に印加するよつ構成したユニモルフ
型の圧電素子である。
That is, the present invention is a unimorph type piezoelectric element constructed by stacking a plurality of plate-shaped piezoelectric ceramics polarized perpendicularly to the surface direction on one side of a substrate, and applying an electric field in the same direction as the polarization direction.

ここで、基板は可撓性、もしく頃 弾性を有することが
必要であり、また、電界が印加されたときの状態で、圧
電的に不活性、即ち、伸縮あるは伸張しないことが望ま
しい。基板自体を電極とする場合には基板は金属である
必要がある25ζ、圧電セラミックスと基板との間に薄
膜状電極を形成する場合には金属でなく、セラミックス
 合成樹脂などでもよい。基板の厚さは、好ましくは1
0μm〜1mm、  特に好ましくは30μm〜200
μmがよい。
Here, the substrate needs to be flexible or elastic, and is preferably piezoelectrically inactive, that is, does not expand or contract when an electric field is applied. When the substrate itself is used as an electrode, the substrate must be made of metal (25ζ); when a thin film electrode is formed between the piezoelectric ceramic and the substrate, it may be made of ceramics, synthetic resin, etc. instead of metal. The thickness of the substrate is preferably 1
0 μm to 1 mm, particularly preferably 30 μm to 200
μm is good.

次に、板状圧電セラミックスは、PZTに代表されるが
、これに限定されるものではない。この板状圧電セラミ
ックスは、その面方向に対して垂直すなわち厚さ方向に
分極されている。
Next, plate-shaped piezoelectric ceramics are typified by PZT, but are not limited to this. This plate-shaped piezoelectric ceramic is polarized perpendicularly to its surface direction, that is, in its thickness direction.

圧電セラミックスの1枚あたりの厚さは、好ましくは1
0μm〜1mm、  特に好ましくは30μm〜200
μmがよい。
The thickness of each piezoelectric ceramic is preferably 1
0 μm to 1 mm, particularly preferably 30 μm to 200
μm is good.

板状圧電セラミックスの積層にあたっては、基板側から
奇数番目と偶数番目とでそれぞれ分極方向が逆となるよ
うに積層するのが、以下の理由で好適である。
When stacking plate-shaped piezoelectric ceramics, it is preferable to stack the plates so that the odd-numbered and even-numbered plates from the substrate side have opposite polarization directions for the following reasons.

すなわち、積層にあたっては、各層間にt極を介挿して
、この電極を介して板状圧電セラミックスに電界を印加
する力τ、奇数番目と偶数番目とで分極方向が同一であ
ると、奇数番目に取り付けられる正極と、偶数番目に取
り付けられる負極とが板状圧電セラミックス間で、隣接
することとなり、両者間に絶縁層を設けなければならな
い。これに対し奇数番目と偶数番目とでそれぞれ分極方
向が逆となるように積層すると板状圧電セラミックス間
に一つの電極を設けるだけで、その電極を隣接する板状
圧電セラミックス双方用の負極あるいは正極として共用
できるというメリットがあり、回路が簡略化できる。
In other words, when laminating, a t-pole is inserted between each layer, and the force τ that applies an electric field to the piezoelectric ceramic plate through this electrode is the same when the polarization direction is the same between the odd and even layers. The positive electrode attached to the even-numbered electrode and the negative electrode attached to the even-numbered plate are adjacent to each other between the plate-shaped piezoelectric ceramics, and an insulating layer must be provided between them. On the other hand, if the odd-numbered and even-numbered piezoelectric ceramics are stacked so that the polarization direction is opposite, only one electrode is provided between the piezoelectric ceramic plates, and that electrode can be used as a negative electrode or a positive electrode for both adjacent piezoelectric ceramic plates. It has the advantage that it can be shared as a single device, and the circuit can be simplified.

このような電極は、焼結した板状圧電セラミックスの両
面に金属ペーストを印刷塗布したのち焼付ける方法、る
いはスパッタリングなどのPVD法による圧電セラミッ
クス面への金属蒸着などによる方法で形成される。また
、焼結前の圧電セラミックスのグリーンシートの片面に
金属ペーストを印刷塗布したものを3枚以上槽層したの
ち、圧電セラミックスの焼結と同時に電極を焼付けて形
成させることもできる。この場合、外側の2枚の圧電セ
ラミックスのうちの1枚1戴 外表面に電極が形成され
ず、圧電的に不活性なため、基板として作用させること
ができる。
Such electrodes are formed by printing and applying a metal paste on both sides of a sintered plate-shaped piezoelectric ceramic and then baking it, or by depositing metal on the piezoelectric ceramic surface using a PVD method such as sputtering. Alternatively, the electrodes can be formed by layering three or more green sheets of piezoelectric ceramics with a metal paste printed on one side before sintering, and then baking the electrodes at the same time as the piezoelectric ceramics are sintered. In this case, since no electrode is formed on the outer surface of one of the two outer piezoelectric ceramics and it is piezoelectrically inactive, it can act as a substrate.

なお、圧電セラミックスを積層した圧電素子としては、
特開昭60−178677号、特開昭61−1278号
、特開昭61−191085号、特開昭63−2390
などが知られているが、これらは、バイモルフ型であり
、ユニモルフ型で積層とした点に特徴を有する本発明と
は異なる。
In addition, as a piezoelectric element laminated with piezoelectric ceramics,
JP 60-178677, JP 61-1278, JP 61-191085, JP 63-2390
These are bimorph type, and differ from the present invention in that they are unimorph type and laminated.

〔作用〕[Effect]

本発明では、板状圧電セラミックスを複数枚積層したこ
とで、ユニモルフ型であっても、大きな変位量と、発生
力を得ることが可能である。また、電界を分極方向と同
一方向に印加するので、分極反転という問題は起こり得
す、大きな電界を印加できる。
In the present invention, by laminating a plurality of plate-shaped piezoelectric ceramics, it is possible to obtain a large amount of displacement and generated force even if it is a unimorph type. Furthermore, since the electric field is applied in the same direction as the polarization direction, a large electric field can be applied, which may cause the problem of polarization inversion.

本発明の素子は圧電アクチュエータ、振動子などとして
使用できる。
The element of the present invention can be used as a piezoelectric actuator, a vibrator, and the like.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に基づいて説明する。 An embodiment of the present invention will be described below with reference to FIG.

リン青銅からなる基板1の片面&へ 第1の板状圧電セ
ラミックス2が積層さ札 さらに第1の板状圧電セラミ
ックス2に第2の板状圧電セラミックス3が積層されて
いる。
A first plate-shaped piezoelectric ceramic 2 is laminated on one side of a substrate 1 made of phosphor bronze.Furthermore, a second plate-shaped piezoelectric ceramic 3 is laminated on the first plate-shaped piezoelectric ceramic 2.

第1及び第2の板状圧電セラミックス2.3はいずれも
、 Pb (Mg1−3Nb2−3) a37sTis、5
t5Zrs、zso3を主成分とする化合物の焼結体か
らなり、いずれも両面に銀ペーストを印刷塗布し焼付け
た後、面方向と垂直に分極を施しである。
Both the first and second plate-shaped piezoelectric ceramics 2.3 are made of Pb (Mg1-3Nb2-3) a37sTis, 5
It is made of a sintered body of a compound mainly composed of t5Zrs and zso3, and after printing and applying silver paste on both sides and baking, it is polarized perpendicular to the surface direction.

そして、基板1、第1の板状圧電セラミックス2、第2
の板状圧電セラミックス3はそれぞれ接着剤で接着され
る。
Then, the substrate 1, the first plate-shaped piezoelectric ceramic 2, the second
The plate-shaped piezoelectric ceramics 3 are each bonded with an adhesive.

積層にあたり、第1の板状圧電セラミックス2では、分
極の+側が基板1側となるようにし 第2の板状圧電セ
ラミックス3で頃 分極の一側が第1の板状圧電セラミ
ックス2側となるようにした そして、第1の板状圧電セラミックス2と第2の板状圧
電セラミックス3との間の電極S、を電源4の負極に、
基板1と、第2の板状圧電セラミックス3における第1
の板状圧電セラミックス2の反対側の電極S2にそれぞ
れ電源4の正極を接続し、各板状圧電セラミックス2.
3の分極方向と同一方向に電界を印加し九 これにより
、各板状圧電セラミックス2,3が収縮獣 基板1が収
縮しないため、素子全体が屈曲変位した 基板1の厚さt5、第1の板状圧電セラミックス2の厚
さはtl、  第2の板状圧電セラミックス3の厚さt
2を適宜選択し 印加電圧を100Vとし変位量δμ瓜
 発生力F (g)を測定しμ 結果を第1〜3表に示
す。なお、 t、は、素子全体の厚さであり、素子の幅
は10mm、  駆動長さは18mmと一定とした。
During lamination, the first plate-shaped piezoelectric ceramic 2 is made so that the + side of polarization is on the substrate 1 side, and the second plate-shaped piezoelectric ceramic 3 is made so that one side of polarization is on the first plate-shaped piezoelectric ceramic 2 side. Then, the electrode S between the first plate-shaped piezoelectric ceramic 2 and the second plate-shaped piezoelectric ceramic 3 is connected to the negative electrode of the power source 4,
The first in the substrate 1 and the second plate-shaped piezoelectric ceramic 3
The positive electrode of a power source 4 is connected to the electrode S2 on the opposite side of each plate-shaped piezoelectric ceramic 2.
An electric field is applied in the same direction as the polarization direction of 3. As a result, each of the plate-shaped piezoelectric ceramics 2 and 3 shrinks.Since the substrate 1 does not shrink, the thickness t5 of the substrate 1 at which the entire element is bent is The thickness of the plate-shaped piezoelectric ceramic 2 is tl, and the thickness of the second plate-shaped piezoelectric ceramic 3 is t
2 was selected as appropriate, the applied voltage was set to 100 V, and the amount of displacement δμ and the generated force F (g) were measured, and the results are shown in Tables 1 to 3. Note that t is the thickness of the entire element, the width of the element was 10 mm, and the driving length was constant at 18 mm.

(本頁、以下余白) 第1表 比較例1および2から明らかなように、従来のユニモル
フ型圧電素子において、圧電セラミックスの厚さを一定
にし、基板の厚さを厚くする(素子全体の厚さも厚くな
る)と、変位量が低下し、発生力が増加する。これに対
し、本発明による積層ユニモルフ型圧電素子の実施例1
(戴 比較例2に比べて、大きな変位量と発生力を示す
ことが判る。また、実施例2は、比較例1に比べて、同
一電圧を印加した場合、大きな変位量と発生力を示し、
半分の印加で、はぼ同等の変位量と発生力を示すことが
判る。
(This page, blank space below) As is clear from Comparative Examples 1 and 2 in Table 1, in conventional unimorph piezoelectric elements, the thickness of the piezoelectric ceramic is kept constant and the thickness of the substrate is increased (the thickness of the entire element is If the thickness increases), the amount of displacement will decrease and the generated force will increase. On the other hand, Example 1 of the laminated unimorph type piezoelectric element according to the present invention
(Dai) It can be seen that compared to Comparative Example 2, it shows a larger amount of displacement and generated force. Also, compared to Comparative Example 1, Example 2 shows a larger amount of displacement and generated force when the same voltage is applied. ,
It can be seen that with half the application, the displacement amount and generated force are almost the same.

また、バイモルフ型、従来のユニモルフ型、本発明の積
層ユニモルフ型の各種性能を比較すると、以下の第2表
のような結果となる。
Further, when comparing various performances of the bimorph type, the conventional unimorph type, and the laminated unimorph type of the present invention, the results are shown in Table 2 below.

(本頁、以下余白) 第2表 〔発明の効果〕 本発明で憾 バイモルフ型圧電素子に比較して、電界を
分極方向と逆方向に印加する必要がないので、電界の印
加による分極反転が起こることがなく、安定した変位量
と発生力を得ることができる。
(This page, the following margins) Table 2 [Effects of the invention] Disadvantages of the present invention Compared to bimorph piezoelectric elements, there is no need to apply an electric field in the opposite direction to the polarization direction, so polarization reversal due to the application of an electric field is not possible. This does not occur, and stable displacement and generated force can be obtained.

また、何等かの要因で分極が弱くなっても、駆動に際し
ては分極方向に電界を印加するので、分極を再度強化す
ることができるという復元作用をも有する。
Furthermore, even if the polarization becomes weak due to some reason, since an electric field is applied in the polarization direction during driving, it also has a restoring effect in that the polarization can be strengthened again.

そして、従来のユニモルフ型圧電素子に比較して、板状
圧電セラミックスを複数枚積層したことで、大きな変位
量と発生力を得ることができる。
Furthermore, compared to conventional unimorph type piezoelectric elements, by laminating a plurality of plate-shaped piezoelectric ceramics, it is possible to obtain a large amount of displacement and generated force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層ユニモルフ型圧電素子の一例を示
した断面は 第2図は従来のバイモルフ型圧電素子の一
例を示した断面鳳 第3図は従来のユニモルフ型圧電素
子の断面図である。 1  基板 2  第1の板状圧電セラミックス 3・・ 第2の板状圧電セラミックス 4・ 電源 5、 52・・電極 特許出願人     三井石油化学工業株式会社代理人
        弁理士 佐 藤 宗 徳同   遠 
 山     勉 同 松倉秀実 変化方向 セラミ・ンクスのイ申び 第2図 第1図 変イ1ラテ【0 第3図
Figure 1 is a cross-sectional view of an example of the laminated unimorph piezoelectric element of the present invention. Figure 2 is a cross-sectional view of an example of a conventional bimorph piezoelectric element. Figure 3 is a cross-sectional view of a conventional unimorph piezoelectric element. be. 1 Substrate 2 First plate-shaped piezoelectric ceramic 3... Second plate-shaped piezoelectric ceramic 4... Power source 5, 52... Electrode Patent applicant Mitsui Petrochemical Industries Co., Ltd. Agent Patent attorney Sou Sato Tohru Tokudo
Bendou Yama Hidemi Matsukura Change direction Cerami Nx's request Figure 2 Figure 1 Change A 1 Latte 0 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1) 基板の片面に、面方向と垂直に分極された板状
圧電セラミックスを複数枚積層し、電界を分極方向と同
一方向に印加するよう構成した積層ユニモルフ型圧電素
子。
(1) A laminated unimorph type piezoelectric element in which a plurality of plate-shaped piezoelectric ceramics polarized perpendicularly to the surface direction are laminated on one side of a substrate, and an electric field is applied in the same direction as the polarization direction.
JP2108193A 1990-04-24 1990-04-24 Laminated unimorph type piezoelectric element Pending JPH046884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108193A JPH046884A (en) 1990-04-24 1990-04-24 Laminated unimorph type piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108193A JPH046884A (en) 1990-04-24 1990-04-24 Laminated unimorph type piezoelectric element

Publications (1)

Publication Number Publication Date
JPH046884A true JPH046884A (en) 1992-01-10

Family

ID=14478369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108193A Pending JPH046884A (en) 1990-04-24 1990-04-24 Laminated unimorph type piezoelectric element

Country Status (1)

Country Link
JP (1) JPH046884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197755A (en) * 1997-09-19 1999-04-09 Seiko Epson Corp Method for driving piezoelectric element
JP2020047724A (en) * 2018-09-18 2020-03-26 日本特殊陶業株式会社 Piezoelectric actuator and valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197755A (en) * 1997-09-19 1999-04-09 Seiko Epson Corp Method for driving piezoelectric element
JP2020047724A (en) * 2018-09-18 2020-03-26 日本特殊陶業株式会社 Piezoelectric actuator and valve

Similar Documents

Publication Publication Date Title
JP3185226B2 (en) Driving method of piezoelectric bimorph element and piezoelectric bimorph element
JPH08153914A (en) Piezoelectric ceramic transformer
JPH046884A (en) Laminated unimorph type piezoelectric element
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS60245286A (en) Piezoelectric dispacement element
JPH0443684A (en) Laminated bimorph type piezoelectric element
JPH0257353B2 (en)
JPS61150287A (en) Piezoelectric displacement device
JPS6388875A (en) Manufacture of laminated piezoelectric element
JPH046885A (en) Laminated unimorph type piezoelectric element
JPS6372171A (en) Manufacture of electrostrictive driver
JPH03273870A (en) Piezoelectric actuator
JP2921310B2 (en) Multilayer piezoelectric actuator
JPH0443685A (en) Laminated bimorph type piezoelectric element
JPH02162782A (en) Driving method for bimorph displacement element
JPS5930543Y2 (en) Stacked electrostrictive drive device
JPH0685451B2 (en) Multilayer piezoelectric bimorph element and method of using the same
JP3116176B2 (en) Multilayer piezoelectric actuator
JPH01226187A (en) Method of driving laminated piezoelectric element
JPH0590657A (en) Laminate type piezoelectric actuator and fabrication thereof
JPH01261879A (en) Lamination type displacement element
JPH0423370A (en) Bimorph element
CN114695640A (en) Piezoelectric element
JPH03273868A (en) Piezoelectric actuator
JPS61152086A (en) Method of applying stack type piezoelectric driving equipment