JPS6372171A - Manufacture of electrostrictive driver - Google Patents

Manufacture of electrostrictive driver

Info

Publication number
JPS6372171A
JPS6372171A JP61216912A JP21691286A JPS6372171A JP S6372171 A JPS6372171 A JP S6372171A JP 61216912 A JP61216912 A JP 61216912A JP 21691286 A JP21691286 A JP 21691286A JP S6372171 A JPS6372171 A JP S6372171A
Authority
JP
Japan
Prior art keywords
electrostrictive
plate
layered
drive body
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61216912A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sugihara
杉原 勝博
Tsutomu Kadooka
勉 角岡
Takeaki Kinoshita
木下 丈朗
Kazuyoshi Nakao
中尾 和由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61216912A priority Critical patent/JPS6372171A/en
Publication of JPS6372171A publication Critical patent/JPS6372171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate the manufacture and to improve the mass-productivity by a method wherein an electrostrictive driver which is constructed to expand and contract in a mode of the piezoelectric constant d33 is formed by slicing a laminated body. CONSTITUTION:A laminated body x is formed in such a way that more than one raw sheet-like electrostrictive material layers 5 made of piezoelectric ceramic powder, such as titanate, lead zirconate or the like, are stacked up in one direction by alternately piling up an internal electrode layer 4a whose one end is exposed to one side and an internal electrode layer 4b whose one end is exposed to the other side. Then, this laminated body is sliced along the laminating direction so that a sheet-like laminated body y can be formed. Then, this sheet-like laminated body y is baked. After the surface and the back of the laminated body y have been polished, both edge faces of the sheet-like laminated body y are coated with external electrode layers 6a, 6b, and this assembly is then baked. Then, a DC voltage is applied to the external electrode layers 6a, 6b, and each electrostrictive layer 5 is polarized. After a layerlike electrostrictive device plate 3 obtained in this way has been washed, this plate is fixed to the surface of a ceramic plate 2 by an adhesive agent. Then, lead wires 7a, 7b are soldered to the external electrode layers 6a, 6b.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電圧印加により一方向に湾曲し、ドツトプリ
ンター、パーツフィーダー、レーザー光線の偏光ミラー
等種々の駆動源として適用される電歪駆動体に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electrostrictive drive body that bends in one direction by applying a voltage and is applied as a drive source for various types of devices such as dot printers, parts feeders, and polarizing mirrors for laser beams. Regarding.

〈従来技術〉 電歪素子を一枚又は二枚使用し、その上下面に形成した
電極層に電圧を印加して、その自由端に湾曲作動を生じ
させる電歪駆動体は、ユニモルフ又はバイモルフと呼称
され、公知である。
<Prior art> Electrostrictive actuators that use one or two electrostrictive elements and apply voltage to electrode layers formed on the upper and lower surfaces of the elements to cause a bending action at their free ends are called unimorphs or bimorphs. It is called and known.

かかる電歪駆動体は、片持支持または両端支持形式で使
用されるが、電歪素子の分極方向によっては、その変位
量が大きく異なることが見出されている。
Such an electrostrictive drive body is used in a cantilever supported or both end supported format, but it has been found that the amount of displacement varies greatly depending on the polarization direction of the electrostrictive element.

すなわち、厚み方向に分極した電歪素子を使用する電歪
駆動体にあって、片持支持の場合、その自由端の変位量
δは、自由長文、総厚みt、印加電圧V、圧電定数d 
31としたとき、δ=%(立/1)・V−d31 で表される。
In other words, in the case of an electrostrictive drive body that uses an electrostrictive element polarized in the thickness direction and is supported on a cantilever, the displacement amount δ of the free end is determined by the free length, the total thickness t, the applied voltage V, and the piezoelectric constant d.
31, it is expressed as δ=%(vertical/1)·V-d31.

また、長さ方向に分極した電歪素子を使用した電歪駆動
体の変位量は、前式において、圧電定数d fflを圧
電定数d :13に変更すればよく、δ;%(i/1)
eV*cl+:+ で表される。
In addition, the displacement amount of an electrostrictive drive body using an electrostrictive element polarized in the length direction can be determined by changing the piezoelectric constant d ffl to a piezoelectric constant d :13 in the previous equation, and δ;%(i/1 )
It is expressed as eV*cl+:+.

ところでこの圧電定数d 33は、圧電定数d31の2
〜3倍の値を有する。このことから長さ方向に分極した
電歪素子を使用した方が変位量の大きい電歪駆動体を得
ることができることが理解される。
By the way, this piezoelectric constant d33 is equal to 2 of the piezoelectric constant d31.
~3 times the value. From this, it is understood that an electrostrictive drive body with a larger displacement can be obtained by using an electrostrictive element polarized in the length direction.

そこで圧電定数d 33のモードを利用して、振巾を大
きくしたものとして、特開昭8l−237E1号に開示
されているように、一対の端子を対向状に配設し、それ
らの端子から交互差違い状に内部電極を突出するように
してすだれ状電極を構成し、その電極のスリット内に複
合圧電材料を充填するようにし、内部電極間の各圧電層
に、該電極から並列的に電圧印加し、その伸縮方向と、
分極方向とを一致させるようにしたものが提案された。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 81-237E1, a pair of terminals are disposed opposite to each other, and the amplitude is increased by using the mode of piezoelectric constant d33. The interdigital electrodes are formed by protruding internal electrodes in an alternating manner, and the composite piezoelectric material is filled in the slits of the electrodes. Apply voltage, and the direction of expansion and contraction,
A method was proposed in which the polarization direction was made to match the polarization direction.

〈発明が解決しようとする問題点〉 ところで、前記従来方法は、複雑な構成のすだれ状電極
をエツチング等の手段で形成し、かつ圧電材料の埋込み
作業を要し、生産性が悪いという欠点があった。
<Problems to be Solved by the Invention> By the way, the conventional method described above has the disadvantage of poor productivity because it requires forming interdigital electrodes with a complicated structure by means such as etching, and embedding the piezoelectric material. there were.

本発明は前記従来構成の欠点を除去し、湾曲作動を効率
的に施し得る電歪駆動体の量産に適する製造方法の提供
を目的とするものである。
The present invention aims to eliminate the drawbacks of the conventional structure and provide a manufacturing method suitable for mass production of electrostrictive actuators that can efficiently perform bending operations.

く問題点を解決するための手段〉 本発明は、複数の電歪材料層を、一端が片方の側面に露
出する内部電極層と、一端が他側面に露出する内部電極
層とを交互に介装して一方向に積み重ねることにより積
層体を形成し、該積層体をその積層方向に沿ってスライ
スして層状電歪素子板を得る工程と、 前記層状電歪素子板の両側に、内部電極層の露出端と電
気的に接続する外部電極層を配設する工程と、 さらに該層状電歪素子板を、その伸縮作動を湾曲作動に
変換する湾動板に、面接合する工程とを備えたことを特
徴とするものである。
Means for Solving the Problems> The present invention provides a method in which a plurality of electrostrictive material layers are alternately interposed between internal electrode layers having one end exposed to one side surface and internal electrode layers having one end exposed to the other side surface. forming a laminate by stacking the laminate in one direction, and slicing the laminate along the lamination direction to obtain a layered electrostrictive element plate; internal electrodes on both sides of the layered electrostrictive element plate; a step of providing an external electrode layer electrically connected to the exposed end of the layer; and a step of face-to-face bonding the layered electrostrictive element plate to a curved plate that converts its expansion and contraction action into a bending action. It is characterized by:

尚、前記電歪材料は、その分極処理により電歪作用を生
ずる通常の材料のほか、使用温度範囲で常誘電相にある
高誘電率磁器板(例えば特公昭53−38440に開示
)等、分極を要しない材料をも適用され得る。
The above-mentioned electrostrictive materials include ordinary materials that produce an electrostrictive effect through polarization treatment, as well as high permittivity ceramic plates (for example, disclosed in Japanese Patent Publication No. 53-38440) that are in a paraelectric phase within the operating temperature range. Materials that do not require this can also be applied.

く作用〉 積層体をその積層方向に沿ってスライスする工程により
、積層体から多数枚の層状電歪素子板を得ることができ
る。このため量産に適する。
Effect> A large number of layered electrostrictive element plates can be obtained from the laminate by slicing the laminate along the lamination direction. Therefore, it is suitable for mass production.

かかる手段で製造された層状電歪素子板は、外部電極層
に交番電圧を印加すると、各電歪材料層は、圧電定数d
 33に基いて積層方向へ伸縮変位する。そして、その
自由端(周辺保持の場合には中央部)で、各電歪材料層
の歪量が重畳し、大きな歪を生じる。そして、該層状電
歪素子板の一面には、その層状電歪素子板の伸縮を阻害
して、伸縮作動を湾曲作動に変換する湾動板が貼着され
るから、前記歪は湾曲を生じさせ、該自由端(中央部)
で最大変位を生ずることとなる。
In the layered electrostrictive element plate manufactured by such means, when an alternating voltage is applied to the external electrode layer, each electrostrictive material layer has a piezoelectric constant d.
33, it expands and contracts in the stacking direction. Then, at the free end (in the case of peripheral holding, the central part), the amount of strain in each electrostrictive material layer is superimposed, resulting in a large strain. Since a bending plate is attached to one surface of the layered electrostrictive element plate to inhibit expansion and contraction of the layered electrostrictive element plate and convert the expansion and contraction action into a bending action, the strain causes curving. and the free end (center part)
The maximum displacement will occur at .

また、一方が他方に対して湾動板となる二枚の層状電歪
素子板を絶縁層を介して貼着した場合には、−面の電歪
素子の伸張時には他面の層状電歪素子板が収縮するよう
な電気接続を施すことにより、同じく、その湾曲に伴っ
て、自由端(中央部)で最大変位を生ずることとなる。
In addition, when two laminar electrostrictive element plates, one of which serves as a movable plate for the other, are attached through an insulating layer, when the electrostrictive element on the negative side is stretched, the laminar electrostrictive element on the other side By making an electrical connection such that the plate contracts, it will also result in a maximum displacement at the free end (center) as it bends.

〈実施例〉 第1図について本発明の一実施例を説明する。<Example> An embodiment of the invention will be described with reference to FIG.

電歪駆動体1は、矩形状セラミック板2上に、同形の層
状電歪素子板3を貼着してなるユニモルフである。
The electrostrictive drive body 1 is a unimorph formed by pasting a layered electrostrictive element plate 3 of the same shape on a rectangular ceramic plate 2.

この層状電歪素子板3は、内部電極1j 4 a 、 
4bを介して複数の電歪材料層5が一方向に積層されて
なり、各内部電極層4a、4bを、交互に差違い状にし
て両側面側に露出し、前記内部電極層4aの露出側端面
に外部電極層6aを、内部電極層4bの露出側端面に外
部電極層6bを夫々配設している。
This layered electrostrictive element plate 3 has internal electrodes 1j 4 a,
A plurality of electrostrictive material layers 5 are laminated in one direction with the internal electrode layers 4b interposed therebetween, and each internal electrode layer 4a, 4b is alternately exposed on both side surfaces in a staggered manner, and the internal electrode layer 4a is exposed. An external electrode layer 6a is provided on the side end surface, and an external electrode layer 6b is provided on the exposed end surface of the internal electrode layer 4b.

前記内部電極層4a、4bは例えば銀−パラジウムの合
金により、また外部電極層6a、6bは例えば銀被膜に
より夫々形成される。
The internal electrode layers 4a and 4b are formed of, for example, a silver-palladium alloy, and the external electrode layers 6a and 6b are formed of, for example, a silver coating.

前記構成からなる電歪駆動体1は次の手段により製造さ
れる。
The electrostrictive drive body 1 having the above structure is manufactured by the following method.

第一工程; (第2図イ) チタン醜ジルコン酸鉛等の圧電磁器粉末からなる複数の
生シート状の電歪材料層5を、一端が片方の側面に露出
する内部電極層4aと、一端が他側面に露出する内部電
極層4bとを交互に介装して一方向に植み重ねることに
より積層体Xを形成する。
First step; (Fig. 2 A) A plurality of raw sheet-like electrostrictive material layers 5 made of piezoelectric ceramic powder such as titanium-ugly lead zirconate are coated with an internal electrode layer 4a with one end exposed on one side, and one end with an internal electrode layer 4a exposed on one side. The laminate X is formed by stacking them in one direction with internal electrode layers 4b exposed on the other side alternately interposed.

第二工程: (第2図口) 前記積層体Xを、その積層方向に沿ってスライスし、薄
板状積層体yを形成する。
Second step: (Figure 2) The laminate X is sliced along the stacking direction to form a thin plate-like laminate y.

第三工程; (第2図ハ) 薄板状積層体yを焼成する。Third step; (Figure 2 C) The thin plate-like laminate y is fired.

第四工程: (第2図二) 薄板状積層体yの上下面を研磨する。Fourth step: (Figure 2 2) The upper and lower surfaces of the thin plate-like laminate y are polished.

第五工程; (第2図ホ) 薄板状積層体yの両側端面に外部電極層6a。Fifth step; (Figure 2 E) External electrode layers 6a are provided on both end surfaces of the thin plate-like laminate y.

6bを塗布し、必要に応じて加熱硬化または加熱焼付け
を施す。
6b is applied and heat-cured or heat-baked as necessary.

第六工程; (第2図へ) 外部電極層6a、6bに直流電圧を印加し、各電歪材料
層5を夫々分極する。而て1層状電歪素子板3が構成さ
れる。
Sixth step; (Go to FIG. 2) A DC voltage is applied to the external electrode layers 6a and 6b to polarize each electrostrictive material layer 5, respectively. Thus, a single-layer electrostrictive element plate 3 is constructed.

第七工程; (第2図ト) 前記層状電歪素子板3を洗浄して後、セラミック板2に
接着剤により面接合する。
Seventh step; (FIG. 2G) After cleaning the layered electrostrictive element plate 3, it is surface-bonded to the ceramic plate 2 using an adhesive.

第八工程; (第2図チ) リード線7a、7bを外部電極@6a、6bに半田付す
る。
Eighth step; (Fig. 2 H) Lead wires 7a and 7b are soldered to external electrodes @6a and 6b.

前記製造工程にあって第五工程で薄板状積層体yの両側
端面に外部電極層6a、6bを塗布するようにしている
が、積層体Xの両側面にあらかじめ、導電層を形成し、
第二工程の薄板状積層体yの切断形成とともに、該積層
体yの両側に外部電極層6a、6bが配設されるように
してもよい。
In the manufacturing process, external electrode layers 6a and 6b are applied to both end surfaces of the thin plate-like laminate y in the fifth step, but conductive layers are previously formed on both sides of the laminate X,
While cutting and forming the thin plate-like laminate y in the second step, external electrode layers 6a and 6b may be provided on both sides of the laminate y.

また、第二工程のスライスは積層体Xの焼結後にダイヤ
モンドカッター等の工具により施すようにしてもよい。
Further, the slicing in the second step may be performed after the laminate X is sintered using a tool such as a diamond cutter.

さらにまた、第四工程の研磨は第五工程の外部電極後ま
たは第六工程の分極後でもよい。
Furthermore, the polishing in the fourth step may be performed after the external electrode in the fifth step or after the polarization in the sixth step.

前記工程により製造された電歪駆動体lは、第3図イ9
口のように、一端を取付部9に保持し。
The electrostrictive drive body l manufactured by the above process is shown in FIG.
Hold one end in the mounting part 9 like a mouth.

リード線7a、7bにスイッチング機構を介して直流電
源を接続する。そして、その電圧印加に伴い、自由端に
湾曲変位を生ずる。
A DC power source is connected to the lead wires 7a and 7b via a switching mechanism. Then, as the voltage is applied, a curved displacement occurs at the free end.

前記電歪駆動体1を自由長12.5mm 、層状電歪素
子板3の厚みを0.85m層、セラミック板2の厚みを
0.25m層、総厚0.9層層の形状とし、これに電圧
印加を、 30秒間で0マから300Vまで昇圧し、こ
の電圧レベルを1秒持続し、さらに30秒間でOvに減
圧するスケジュールで施した。そして、この電圧に対す
る変位量を測定した結果、第4図のように、300Vの
最大電圧時で約80pmの変位量となった。
The electrostrictive drive body 1 has a free length of 12.5 mm, the layered electrostrictive element plate 3 has a thickness of 0.85 m, the ceramic plate 2 has a thickness of 0.25 m, and a total thickness of 0.9 layers. A voltage was applied on a schedule such that the voltage was increased from 0V to 300V in 30 seconds, this voltage level was maintained for 1 second, and the voltage was decreased to 0V in a further 30 seconds. Then, as a result of measuring the amount of displacement with respect to this voltage, as shown in FIG. 4, the amount of displacement was about 80 pm at the maximum voltage of 300V.

尚、前記層状電歪素子板に代えて通常の単一圧電磁器板
を適用したことを除いては、上記と同様に構成した従来
のものにあっては、前記300vで22.61t、mの
変位量となることが理論的に予測できる。
In addition, in the conventional device having the same structure as above except that a normal single piezoelectric ceramic plate was applied in place of the layered electrostrictive element plate, the power of 22.61 t, m at 300V was obtained. It can be theoretically predicted that the amount of displacement will be the same.

すなわち、前記実施例では従来構成のものに比して3倍
以上の変位量を達成できることが確認された。
In other words, it was confirmed that in the above example, a displacement amount three times or more can be achieved compared to the conventional configuration.

前記構成にあって、セラミック板2に換えて金属板を適
用するようにしてもよい、この場合には、層状電歪素子
板3との間に接着剤層等の絶縁層を介装する必要がある
In the above structure, a metal plate may be used instead of the ceramic plate 2. In this case, it is necessary to interpose an insulating layer such as an adhesive layer between the layered electrostrictive element plate 3. There is.

また箪5図のように、二枚の層状電歪素子板3a、3b
を用いて、これを接着剤、絶縁板等の絶縁層11.金属
基板12を介して面接合し、上下の層状電歪素子板3a
、3bの伸張及び収縮タイ、ミングが異なる回路構成を
適用することによりバイモルフ型の電歪駆動体10が構
成される。そして、該構成の電歪駆動体10も、従来構
成に比して大きな変位を達成し得るものである。
Also, as shown in Fig. 5, two layered electrostrictive element plates 3a and 3b
Using an adhesive, an insulating layer 11 such as an insulating plate, etc. The upper and lower layered electrostrictive element plates 3a are joined face-to-face via the metal substrate 12.
, 3b, the bimorph type electrostrictive drive body 10 is constructed by applying a circuit configuration in which the expansion and contraction timings of the parts 3b and 3b are different. The electrostrictive drive body 10 having this configuration can also achieve a larger displacement than the conventional configuration.

前記各電歪駆動体1,10は、ドツトプリンター、パー
ツフィーダー、レーザー光線の偏光ミラー、VTRの磁
気ヘッド、微動制御装置等、大きなトルクの要する駆動
源として用いられる。
Each of the electrostrictive drive bodies 1 and 10 is used as a drive source that requires large torque, such as a dot printer, a parts feeder, a polarizing mirror for a laser beam, a magnetic head of a VTR, and a fine movement control device.

前記電歪材料は、合成ゴムまたは合成樹脂等の有機材料
に圧電磁器粉末を含有させてなる圧電複合材料を適用し
てもよく、またセラミック板2に換えてプラスチック、
ゴム等の可撓性材料を適用するようにしてもよい、この
構成からなる場合には、前記した焼結工程(第三工程)
を要しない。
The electrostrictive material may be a piezoelectric composite material made by incorporating piezoelectric ceramic powder into an organic material such as synthetic rubber or synthetic resin, and instead of the ceramic plate 2, plastic,
A flexible material such as rubber may be applied. In the case of this configuration, the above-mentioned sintering step (third step)
does not require

またこの構成の電歪駆動体は、スピーカー、ヘッドフォ
ン等の、大きな振巾を要し、かつ大トルクを不要とする
駆動源として用いられる。
Further, the electrostrictive drive body having this configuration is used as a drive source for speakers, headphones, etc., which requires a large amplitude and does not require a large torque.

〈発明の効果〉 本発明は、上述のように、圧電定数d 33のモードに
より伸縮する構成の電歪駆動体を、端層体Xのスライス
により形成するようにしたから、製造が容易で量産に向
く等の優れた効果がある。
<Effects of the Invention> As described above, in the present invention, since the electrostrictive drive body configured to expand and contract in a mode with a piezoelectric constant d33 is formed by slicing the end layer body X, manufacturing is easy and mass production is possible. It has excellent effects such as being suitable for

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図は本発明によ
り製造されるユニモルフ型電歪駆動体1の斜視図、第2
図イ〜チは本発明による製造工程の一例を示す説明図、
第3図イ9口は電歪駆動体1の作動を示す側面図、第4
図は本発明品の特性図、第5図は本発明により製造され
るバイモルフ型電歪駆動体10の一部切欠斜視図である
。 1:電歪駆動体 2;セラミック板 3;層状電歪素子
板 4a、4b;内部電極層 5;電歪材料層 6a、
6b;外部電極層 lO;電歪駆動体 第 1 図 b 第3図 第4図 電圧(V) 第5図 手続補正書(方式) 昭和81年12月22日 2、発明の名称 電歪駆動体の製造方法3、補正をする
者 事件との関係 出 願 人 住所 名古屋市瑞穂区高辻町14番18号名称 日本特
殊陶業株式会社 代表者 鉛末 亭− 4、代理人 〒480 住所 名古屋市中区千代田3丁目11番11号6、補正
の対象 明細書 7、補正の内容 明細書第12頁第16行に「第2図イ〜チは」とあるを
、「第2図は」と訂正する。 /=\ 手続補正書 l、事件の表示 特願昭81−216912号2、発明
の名称 電歪駆動体の製造方法3、補正をする者 事件との関係  出 願 人 住所 名古屋市瑞穂区高辻町14番18号名称 日本特
殊陶業株式会社 代表者 鉛末亭− 4、代理人 〒460 住所 名古屋市中区千代田3丁目11番11号6、補正
の対癲 明細書 7、補正の内容 1)明細書第3頁第19行に 「62%(文/1)・V’d31Jとあるを、「62%
(見/1)@V@d3.Jと訂正する。 2)明細書第4頁第4行に 「62%(立/1)・V−cl+:+Jとあるを、「6
2%(見/1)・V@d3:vJと訂正する。
The accompanying drawings show embodiments of the present invention, and FIG. 1 is a perspective view of a unimorph type electrostrictive drive body 1 manufactured according to the present invention, and FIG.
Figures 1 to 1 are explanatory diagrams showing an example of the manufacturing process according to the present invention,
Figure 3 A9 is a side view showing the operation of the electrostrictive drive body 1;
The figure is a characteristic diagram of the product of the present invention, and FIG. 5 is a partially cutaway perspective view of a bimorph type electrostrictive drive body 10 manufactured according to the present invention. 1: Electrostrictive drive body 2; Ceramic plate 3; Layered electrostrictive element plates 4a, 4b; Internal electrode layer 5; Electrostrictive material layer 6a,
6b; External electrode layer lO; Electrostrictive drive body 1st Figure b Figure 3 Figure 4 Voltage (V) Figure 5 Procedural amendment (method) December 22, 1981 2, Title of invention Electrostrictive drive body Manufacturing method 3, relationship with the case of the person making the amendment Applicant Address 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Name NGK SPARK PLUG CO., LTD. 3-11-11 Chiyoda 6, Subject of amendment Description 7, Contents of the amendment On page 12, line 16 of the specification, "Figure 2 I to I" is corrected to "Figure 2 is". . /=\ Written amendment 1, Indication of the case Japanese Patent Application No. 1981-216912 2, Title of the invention Method of manufacturing an electrostrictive drive body 3, Relationship with the case of the person making the amendment Applicant's address Takatsuji-cho, Mizuho-ku, Nagoya City No. 14-18 Name NGK SPARK PLUG Co., Ltd. Representative: Bensutei-4, Agent 460 Address: 3-11-11-6, Chiyoda, Naka-ku, Nagoya, Reply to amendment Description 7, Contents of amendment 1) Details On page 3, line 19 of the book, it says "62% (sentence/1)・V'd31J".
(See/1) @V@d3. Correct it with J. 2) On page 4, line 4 of the specification, “62% (vert/1)・V-cl+:+J” is replaced with “62% (vertical/1)・V-cl+:+J”.
2% (view/1)・V@d3: Correct as vJ.

Claims (1)

【特許請求の範囲】 1)複数の電歪材料層を、一端が片方の側面に露出する
内部電極層と、一端が他側面に露出する内部電極層とを
交互に介装して一方向に積み重ねることにより積層体を
形成し、該積層体をその積層方向に沿ってスライスして
層状電歪素子板を得る工程と、 前記層状電歪素子板の両側に、内部電極層の露出端と電
気的に接続する外部電極層を配設する工程と、 さらに該層状電歪素子板を、その伸縮作動を湾曲作動に
変換する湾動板に、面接合する工程とを備えたことを特
徴とする電歪駆動体の製造方法。 2)積層体の両側面に導電層を形成してから、積層体を
スライスすることにより、層状電歪素子板の両側に、外
部電極層が配設されるようにしたことを特徴とする特許
請求の範囲第1項記載の電歪駆動体の製造方法。 3)積層体をスライスして層状電歪素子板を形成した後
に、層状電歪素子板の両側面に外部電極層を形成するよ
うにしたことを特徴とする特許請求の範囲第1項記載の
電歪駆動体の製造方法。 4)前記電歪材料層が、圧電磁器材料であることを特徴
とする特許請求の範囲第1項記載の電歪駆動体の製造方
法。 5)前記電歪材料層が、複合圧電材料であることを特徴
とする特許請求の範囲第1項記載の電歪駆動体の製造方
法。 6)前記湾動板が、セラミック板、金属板等の非電歪板
であることを特徴とする特許請求の範囲第1項記載の電
歪駆動体の製造方法。 7)前記湾動板が、前記層状電歪素子板と伸縮タイミン
グを逆とした、他の層状電歪素子板であることを特徴と
する特許請求の範囲第1項記載の電歪駆動体の製造方法
[Claims] 1) A plurality of electrostrictive material layers are arranged in one direction by alternately interposing internal electrode layers with one end exposed on one side and internal electrode layers with one end exposed on the other side. forming a laminate by stacking the laminate, and slicing the laminate along the lamination direction to obtain a layered electrostrictive element plate; and a step of surface-bonding the layered electrostrictive element plate to a curved plate that converts its expansion and contraction action into a bending action. A method for manufacturing an electrostrictive drive body. 2) A patent characterized in that external electrode layers are provided on both sides of a layered electrostrictive element plate by forming conductive layers on both sides of the laminate and then slicing the laminate. A method for manufacturing an electrostrictive drive body according to claim 1. 3) After slicing the laminate to form a layered electrostrictive element plate, external electrode layers are formed on both sides of the layered electrostrictive element plate. A method for manufacturing an electrostrictive drive body. 4) The method of manufacturing an electrostrictive drive body according to claim 1, wherein the electrostrictive material layer is a piezoelectric ceramic material. 5) The method for manufacturing an electrostrictive drive body according to claim 1, wherein the electrostrictive material layer is a composite piezoelectric material. 6) The method for manufacturing an electrostrictive drive body according to claim 1, wherein the bending plate is a non-electrostrictive plate such as a ceramic plate or a metal plate. 7) The electrostrictive drive body according to claim 1, wherein the bending plate is another layered electrostrictive element plate whose expansion and contraction timing is opposite to that of the layered electrostrictive element plate. Production method.
JP61216912A 1986-09-12 1986-09-12 Manufacture of electrostrictive driver Pending JPS6372171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216912A JPS6372171A (en) 1986-09-12 1986-09-12 Manufacture of electrostrictive driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216912A JPS6372171A (en) 1986-09-12 1986-09-12 Manufacture of electrostrictive driver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62056158A Division JPS6372172A (en) 1987-03-11 1987-03-11 Sheet-like electrostrictive laminated body

Publications (1)

Publication Number Publication Date
JPS6372171A true JPS6372171A (en) 1988-04-01

Family

ID=16695866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216912A Pending JPS6372171A (en) 1986-09-12 1986-09-12 Manufacture of electrostrictive driver

Country Status (1)

Country Link
JP (1) JPS6372171A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210455A (en) * 1990-07-26 1993-05-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion
US5315205A (en) * 1991-09-25 1994-05-24 Tokin Corporation Piezoelectric vibrator capable of reliably preventing dielectric breakdown and a method of manufacturing the same
US5430344A (en) * 1991-07-18 1995-07-04 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
US5592042A (en) * 1989-07-11 1997-01-07 Ngk Insulators, Ltd. Piezoelectric/electrostrictive actuator
US6404107B1 (en) * 1994-01-27 2002-06-11 Active Control Experts, Inc. Packaged strain actuator
US6420819B1 (en) 1994-01-27 2002-07-16 Active Control Experts, Inc. Packaged strain actuator
US7309397B2 (en) * 2001-02-21 2007-12-18 Ceramtec Ag Innovative Ceramic Engineering Process for the manufacture of piezoceramic multilayer actuators

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592042A (en) * 1989-07-11 1997-01-07 Ngk Insulators, Ltd. Piezoelectric/electrostrictive actuator
US5631040A (en) * 1989-07-11 1997-05-20 Ngk Insulators, Ltd. Method of fabricating a piezoelectric/electrostrictive actuator
US5210455A (en) * 1990-07-26 1993-05-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion
US5681410A (en) * 1990-07-26 1997-10-28 Ngk Insulators, Ltd. Method of producing a piezoelectric/electrostrictive actuator
US5430344A (en) * 1991-07-18 1995-07-04 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
US5691594A (en) * 1991-07-18 1997-11-25 Ngk Insulators, Ltd. Piezoelectric/electrostricitve element having ceramic substrate formed essentially of stabilized zirconia
US5315205A (en) * 1991-09-25 1994-05-24 Tokin Corporation Piezoelectric vibrator capable of reliably preventing dielectric breakdown and a method of manufacturing the same
US5400488A (en) * 1991-09-25 1995-03-28 Tokin Corporation Method of manufacturing a piezoelectric vibrator capable of reliably preventing dielectric breakdown
US6404107B1 (en) * 1994-01-27 2002-06-11 Active Control Experts, Inc. Packaged strain actuator
US6420819B1 (en) 1994-01-27 2002-07-16 Active Control Experts, Inc. Packaged strain actuator
US7309397B2 (en) * 2001-02-21 2007-12-18 Ceramtec Ag Innovative Ceramic Engineering Process for the manufacture of piezoceramic multilayer actuators

Similar Documents

Publication Publication Date Title
JP2665106B2 (en) Piezoelectric / electrostrictive film element
JP2842448B2 (en) Piezoelectric / electrostrictive film type actuator
JP2738706B2 (en) Manufacturing method of laminated piezoelectric element
EP1089349B1 (en) Piezoelectric/electrostrictive device and method of manufacturing same
JP2693291B2 (en) Piezoelectric / electrostrictive actuator
EP2056442B1 (en) Piezoelectric actuator element for ultrasonic motor
JP3466550B2 (en) Piezoelectric / electrostrictive device
JPS6372171A (en) Manufacture of electrostrictive driver
JPS6372172A (en) Sheet-like electrostrictive laminated body
JP4666578B2 (en) Ultrasonic vibration element and ultrasonic actuator using the same
JPH0257353B2 (en)
JPH0658978B2 (en) Piezoelectric displacement element
JPH0442947Y2 (en)
JPH0774410A (en) Manufacture of electrostriction laminate
JPS62249600A (en) Piezoelectric element
JP3466551B2 (en) Piezoelectric / electrostrictive device
JP2855709B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JPH0685451B2 (en) Multilayer piezoelectric bimorph element and method of using the same
JP2000166260A (en) Piezoelectric actuator and its manufacture
JPH0443684A (en) Laminated bimorph type piezoelectric element
JP4349950B2 (en) Ultrasonic motor
JPS63260085A (en) Piezoelectric actuator
JPH0786652A (en) Laminated electrostrictive transducer
JPH0453008Y2 (en)
JPH0349271A (en) Manufacture of laminated piezoelectric ceramics element