JPH0685451B2 - Multilayer piezoelectric bimorph element and method of using the same - Google Patents

Multilayer piezoelectric bimorph element and method of using the same

Info

Publication number
JPH0685451B2
JPH0685451B2 JP60032356A JP3235685A JPH0685451B2 JP H0685451 B2 JPH0685451 B2 JP H0685451B2 JP 60032356 A JP60032356 A JP 60032356A JP 3235685 A JP3235685 A JP 3235685A JP H0685451 B2 JPH0685451 B2 JP H0685451B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
laminate
electrodes
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032356A
Other languages
Japanese (ja)
Other versions
JPS61191085A (en
Inventor
良明 布田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP60032356A priority Critical patent/JPH0685451B2/en
Publication of JPS61191085A publication Critical patent/JPS61191085A/en
Publication of JPH0685451B2 publication Critical patent/JPH0685451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、電圧印加により機械的変位を生じる圧電バイ
モルフ素子及びその使用方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a piezoelectric bimorph element that causes a mechanical displacement by applying a voltage and a method of using the same.

圧電バイモルフ素子は、電磁式変位素子と比較して、単
純構造、省エネルギ、低コスト等の長所を有し、また圧
電縦効果歪素子と比較し、低電圧で大きな機械的変位が
得られる長所を有している。また、圧電バイモルフ素子
への印加電圧により変位量を高精度に調節することが可
能であるという特徴を有する。従って、近年この素子は
電磁式変位素子に変わりリレー、スイッチ、プリンタ、
精密度X−Yテーブル等の駆動素子として用いられつつ
ある。
The piezoelectric bimorph element has advantages such as a simple structure, energy saving, and low cost as compared with the electromagnetic displacement element, and has an advantage that a large mechanical displacement can be obtained at a low voltage as compared with the piezoelectric longitudinal effect strain element. have. Further, there is a feature that the displacement amount can be adjusted with high accuracy by the voltage applied to the piezoelectric bimorph element. Therefore, in recent years, this element has been replaced by an electromagnetic displacement element such as a relay, switch, printer,
It is being used as a drive element for precision X-Y tables and the like.

従来の圧電バイモルフ素子は、例えば第1図に示す如
く、金属等の弾性体薄板(以下システム材と称す)2を
介して、表裏面に電極層3を形成した圧電体薄板1を上
下2枚接着した構造が一般的である。この素子は片端固
定のたわみ現象を利用するもので、圧電体厚みを薄くす
ることにより、力は弱いが大きな変位が得られる。但し
機械的強度が低下するのでシム材を接着し、補強する必
要がある。
In a conventional piezoelectric bimorph element, for example, as shown in FIG. 1, two piezoelectric upper and lower piezoelectric plates 1 each having an electrode layer 3 formed on the front and back sides are sandwiched via an elastic thin plate (hereinafter referred to as a system material) 2 such as metal. A bonded structure is common. This element utilizes a flexure phenomenon that is fixed at one end, and by making the thickness of the piezoelectric material thin, a large displacement can be obtained although the force is weak. However, since the mechanical strength decreases, it is necessary to bond and reinforce the shim material.

しかしながら、従来構造の圧電バイモルフ素子は、圧電
体薄板の製造、電極形成、シム材への接着等と製造工程
が複雑であり、かつ薄板を使用するので歩留りが悪いと
いう欠点がある。また、シム材への接着のため接着材を
用いるので、接着層の変位及び応力の吸収、長期使用時
の接着層の変質等の接着剤の影響を回避することは不可
能である。
However, the piezoelectric bimorph element having the conventional structure has a drawback that the manufacturing process of the piezoelectric thin plate, the electrode formation, the adhesion to the shim material, and the like are complicated, and the thin plate is used, so that the yield is low. Further, since the adhesive is used for adhesion to the shim material, it is impossible to avoid the influence of the adhesive such as displacement and stress absorption of the adhesive layer and deterioration of the adhesive layer during long-term use.

本発明はかかる点に鑑み、圧電体生シート及び電極パタ
ーン印刷した圧電体生シートを複数積層圧着し焼結した
構造の圧電バイモルフ素子において、圧電体層を境界と
してその上下に互いに対向電極を形成する内部電極層を
具備する圧電体層から成り、該圧電体内部電極が表面露
出端部で境界の圧電体層の上下で分割した外部電極に接
続し、四端子電極を構成することにより、従来の欠点を
解消したこの種の素子を提案することを主たる目的とす
る。
In view of the above point, the present invention is directed to a piezoelectric bimorph element having a structure in which a plurality of piezoelectric green sheets and piezoelectric raw sheets printed with electrode patterns are laminated, pressure-bonded and sintered, and opposing electrodes are formed above and below the piezoelectric layer as a boundary. A piezoelectric layer having an internal electrode layer that is connected to external electrodes divided above and below the boundary piezoelectric layer at the surface exposed end to form a four-terminal electrode. The main purpose is to propose an element of this kind in which the drawbacks of (1) are solved.

以下本発明の一実施例について図面を参照しながら詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一例を示すバイモルフ素子の斜視図で
ある。11は圧電体層を示し、これは200μmの厚さで構
成されている。そしてこの中央の圧電体層11の上下面
に、夫々厚み60μmで4層構成の対向内部電極12a,12b
を有する圧電体積層体12が形成される。そして各層の内
部電極は圧電体生シートの一面に印刷され、4枚の生シ
ートの積層により最外側に電極面が露出せず圧電体層11
に接する最内側に電極面が露出される。更に各内部電極
12a,12bは、第2図に示すように、各層の電極を左右に
交互に露出させて電圧印加による分極を可能にする。例
えば内部電極12aは上から第1,3電極を左側端面に露出せ
ず右側端面に露出し、第2,第4電極を右側端面に露出せ
ず左側端面に露出する。
FIG. 2 is a perspective view of a bimorph element showing an example of the present invention. Reference numeral 11 denotes a piezoelectric layer, which has a thickness of 200 μm. Then, on the upper and lower surfaces of the piezoelectric layer 11 at the center, opposed internal electrodes 12a and 12b having a thickness of 60 μm and a four-layer structure are formed.
A piezoelectric laminated body 12 having is formed. The internal electrodes of each layer are printed on one surface of the piezoelectric green sheet, and the electrode surface is not exposed on the outermost side due to the lamination of four green sheets.
The electrode surface is exposed on the innermost side in contact with. Furthermore, each internal electrode
As shown in FIG. 2, the electrodes 12a and 12b alternately expose the electrodes of each layer to the left and right to enable polarization by applying a voltage. For example, in the internal electrode 12a, the first and third electrodes are not exposed on the left side end face but are exposed on the right side end face from the top, and the second and fourth electrodes are not exposed on the right side end face but are exposed on the left side end face.

そして上側の圧電体積層体12の左側に露出した内部電極
12aに接続して外部電極13aが形成され、同様に上側に圧
電体積層体12の右側に露出した内部電極12aに接続して
外部電極13bが形成され、更に下側の圧電体積層体12の
左側に露出した内部電極12bに接続して外部電極13dが形
成され、同様に下側の圧電体積層体12の右側に露出した
内部電極12bに接続して外部電極13cが形成される。これ
らの化学組成は、Pb(Ni1/3Nb2/3)0.5Ti0.35Zr0.15O3
示されるもので構成される。
The internal electrode exposed on the left side of the upper piezoelectric laminate 12
External electrode 13a is formed by connecting to 12a, similarly external electrode 13b is formed by connecting to the internal electrode 12a exposed on the right side of the piezoelectric laminate 12 on the upper side, and further on the lower piezoelectric laminate 12. The external electrode 13d is formed by connecting to the internal electrode 12b exposed on the left side, and similarly, the external electrode 13c is formed by connecting to the internal electrode 12b exposed on the right side of the lower piezoelectric laminate 12. These chemical compositions consist of those represented by Pb (Ni 1/3 Nb 2/3 ) 0.5 Ti 0.35 Zr 0.15 O 3 .

製造に際しては、焼結条件を、大気中1120℃、2時間保
持で行なう。焼結体の寸法は幅12mm、長さ40mm、厚み約
0.9mmとする。積層体12の製造は通常一般に行なわれて
いる泥奨からの厚膜成形、厚膜積層の技術を利用するこ
とができる。しかる後に幅12mm、厚み約0.9mmの端面を
上下2分割する様に外部電極13を設け、4端子構造の積
層型圧電バイモルフ素子10とする。
At the time of production, the sintering conditions are 1120 ° C. and 2 hours of holding in air. The dimensions of the sintered body are 12 mm in width, 40 mm in length, and thickness.
0.9mm The laminated body 12 can be manufactured by utilizing the commonly used thick film forming or thick film laminating technique from mud. Thereafter, external electrodes 13 are provided so that an end face having a width of 12 mm and a thickness of about 0.9 mm is divided into upper and lower parts, thereby forming a laminated piezoelectric bimorph element 10 having a four-terminal structure.

このようにして構成したバイモルフ素子10は、対向電極
である13a,13b間と13c,13d間に。夫々電圧を印加するこ
とにより、対向電極間の圧電体を分極し、素子の対向電
極13a,13d側を固定する。そして対向電極13a,13b間に分
極と同方向の第1の駆動電圧を印加し、対向電極13c,13
d間に分極と逆方向で分極反転の生じない第2の駆動電
圧を印加することにより、素子10の自由端の対向電極13
b,13c側は、図面上方へ変位し、電圧を逆にすれば図面
下方へ変位することになる。そして電圧を交流的に切り
替えれば、周波数に同期して上下へ連続振動することに
なる。
The bimorph element 10 thus configured is arranged between the counter electrodes 13a and 13b and between the counter electrodes 13c and 13d. By applying a voltage to each, the piezoelectric body between the opposing electrodes is polarized, and the opposing electrodes 13a and 13d side of the element is fixed. Then, a first driving voltage in the same direction as the polarization is applied between the counter electrodes 13a and 13b,
By applying a second drive voltage in the direction opposite to the polarization and causing no polarization reversal between d, the counter electrode 13 at the free end of the element 10
The b and 13c sides are displaced upward in the drawing, and by reversing the voltage, they are displaced downward in the drawing. Then, if the voltage is switched in an alternating manner, it will continuously vibrate up and down in synchronization with the frequency.

なお、本発明に用いられる圧電体材料は圧電ひずみ定数
の大きな材料が低電圧で大変位を得られるので有利であ
り、実際にはチタン酸鉛−ジルコン酸鉛系のいわゆるPZ
T系の圧電体材料が望ましい。
It should be noted that the piezoelectric material used in the present invention is advantageous because a material having a large piezoelectric strain constant can obtain a large displacement at a low voltage. Actually, a lead titanate-lead zirconate so-called PZ is used.
A T-based piezoelectric material is desirable.

また、内部電極材料は前述PZT系圧電体材料の焼結温度
に耐え得る組成の銀−パラジウム系材料が使用できる。
As the internal electrode material, a silver-palladium-based material having a composition that can withstand the sintering temperature of the PZT-based piezoelectric material can be used.

該素子の電気機械的諸特性を第1表に示す。比較例とし
て、同一圧電体材料で厚み0.17mmの薄板の上下面に電極
を形成し、これを厚み0.05mmのシム材に2枚接着した幅
12mm、長さ40mmのバイモルフ素子の特性も示す。測定方
法は長さ40mm方向の一端を固定し、自由端側について電
気マイクロメータ投影器で実施した。測定条件は本発明
による素子では一方の対向電極間にプラス40ボルト、他
方の対向電極間にマイナスの10ボルトを印加し、比較例
はしむ材を共通電極として前述と同一条件である。
Table 1 shows various electromechanical characteristics of the device. As a comparative example, electrodes formed on the upper and lower surfaces of a thin plate of the same piezoelectric material with a thickness of 0.17 mm, and two electrodes were attached to a shim material with a thickness of 0.05 mm.
The characteristics of a bimorph element with a length of 12 mm and a length of 40 mm are also shown. The measurement method was carried out by fixing one end in the 40 mm length direction and using an electric micrometer projector on the free end side. In the device according to the present invention, the measurement conditions are the same as those described above, in which a positive voltage of 40 V is applied between the opposing electrodes and a negative voltage of 10 V is applied between the opposing electrodes.

第1表より赤らかなように、本発明による素子は変位量
がわずかに小さいが、発生応力が比較例の3倍以上大き
い結果が得られる。また比較例では圧電体薄板自体の塑
性変形や接着剤、シム材の影響でシフト、クリープが大
きく実用上支障があることがわかる。すなわち本発明に
よる素子は圧電体とその内部電極から構成され接着剤を
用いず、かつ素子厚みも0.9mmと厚いのでシフト、クリ
ープが小さく優れている。また厚膜積層技術を用いるこ
とにより、素子の製造工程が約2/3に短縮され、製造歩
留りの大幅の上が期待できる。
As can be seen from Table 1, the element according to the present invention has a slightly small displacement amount, but the generated stress is three times or more that of the comparative example. Further, in the comparative example, it is understood that the plastic deformation of the piezoelectric thin plate itself and the influence of the adhesive and the shim material cause a large shift and creep, which is a problem in practical use. That is, the element according to the present invention is excellent in small shift and creep because it is composed of a piezoelectric body and its internal electrode and does not use an adhesive and the element thickness is as thick as 0.9 mm. In addition, by using the thick film stacking technology, the manufacturing process of the device can be shortened to about 2/3, which can be expected to greatly increase the manufacturing yield.

なお、実施例に示した圧電材料、内部電極材料、以外の
化学組成を有する圧電材料、内部電極材料についても本
発明の構造の効果は明らかであり、実施例に示した圧電
材料、内部電極材料に限定されるものではない。
The effects of the structure of the present invention are apparent for piezoelectric materials and internal electrode materials having chemical compositions other than the piezoelectric materials and internal electrode materials shown in the examples, and the piezoelectric materials and internal electrode materials shown in the examples are clear. It is not limited to.

以上述べたごとく本発明によれば、中央の圧電体生シー
トの上下面に、圧電体生シートに電極を印刷して複数積
層した圧電体積層体を圧着し焼結した構造の積層型圧電
バイモルフ素子において、上記圧電体積層体の内部電極
の各層の電極を左右に交互に露出し、かつ上側圧電体積
層体の左端に外部電極を、上側圧電体積層体の右端に外
部電極を、下側圧電体積層体の左端に外部電極を、下側
圧電体積層体の右端に外部電極を夫々形成し、夫々露出
した内部電極と導通した4端子電極を有するように構成
したので、 従来のように中間に金属シム等が介在していないので、
駆動時の発生力の増大に寄与し、従来の圧電バイモルフ
素子と比較し、発生応力が大きく、シフト及びクリープ
が小さく、信頼性を有し、製造工程が短縮され、製造歩
留も向上する積層型圧電バイモルフ素子を提供すること
ができる。
As described above, according to the present invention, a laminated piezoelectric bimorph having a structure in which electrodes are printed on a piezoelectric raw sheet and plural piezoelectric laminates are laminated by pressure bonding and sintered on the upper and lower surfaces of the central piezoelectric raw sheet. In the element, the electrodes of each layer of the internal electrodes of the piezoelectric laminate are alternately exposed to the left and right, and the external electrode is provided at the left end of the upper piezoelectric laminate and the external electrode is provided at the right end of the upper piezoelectric laminate. Since the external electrode is formed on the left end of the piezoelectric laminate and the external electrode is formed on the right end of the lower piezoelectric laminate, and the four internal electrodes are connected to the exposed internal electrodes, respectively. Since there is no metal shim in the middle,
Laminate that contributes to the increase of generated force during driving, has larger generated stress, smaller shift and creep, is more reliable than conventional piezoelectric bimorph elements, shortens the manufacturing process, and improves the manufacturing yield. Type piezoelectric bimorph element can be provided.

また本発明によれば、中央の圧電体生シートの上下面
に、圧電体生シートに電極を印刷して複数積層した圧電
体積層体を圧着し焼結した構造の積層型圧電バイモルフ
素子において、上記圧電体積層体の内部電極の各層の電
極を左右に交互に露出し、かつ上側圧電体積層体の左端
に第1外部電極を、上側圧電体積層体の右端に第2外部
電極を、下側圧電体積層体の左端に第3外部電極を、下
側圧電体積層体の右端に第4外部電極を形成して内部電
極と導通し、第1第2外部電極間に内部電極の分極同方
向の駆動電圧を印加し、第3第4外部電極間に内部電極
の分極逆方向の駆動電圧を印加したので、 従来のように中間に金属シム等が介在していないので、
駆動時の発生力に寄与すると共に、上下の電極に異なる
電圧を印加されることによって最大の発生力を得ること
がてきる効果を有する。
Further, according to the present invention, on the upper and lower surfaces of the piezoelectric raw sheet in the center, in a laminated piezoelectric bimorph element having a structure in which electrodes are printed on the piezoelectric raw sheet and a plurality of laminated piezoelectric laminates are pressure-bonded and sintered, The electrodes of each layer of the internal electrodes of the piezoelectric laminate are alternately exposed to the left and right, and the first external electrode is located at the left end of the upper piezoelectric laminate and the second external electrode is located at the right end of the upper piezoelectric laminate. A third external electrode is formed at the left end of the side piezoelectric laminate and a fourth external electrode is formed at the right end of the lower piezoelectric laminate so as to be electrically connected to the internal electrode, and the polarization of the internal electrode is distributed between the first and second external electrodes. Since a driving voltage in the opposite direction of the polarization of the inner electrode is applied between the third and fourth outer electrodes, a metal shim or the like is not present in the middle unlike the conventional case.
This has the effect of contributing to the generated force during driving and obtaining the maximum generated force by applying different voltages to the upper and lower electrodes.

更に本発明によれば、中央の圧電体生シートの上下面
に、圧電体生シートに電極を印刷して複数積層した圧電
体積層体を圧着し焼結した構造の積層型圧電バイモルフ
素子において、上記圧電体積層体の内部電極の各層の電
極を左右に交互に露出し、かつ上側圧電体積層体の左端
に第1外部電極を、上側圧電体積層体の右端に第2外部
電極を、下側圧電体積層体の左端に第3外部電極を、下
側圧電体積層体の右端に第4外部電極を形成して内部電
極と導通し、第1第2外部電極間に内部電極の分極同方
向の第1の駆動電圧を、第3第4外部電極間に内部電極
の分極逆方向の第2の駆動電圧を印加すると共に、第1
及び第2駆動電圧を交流的に切り替えるように構成した
ので、 従来のように中間に金属シム等が介在していないので駆
動時の発生力に寄与すると共に、上下の電極への周波数
に同期した異なる電圧の印加により上下に連続振動する
最大の発生力を得ることができる効果を有する。
Further, according to the present invention, on the upper and lower surfaces of the central piezoelectric raw sheet, in a laminated piezoelectric bimorph element having a structure in which electrodes are printed on the piezoelectric raw sheet and a plurality of laminated piezoelectric laminates are pressure-bonded and sintered, The electrodes of each layer of the internal electrodes of the piezoelectric laminate are alternately exposed to the left and right, and the first external electrode is located at the left end of the upper piezoelectric laminate and the second external electrode is located at the right end of the upper piezoelectric laminate. A third external electrode is formed at the left end of the side piezoelectric laminate and a fourth external electrode is formed at the right end of the lower piezoelectric laminate so as to be electrically connected to the internal electrode, and the polarization of the internal electrode is distributed between the first and second external electrodes. A first drive voltage in the direction opposite to the polarization direction of the inner electrode between the third and fourth outer electrodes, and
Also, since the second drive voltage is switched to alternating current, there is no metal shim or the like in the middle unlike the conventional case, which contributes to the generated force during driving and is synchronized with the frequency to the upper and lower electrodes. By applying different voltages, it is possible to obtain the maximum generating force that continuously vibrates up and down.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来の圧電バイモルフ素子の斜視図、第2図
は、本発明の構造の積層型圧電バイモルフ素子の斜視
図、第3図は同じく左半分を省略した側面図である。 11……圧電体層、12……内部電極、12a,12b……対向内
部電極を具備する圧電体層、13a,13b,13c,13d……外部
電極。
FIG. 1 is a perspective view of a conventional piezoelectric bimorph element, FIG. 2 is a perspective view of a laminated piezoelectric bimorph element having a structure of the present invention, and FIG. 3 is a side view in which the left half is also omitted. 11 ... Piezoelectric layer, 12 ... Internal electrode, 12a, 12b ... Piezoelectric layer having opposing internal electrodes, 13a, 13b, 13c, 13d ... External electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中央の圧電体生シートの上下面に、圧電体
生シートに電極を印刷して複数積層した圧電体積層体を
圧着し焼結した構造の積層型圧電バイモルフ素子におい
て、 上記圧電体積層体の内部電極の各層の電極を左右に交互
に露出し、かつ上側圧電体積層体の左端に外部電極を、
上側圧電体積層体の右端に外部電極を、下側圧電体積層
体の左端に外部電極を、下側圧電体積層体の右端に外部
電極を夫々形成し、夫々露出した内部電極と導通した4
端子電極を有することを特徴とする積層型圧電バイモル
フ素子。
1. A laminated piezoelectric bimorph element having a structure in which electrodes are printed on a piezoelectric green sheet on the central upper and lower surfaces of a piezoelectric green sheet, and a plurality of laminated piezoelectric laminates are pressure bonded and sintered. The electrodes of each layer of the internal electrode of the body laminate are alternately exposed to the left and right, and the external electrode is provided at the left end of the upper piezoelectric laminate.
An external electrode is formed on the right end of the upper piezoelectric laminate, an external electrode is formed on the left end of the lower piezoelectric laminate, and an external electrode is formed on the right end of the lower piezoelectric laminate, and each is electrically connected to the exposed internal electrode.
A laminated piezoelectric bimorph element having a terminal electrode.
【請求項2】中央の圧電体生シートの上下面に、圧電体
生シートに電極を印刷して複数積層した圧電体積層体を
圧着し焼結した構造の積層型圧電バイモルフ素子におい
て、上記圧電体積層体の内部電極の各層の電極を左右に
交互に露出し、かつ上側圧電体積層体の左端に第1外部
電極を、上側圧電体積層体の右端に第2外部電極を、下
側圧電体積層体の左端に第3外部電極を、下側圧電体積
層体の右端に第4外部電極を形成して内部電極と導通
し、第1第2外部電極間に内部電極の分極同方向の駆動
電圧を印加し、第3第4外部電極間に内部電極の分極逆
方向の駆動電圧を印加したことを特徴とする積層型圧電
バイモルフ素子の使用方法。
2. A laminated piezoelectric bimorph element having a structure in which an electrode is printed on a piezoelectric green sheet and a plurality of laminated piezoelectric laminated layers are pressure-bonded and sintered on the upper and lower surfaces of the central piezoelectric green sheet. The electrodes of each layer of the internal electrodes of the body laminate are alternately exposed to the left and right, and the first external electrode is provided at the left end of the upper piezoelectric laminate, the second external electrode is provided at the right end of the upper piezoelectric laminate, and the lower piezoelectric body is formed. A third external electrode is formed at the left end of the body laminate and a fourth external electrode is formed at the right end of the lower piezoelectric laminate so as to be electrically connected to the internal electrode, and the first electrode and the second external electrode are connected in the same polarization direction. A method of using a laminated piezoelectric bimorph element, characterized in that a drive voltage is applied and a drive voltage in the polarization reverse direction of the internal electrode is applied between the third and fourth external electrodes.
【請求項3】中央の圧電体生シートの上下面に、圧電体
生シートに電極を印刷して複数積層した圧電体積層体を
圧着し焼結した構造の積層型圧電バイモルフ素子におい
て、上記圧電体積層体の内部電極の各層の電極を左右に
交互に露出し、かつ上側圧電体積層体の左端に第1外部
電極を、上側圧電体積層体の右端に第2外部電極を、下
側圧電体積層体の左端に第3外部電極を、下側圧電体積
層体の右端に第4外部電極を形成して内部電極と導通
し、第1第2外部電極間に内部電極の分極同方向の第1
の駆動電圧を、第3第4外部電極間に内部電極の分極逆
方向の第2の駆動電圧を印加すると共に、第1及び第2
の駆動電圧を交流的に切り替えるようにしたことを特徴
とする積層型圧電バイモルフ素子の使用方法。
3. A multilayer piezoelectric bimorph element having a structure in which electrodes are printed on a piezoelectric green sheet and a plurality of piezoelectric multilayers are laminated on the upper and lower surfaces of a central piezoelectric green sheet by pressure bonding and sintering. The electrodes of each layer of the internal electrodes of the body laminate are alternately exposed to the left and right, and the first external electrode is provided at the left end of the upper piezoelectric laminate, the second external electrode is provided at the right end of the upper piezoelectric laminate, and the lower piezoelectric body is formed. A third external electrode is formed at the left end of the body laminate and a fourth external electrode is formed at the right end of the lower piezoelectric laminate so as to be electrically connected to the internal electrode, and the first electrode and the second external electrode are connected in the same polarization direction. First
And a second drive voltage in the polarization reverse direction of the inner electrode is applied between the third and fourth outer electrodes, and the first and second
A method of using a laminated piezoelectric bimorph element, characterized in that the driving voltage of the above is switched in an alternating manner.
JP60032356A 1985-02-20 1985-02-20 Multilayer piezoelectric bimorph element and method of using the same Expired - Lifetime JPH0685451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032356A JPH0685451B2 (en) 1985-02-20 1985-02-20 Multilayer piezoelectric bimorph element and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032356A JPH0685451B2 (en) 1985-02-20 1985-02-20 Multilayer piezoelectric bimorph element and method of using the same

Publications (2)

Publication Number Publication Date
JPS61191085A JPS61191085A (en) 1986-08-25
JPH0685451B2 true JPH0685451B2 (en) 1994-10-26

Family

ID=12356674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032356A Expired - Lifetime JPH0685451B2 (en) 1985-02-20 1985-02-20 Multilayer piezoelectric bimorph element and method of using the same

Country Status (1)

Country Link
JP (1) JPH0685451B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332966A1 (en) * 1993-09-28 1995-03-30 Philips Patentverwaltung Torsion actuator and a method for its production
KR101992450B1 (en) 2017-08-23 2019-06-25 삼성전기주식회사 Capacitor Component and Method of Manufacturing the Same
KR102192426B1 (en) * 2019-06-03 2020-12-17 삼성전기주식회사 Capacitor Component and Method of Manufacturing the Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164008A (en) * 1977-05-26 1979-12-27 Rca Corp Fan employing high polymer piezobimorph element
JPS5867084A (en) * 1981-10-19 1983-04-21 Matsushita Electric Ind Co Ltd Flexible element

Also Published As

Publication number Publication date
JPS61191085A (en) 1986-08-25

Similar Documents

Publication Publication Date Title
JP5234008B2 (en) Multilayer piezoelectric element and piezoelectric pump
US20080054761A1 (en) Piezoelectric/electrostrictive device
JPH04245488A (en) Driving method of piezoelectric bimorph element and piezoelectric bimorph element
JPS62208680A (en) Laminar bymorph
JPS61239682A (en) Manufacture of laminating type piezoelectric bimorph element
JPH0685451B2 (en) Multilayer piezoelectric bimorph element and method of using the same
JPH055387B2 (en)
JPS6372171A (en) Manufacture of electrostrictive driver
JPH09289342A (en) Multilayer piezoelectric actuator
JP3116176B2 (en) Multilayer piezoelectric actuator
JP2884378B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2791838B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPH0443684A (en) Laminated bimorph type piezoelectric element
JPH02162782A (en) Driving method for bimorph displacement element
JPH0442947Y2 (en)
JPH03159280A (en) Manufacture of multi-morph element
JP4818853B2 (en) Ultrasonic motor element
JP3500509B2 (en) Multilayer piezoelectric ceramic actuator
JPH0469826B2 (en)
JPS6041272A (en) Piezoelectric displacement element
JP2855709B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JPH06164009A (en) Laminated piezoelectric actuator
JPH03273870A (en) Piezoelectric actuator
JP2001085753A (en) Piezoelectric actuator
JPH046884A (en) Laminated unimorph type piezoelectric element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term