JPH0443685A - Laminated bimorph type piezoelectric element - Google Patents

Laminated bimorph type piezoelectric element

Info

Publication number
JPH0443685A
JPH0443685A JP2152270A JP15227090A JPH0443685A JP H0443685 A JPH0443685 A JP H0443685A JP 2152270 A JP2152270 A JP 2152270A JP 15227090 A JP15227090 A JP 15227090A JP H0443685 A JPH0443685 A JP H0443685A
Authority
JP
Japan
Prior art keywords
plate
piezoelectric ceramic
shaped piezoelectric
electric field
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152270A
Other languages
Japanese (ja)
Inventor
Hiroaki Saigo
宏明 西郷
Yoshihisa Ushida
善久 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2152270A priority Critical patent/JPH0443685A/en
Publication of JPH0443685A publication Critical patent/JPH0443685A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To be excellent in durability and to obtain a large displacement amount and a large generation power by a method wherein a planar piezoelectric is laminated on one face of a substrate, a planar piezoelectric ceramic is laminated on the other face and a resistant electric field on the other face is made larger than a resistant electric field on one face. CONSTITUTION:A planar piezoelectric ceramic A1 having a thickness of t1 is laminated on one face of a substrate 1; in addition, a planar piezoelectric ceramic A2 having a thickness of t2 is laminated on the planar ceramic A1;t1-t2>0 is satisfied. A planar piezoelectric ceramic B is laminated on the other face; the resistant electric field Ecb of the planar piezoelectric piezoelectric ceramic B and the resistant electric field Eca of the planar piezoelectric ceramics A1, A2 are set so as to satisfy Ecb>Eca. When they are laminated, the + side of polarization is set to the side of the substrate 1 at the planar piezoelectric ceramic A1 and the - side of polarization is set to the planar piezoelectric ceramic A1 at the planar piezoelectric ceramic A2. The -side of polarization is set to the side of the substrate 1 at the planar piezoelectric ceramic B. An electric field is applied to the individual planar piezoelectric ceramics A1, A2 in the same direction as their polarization direction and to the planar piezoelectric ceramic B in the direction of its polarization direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層バイモルフ型圧電素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a laminated bimorph piezoelectric element.

〔従来の技術〕[Conventional technology]

電気的エネルギーを機械的エネルギーに変換するPZT
などの圧電体を利用した屈曲変位型圧電素子として、従
来、バイモルフ型圧電素子が知られている。
PZT converts electrical energy into mechanical energy
A bimorph piezoelectric element is conventionally known as a bending displacement type piezoelectric element using a piezoelectric material such as the following.

バイモルフ型圧電素子は、例えば、第2図のように、2
枚の矩形状の圧電体10.11を分極方向が同方向とな
るように、金属板などによって形成された弾性基板12
の両面に張り合わせ、基板12を境に互いに反対方向の
電界を印加することで、一方の圧電体10を分極方向と
垂直に収縮させ、他方の圧電体11を分極方向と垂直に
伸張させ、その結果、屈曲変位するようになってQ%る
For example, as shown in FIG.
An elastic substrate 12 formed of a metal plate or the like so that two rectangular piezoelectric bodies 10 and 11 are polarized in the same direction.
By applying electric fields in opposite directions with the substrate 12 as a boundary, one piezoelectric body 10 is contracted perpendicularly to the polarization direction, and the other piezoelectric body 11 is expanded perpendicularly to the polarization direction. As a result, it becomes bent and displaced by Q%.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし このようなバイモルフ型では、一方の圧電体に
はその分極方向と同一方向に電界が印加されるカζ 他
方の圧電体にはその分極方向と逆方向の電界が印加され
るため、この逆向きの印加電界が圧電体の抗電界に近く
なると分極反転が起こり、変位量や発生力が著しく低下
するという問題があり、また、逆方向に電界をかけてい
るので、長期に使用していると分極が弱まってしまう。
However, in such a bimorph type, an electric field is applied to one piezoelectric body in the same direction as its polarization direction, and an electric field is applied to the other piezoelectric body in the opposite direction to its polarization direction. When the applied electric field in the direction approaches the coercive electric field of the piezoelectric material, polarization reversal occurs, resulting in a significant decrease in displacement and generated force.Also, since the electric field is applied in the opposite direction, long-term use is difficult. and the polarization becomes weaker.

これに対し 従来技術として特開昭59−63782に
見られるように分極方向と逆方向の電圧を印加する側の
セラミックスを抗電界の高い材料を用い、分極反転が起
こらないようにして、耐久性を向上する例がある。ただ
し この方法では変位量や発生力を大きくすることはあ
まり望めず、逆に特性が低下する場合もある。一般に素
子の変位特性を上げるため、分極方向と同方向に電圧が
かかる側のセラミックスは、抗電界Ecが小さくとも分
極反転は起こり得ないので圧電定数d31の大きな材料
が用いられる。
On the other hand, as seen in Japanese Unexamined Patent Publication No. 59-63782, as a conventional technique, a material with a high coercive electric field is used for the ceramic on the side where a voltage is applied in the opposite direction to the polarization direction, and the durability is improved by preventing polarization reversal. There are examples of improving However, with this method, it is not very possible to increase the amount of displacement or generated force, and on the contrary, the characteristics may deteriorate. Generally, in order to improve the displacement characteristics of the element, a material with a large piezoelectric constant d31 is used for the ceramic on the side to which a voltage is applied in the same direction as the polarization direction, since polarization reversal cannot occur even if the coercive electric field Ec is small.

本発明はこのような背景の下になされたもので、長期に
使用しても分極反転が起こりにくく耐久性に便法 かつ
、変位量や発生力も大きいバイモルフ型圧電素子を提供
するものである。
The present invention was made against this background, and it is an object of the present invention to provide a bimorph type piezoelectric element that is difficult to cause polarization reversal even after long-term use, is convenient for durability, and has a large amount of displacement and generated force.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、基板の一方の面に、厚さt、の第
1の板状圧電セラミックスA、  を設け、この第1の
板状圧電セラミックスA、の面上に、さらに厚さt2の
第2の板状圧電セラミックスA2を設けて、順次、板状
圧電セラミックスをn枚積層するものとし(nは2以上
の自然数であり、好ましくは2〜4である)、第n番目
の板状圧電セラミックスA。の厚さをt。とじた場合、
各板状圧電セラミックスの厚さが相互に t11t6+1>0 となる関係とし、 さらに、基板の他方の面に、厚さt8 の板状圧電セラ
ミックスBを積層獣 また、前記各板状圧電セラミックスは面方向と垂直に分
極さ汰 各板状圧電セラミックスA、〜A1には分極方
向と同一方向に電界を印加し、板状圧電セラミックスB
には分極方向と逆方向に電界を印可するよう構成し、 前記板状圧電セラミックスBの抗電界EC,が前記第1
の板状圧電セラミックスA、〜Anの抗電界Ec、より
も大きい積層バイモルフ型圧電素子である。
That is, the present invention provides a first plate-shaped piezoelectric ceramic A having a thickness of t on one surface of a substrate, and further provides a first plate-shaped piezoelectric ceramic A having a thickness of t2 on the surface of this first plate-shaped piezoelectric ceramic A. A second plate-shaped piezoelectric ceramic A2 is provided, and n pieces of plate-shaped piezoelectric ceramics are sequentially laminated (n is a natural number of 2 or more, preferably 2 to 4), and the n-th plate-shaped Piezoelectric ceramics A. The thickness of t. If you close it,
The thickness of each plate-shaped piezoelectric ceramic is set to be t11t6+1>0, and a plate-shaped piezoelectric ceramic B having a thickness of t8 is laminated on the other surface of the substrate. An electric field is applied to each of the plate-shaped piezoelectric ceramics A, ~A1 in the same direction as the polarization direction, and the plate-shaped piezoelectric ceramics B
is configured to apply an electric field in a direction opposite to the polarization direction, and the coercive electric field EC of the plate-shaped piezoelectric ceramic B is applied to the first
It is a laminated bimorph type piezoelectric element having a coercive electric field Ec larger than that of the plate-shaped piezoelectric ceramic A, ~An.

ここで、基板は可撓性、もしくは、弾性を有することが
必要であり、また、電界が印加されたときの状態で、圧
電的に不活性、即ち、伸縮しないものが選ばれる。基板
自体を電極とする場合には基板は金属である必要がある
が、圧電セラミックスと基板との間に薄膜状電極を形成
する場合には金属でなく、セラミックス、合成樹脂など
でもよい。基板の厚さは好ましくは、 IOμm〜1 
m m。
Here, the substrate needs to have flexibility or elasticity, and is selected to be piezoelectrically inactive, that is, not to expand or contract when an electric field is applied. When the substrate itself is used as an electrode, the substrate must be made of metal, but when forming a thin film electrode between the piezoelectric ceramic and the substrate, it may be made of ceramics, synthetic resin, etc. instead of metal. The thickness of the substrate is preferably IOμm~1
m m.

特に好ましくは30μm〜200μmである。Particularly preferably, the thickness is 30 μm to 200 μm.

次に、板状圧電セラミックスは、PZTに代表されるが
、これに限定されるものではない。この板状圧電セラミ
ックスは、その面方向に対して垂直すなわち厚さ方向に
分極されている。
Next, plate-shaped piezoelectric ceramics are typified by PZT, but are not limited to this. This plate-shaped piezoelectric ceramic is polarized perpendicularly to its surface direction, that is, in its thickness direction.

圧電セラミックスの1枚あたりの厚さは、好ましくは1
0μm〜1mm、特に好ましくは30μm〜200μm
がよい。
The thickness of each piezoelectric ceramic is preferably 1
0 μm to 1 mm, particularly preferably 30 μm to 200 μm
Good.

本発明ではこのよう板状圧電セラミックスが積層されて
構成される。基板の一方の面に積層される各板状圧電セ
ラミックスのそれぞれは、そのJ7さが基板から離れる
につれて薄くなるよう構成される。すなわち、基板に積
層される第1の板状圧電セラミックスのHさを【、とし
、第2、第3・・第n番Uノの厚さをt2、 tl、 
・・1.、とした場合、 t、−tn、>Oとされる。
In the present invention, such plate-shaped piezoelectric ceramics are laminated. Each of the plate-shaped piezoelectric ceramics laminated on one surface of the substrate is configured such that its J7 becomes thinner as it moves away from the substrate. That is, the height of the first plate-shaped piezoelectric ceramic laminated on the substrate is [,], and the thickness of the second, third, etc. n-th U is t2, tl,
・・1. , then t, -tn,>O.

板状圧電セラミックスの厚さが基板がら離れωにつれて
薄くすることにより、各板状圧電セラミックスに分極方
向と同一方向に同一の電圧を印加した場合、1極間隔の
狭い第n+1@目の板状圧電セラミックスにががる電界
(−電圧//!Jさ)が、電極間隔の広い第n番目の板
状圧電セラミックスにかかる電界よりも大きくなる。し
たがって、分極と垂直方向の収縮率は、第n+1番目の
板状圧電セラミックスについてのそれが、第n番目の板
状圧電セラミックスについてのそれより太きくなる。
By making the thickness of the plate-shaped piezoelectric ceramic thinner as the substrates are separated from each other by ω, when the same voltage is applied to each plate-shaped piezoelectric ceramic in the same direction as the polarization direction, the The electric field (-voltage//!J) applied to the piezoelectric ceramic becomes larger than the electric field applied to the n-th plate-shaped piezoelectric ceramic having a wide electrode interval. Therefore, the shrinkage rate in the direction perpendicular to the polarization is greater for the (n+1)th plate-shaped piezoelectric ceramic than for the n-th plate-shaped piezoelectric ceramic.

板状圧電セラミックスの積層にあたっては、基板側から
積層順で奇数番目と偶数番目とでそれぞれ分極方向が逆
となるように積層するの力(以下の理由で好適である。
When stacking plate-shaped piezoelectric ceramics, a force is applied to stack the layers so that the polarization direction is opposite between the odd-numbered layer and the even-numbered layer from the substrate side (this is preferable for the following reasons).

すなわち、積層にあたっては、各層間に電極を介挿して
、この電極を介して板状圧電セラミックスに電界を印加
する八 奇数番目と偶数番目とで分極が同一であると、
奇数番目に取り付けられる正極と、偶数番目に取り付け
られる負極とが板状圧電セラミックス間で、隣接するこ
ととなり、両者間に絶縁層を設けなければならない。こ
れに対し奇数番目と偶数番目とでそれぞれ分極方向が逆
となるように積層すると板状圧電セラミックス間に一つ
の電極を設けるだけで、その電極を隣接する板状圧電セ
ラミックス双方用の負極あるいは正極として共用できる
というメリットがあり、回路が簡略化できる。
In other words, when laminating layers, an electrode is inserted between each layer and an electric field is applied to the piezoelectric ceramic plate through this electrode.8 If the polarization is the same between the odd and even layers,
The odd-numbered positive electrode and the even-numbered negative electrode are adjacent to each other between the plate-shaped piezoelectric ceramics, and an insulating layer must be provided between them. On the other hand, if the odd-numbered and even-numbered piezoelectric ceramics are stacked so that the polarization direction is opposite, only one electrode is provided between the piezoelectric ceramic plates, and that electrode can be used as the negative or positive electrode for both adjacent piezoelectric ceramic plates. It has the advantage that it can be shared as a single device, and the circuit can be simplified.

このような電極は、焼結した板状圧電セラミックスの両
面に金属ペーストを印刷塗布したのち焼付ける方法、あ
るいはスパッタ゛リングなどのPVD法による圧電セラ
ミックス面への金属蒸着などによる方法で形成される。
Such electrodes are formed by printing and applying a metal paste on both sides of a sintered plate-shaped piezoelectric ceramic and then baking it, or by depositing metal on the piezoelectric ceramic surface using a PVD method such as sputtering.

さらに、基板の他方の面に板状圧電セラミックスBを設
ける力\ その抗電界Ec、は、第1から第n番目の板
状圧電セラミックスA、〜Anの抗電界Ec、よりも大
きい。
Furthermore, the force for providing the plate-shaped piezoelectric ceramic B on the other surface of the substrate \ The coercive electric field Ec thereof is larger than the coercive electric field Ec of the first to nth plate-shaped piezoelectric ceramics A, ~An.

この結果、基板の他方の面に板状圧電セラミックスA、
を設けた場合に比べて、分極方向と逆方向に印加される
ことにより誘起される分極反転が起こりにくくなり、耐
久性に優れると同時に素子全体としてより高い電圧の印
加が可能となるという利点が生じる。
As a result, the plate-shaped piezoelectric ceramic A,
Compared to the case where a voltage is applied in the opposite direction to the polarization direction, the polarization reversal induced by the polarization is less likely to occur, which has the advantage of superior durability and the ability to apply a higher voltage to the entire device. arise.

ここで、抗電界とは、分極方向と逆方向の電界を印加す
る場合、ある一定の電界を越えると分極反転が起こるが
、その時の電界をいう。
Here, the coercive electric field refers to the electric field at which polarization reversal occurs when a certain electric field is exceeded when an electric field is applied in the opposite direction to the polarization direction.

また、板状圧電セラミックスBと前記第1の板状圧電セ
ラミックスA、の分極方向を同一方向とするのが、回路
構成を容易にする上で好適である。
Further, it is preferable that the polarization directions of the plate-shaped piezoelectric ceramic B and the first plate-shaped piezoelectric ceramic A are the same in order to facilitate the circuit configuration.

〔作用〕[Effect]

本発明では、板状圧電セラミックスを複数枚積層したこ
とで、大きな変位量と、発生力を得ることが可能である
。また、圧電セラミックスAには電界を分極方向と同一
・方向に印加するので、分極反転という問題は起こり得
す、また、圧電セラミックスBの抗電界が大きいため、
素子全体としては、大きな電圧を印加できる。
In the present invention, by laminating a plurality of plate-shaped piezoelectric ceramics, it is possible to obtain a large amount of displacement and a large amount of generated force. In addition, since an electric field is applied to piezoelectric ceramic A in the same direction as the polarization direction, the problem of polarization reversal may occur.Also, since the coercive electric field of piezoelectric ceramic B is large,
A large voltage can be applied to the element as a whole.

本発明の素子は、例えば、圧電アクチュエータ、振動子
などとして使用できる。
The element of the present invention can be used, for example, as a piezoelectric actuator, a vibrator, and the like.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on FIG.

リン青銅からなる基板1の一方の面に、第1の板状圧電
セラミックスA、が設けら帳 さらに第1の板状圧電セ
ラミックス2に第2の板状圧電セラミックスA2が設け
られている。
A first plate-shaped piezoelectric ceramic A is provided on one surface of a substrate 1 made of phosphor bronze.Furthermore, a second plate-shaped piezoelectric ceramic A2 is provided on the first plate-shaped piezoelectric ceramic 2.

また、基板lの他方の面に第3の板状圧電セラミックス
Bが設けられている。この板状圧電セラミックスBの抗
電界Ec−よ10 k V / c m、  前記第1
.2の板状圧電セラミックスAn  A、の筑電界Ec
、は5kV/cmで、 ECb>EC@ を満たしている。
Further, a third plate-shaped piezoelectric ceramic B is provided on the other surface of the substrate l. The coercive electric field Ec of this plate-shaped piezoelectric ceramic B is 10 kV/cm, and the first
.. 2. Chiku electric field Ec of plate-shaped piezoelectric ceramics An A,
, is 5kV/cm and satisfies ECb>EC@.

ここで、第11  第2の板状圧電セラミックスAA2
はいずれも、 Pb (Mg+7Jb2、s) s、xtsTis a
vsZrs、taOxを↓成分とする化合物の焼結体か
らなり、圧電定数d、−380x 10−12 m/V
で、−力板状圧電セラミックスBの主成分は、 Pb (Mg+73Nb2,3) @ 1t5Tis、
ztsZrs、asox+s、52Mn02 で、圧電定数d3.=240x 11”m/Vである。
Here, the 11th second plate-shaped piezoelectric ceramic AA2
are both Pb (Mg+7Jb2, s) s, xtsTis a
vsZrs, made of a sintered body of a compound containing taOx as a component, piezoelectric constant d, -380x 10-12 m/V
The main components of the plate-shaped piezoelectric ceramic B are Pb (Mg+73Nb2,3) @ 1t5Tis,
ztsZrs, asox+s, 52Mn02, piezoelectric constant d3. =240x 11"m/V.

いずれも両面に銀ペーストを印刷塗布し焼付けた後、面
方向と垂直に分極を施しである。
In both cases, silver paste is printed and applied on both sides, baked, and then polarized perpendicular to the surface direction.

そして、基板11  第1の板状圧電セラミックスA2
、第2の板状圧電セラミックスA8、第3の板状圧電セ
ラミックスBはそれぞれ接着剤で接着される。
Then, the substrate 11 first plate-shaped piezoelectric ceramic A2
, the second plate-shaped piezoelectric ceramic A8, and the third plate-shaped piezoelectric ceramic B are each bonded with an adhesive.

積層にあたり第1の板状圧電セラミックスA。First plate-shaped piezoelectric ceramic A for lamination.

でIL  分極の+側が基板1側となるようにし、第2
の板状圧電セラミックスA2では、分極の一側が第1の
板状圧電セラミックスA、側となるようにしt4  ま
た、第3の板状圧電セラミックスBは分極の一側が基板
l側となるようにし、この結果、分極方向が第1の板状
圧電セラミックスA、と第3の板状圧電セラミックスB
の分極方向が同方向となっている。
so that the + side of the IL polarization is on the substrate 1 side, and
In the plate-shaped piezoelectric ceramic A2, one side of polarization is set to the first plate-shaped piezoelectric ceramic A, t4, and in the third plate-shaped piezoelectric ceramic B, one side of polarization is set to the substrate l side, As a result, the polarization direction is the first plate-shaped piezoelectric ceramic A and the third plate-shaped piezoelectric ceramic B.
The polarization directions of the two are in the same direction.

そして、第1の板状圧電セラミックスAIと第2の板状
圧電セラミックスA2との間の電極Slと、第3の板状
圧電セラミックスBの基板とは反対側の電極S、とをそ
れぞれ電源4の負極に接続し、電極を兼ねた基板1と、
第2の板状圧電セラミックスA2における第1の板状圧
電セラミックス2とは反対側の面の電極S2にそれぞれ
電源4の正極を接続し 各板状圧電セラミックスAn 
 A、には分極方向と同一方向に、板状圧電セラミック
スBには分極方法と逆方向に電界を印加した これにより、各板状圧電セラミックスAn  A。
Then, the electrode Sl between the first plate-shaped piezoelectric ceramic AI and the second plate-shaped piezoelectric ceramic A2, and the electrode S on the side opposite to the substrate of the third plate-shaped piezoelectric ceramic B are connected to a power source 4, respectively. a substrate 1 which is connected to the negative electrode of and also serves as an electrode;
The positive electrode of the power source 4 is connected to the electrode S2 of the second plate-shaped piezoelectric ceramic A2 on the opposite side to the first plate-shaped piezoelectric ceramic 2, and each plate-shaped piezoelectric ceramic An
An electric field was applied to A in the same direction as the polarization direction, and to plate-shaped piezoelectric ceramics B in the opposite direction to the polarization method.As a result, each of the plate-shaped piezoelectric ceramics AnA.

が収縮し、板状圧電セラミックスBが伸張するため、素
子全体が屈曲変位しな 基板1の厚さ1.μへ 第1の板状圧電セラミックスA
、の厚さt、μ瓜 第2の板状圧電セラミックスA2の
厚さt2μへ 第3の板状圧電セラミックスBの厚さt
8μmを適宜選択し、変位量δμm、発生力F (g)
を測定した なお、印加電圧Vは、圧電セラミックスB
に印加される電界が抗電界の50%となるように設定し
た 結果を第1表に示す。なお、 t、は、素子全体の
厚さであり、素子の幅は10mm、  駆動長さは20
mmと一定とした。
shrinks and the plate-shaped piezoelectric ceramic B expands, so that the entire element does not undergo bending displacement.The thickness of the substrate 1 is 1. To μ First plate-shaped piezoelectric ceramic A
To the thickness t, μ of the second plate-shaped piezoelectric ceramic A2, t2μ, to the thickness t of the third plate-shaped piezoelectric ceramic B
Select 8μm appropriately, displacement amount δμm, generated force F (g)
The applied voltage V was measured for piezoelectric ceramics B.
Table 1 shows the results when the electric field was set to be 50% of the coercive electric field. Note that t is the thickness of the entire element, the width of the element is 10 mm, and the driving length is 20 mm.
It was set as constant mm.

(本頁、以下余白) 第1表 ここで比較例1は従来技術のひとつで分極方向と逆方向
に電界が印加されるセラミックスに抗電界の高い材料を
用いた改良バイモルフの測定(Lである。
(This page, blank space below) Table 1 Here, Comparative Example 1 is one of the conventional techniques. Measurement of an improved bimorph using a material with a high coercive electric field in ceramics where an electric field is applied in the opposite direction to the polarization direction (L .

これに対し、本発明による積層バイモルフ型圧電素fの
実施例1は、比較例2に比べて、大きな変位量と発生力
を示し、圧電セラミックスA2のJ7さを適当な厚さに
変えた実施例2は、さらに大きな変位量と発生力を示す
ことが判る。
On the other hand, Example 1 of the laminated bimorph type piezoelectric element f according to the present invention exhibited a larger displacement amount and generated force than Comparative Example 2, and the J7 thickness of the piezoelectric ceramic A2 was changed to an appropriate thickness. It can be seen that Example 2 shows an even larger displacement amount and generated force.

〔発明の効果〕〔Effect of the invention〕

本発明では、従来のパイモルフル圧電素子−に比較して
、板状圧電セラミックスを複数枚積層したことで、大き
な変位量と、発生力を得ることができる。
In the present invention, by laminating a plurality of plate-shaped piezoelectric ceramics, it is possible to obtain a large amount of displacement and a large amount of generated force, compared to the conventional pimorphous piezoelectric element.

しかも、本発明では、基板の一方の面において板状圧電
セラミックスの厚さが基板から離れるにつれて薄<シた
ため、各板状圧電セラミックスに同じ電圧を印加した場
合、電極間隔の狭い第n十1番目の板状圧電セラミック
スにかがる電界(=電圧/J’!さ)が、電極間隔の広
い第n番目の板状圧電セラミックスにかかる電界よりも
大きくなる。
Moreover, in the present invention, the thickness of the plate-shaped piezoelectric ceramics becomes thinner as the distance from the substrate increases on one surface of the substrate, so that when the same voltage is applied to each plate-shaped piezoelectric ceramic, the nth The electric field (=voltage/J'!) applied to the th plate-shaped piezoelectric ceramic is larger than the electric field applied to the n-th plate-shaped piezoelectric ceramic having a wide electrode interval.

したがって、分極と垂直方向の収縮率は、第n+1番目
の板状圧電セラミックスについてのそれが、第n番目の
板状圧電セラミックスについてのそれより大きくなる。
Therefore, the shrinkage rate in the direction perpendicular to the polarization of the (n+1)th plate-shaped piezoelectric ceramic is greater than that of the n-th plate-shaped piezoelectric ceramic.

また、前記板状圧電セラミックスBの抗電界EC5が前
記第1から第n番目の板状圧電セラミックスA、〜A、
の抗電界Ec、よりも大きいため、分極方向と逆方向に
電界が印加されるセラミックスBの分極反転が起こらず
、耐久性に優れた素子を得ることが出来る。また、素子
全体に印加する電圧を上げることが可能となることから
、より大きな変位量、発生力が得られる。
Further, the coercive electric field EC5 of the plate-shaped piezoelectric ceramics B is the first to n-th plate-shaped piezoelectric ceramics A, ~A,
Since the coercive electric field Ec is larger than the coercive electric field Ec, polarization reversal of the ceramic B to which an electric field is applied in the direction opposite to the polarization direction does not occur, and an element with excellent durability can be obtained. Furthermore, since it becomes possible to increase the voltage applied to the entire element, a larger displacement amount and generated force can be obtained.

という効果が生じる。This effect occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層バイモルフ型圧電素子の一例を示
した断面図、第2図は従来のバイモルフ型圧電素子の一
例を示した断面図である。 A。 B ・ S、 ふ。 第1の板状圧電セラミックス 第2の板状圧電セラミックス 第3の板状圧電セラミックス 電源 S3  電極
FIG. 1 is a sectional view showing an example of a laminated bimorph piezoelectric element of the present invention, and FIG. 2 is a sectional view showing an example of a conventional bimorph piezoelectric element. A. B・S, huh. First plate-shaped piezoelectric ceramics Second plate-shaped piezoelectric ceramics Third plate-shaped piezoelectric ceramics Power supply S3 electrode

Claims (1)

【特許請求の範囲】[Claims] (1)基板の一方の面に、厚さt_1の第1の板状圧電
セラミックスA_1を設け、この第1の板状圧電セラミ
ックスA_1の面上に、さらに厚さt_2の第2の板状
圧電セラミックスA_2を設けて、順次、板状圧電セラ
ミックスをn枚積層するものとし(nは2以上の自然数
)、第n番目の板状圧電セラミックスA_nの厚さをt
_nとした場合、各板状圧電セラミックスの厚さが相互
に t_n−t_n_+_1>0 となる関係とし、 さらに、基板の他方の面に、厚さt_Bの板状圧電セラ
ミックスBを設け、 また、前記各板状圧電セラミックスは面方向と垂直に分
極され、板状圧電セラミックスA_1〜A_nには分極
方向と同一方向に電界を印加するようにし、板状圧電セ
ラミックスBには分極方向と逆方向に電界を印加するよ
うに構成し、 前記板状圧電セラミックスBの抗電界Ec_bが前記第
1から第n番目の板状圧電セラミックスA_1〜A_n
の抗電界Ec_aよりも大きいことを特徴とする積層バ
イモルフ型圧電素子。
(1) A first plate-shaped piezoelectric ceramic A_1 with a thickness t_1 is provided on one surface of the substrate, and a second plate-shaped piezoelectric ceramic with a thickness t_2 is further provided on the surface of this first plate-shaped piezoelectric ceramic A_1. Ceramic A_2 is provided, and n pieces of plate-shaped piezoelectric ceramics are sequentially laminated (n is a natural number of 2 or more), and the thickness of the n-th plate-shaped piezoelectric ceramic A_n is t.
_n, the thickness of each plate-shaped piezoelectric ceramic is in a relationship such that t_n-t_n_+_1>0, and further, a plate-shaped piezoelectric ceramic B having a thickness t_B is provided on the other surface of the substrate, and the above-mentioned Each plate-shaped piezoelectric ceramic is polarized perpendicular to the surface direction, and an electric field is applied to the plate-shaped piezoelectric ceramics A_1 to A_n in the same direction as the polarization direction, and an electric field is applied to the plate-shaped piezoelectric ceramic B in the opposite direction to the polarization direction. is configured to apply a coercive electric field Ec_b of the plate-shaped piezoelectric ceramics B to the first to n-th plate-shaped piezoelectric ceramics A_1 to A_n.
A laminated bimorph piezoelectric element characterized in that the coercive electric field Ec_a is larger than the coercive electric field Ec_a.
JP2152270A 1990-06-11 1990-06-11 Laminated bimorph type piezoelectric element Pending JPH0443685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152270A JPH0443685A (en) 1990-06-11 1990-06-11 Laminated bimorph type piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152270A JPH0443685A (en) 1990-06-11 1990-06-11 Laminated bimorph type piezoelectric element

Publications (1)

Publication Number Publication Date
JPH0443685A true JPH0443685A (en) 1992-02-13

Family

ID=15536828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152270A Pending JPH0443685A (en) 1990-06-11 1990-06-11 Laminated bimorph type piezoelectric element

Country Status (1)

Country Link
JP (1) JPH0443685A (en)

Similar Documents

Publication Publication Date Title
JP3185226B2 (en) Driving method of piezoelectric bimorph element and piezoelectric bimorph element
JP2842448B2 (en) Piezoelectric / electrostrictive film type actuator
JP4295238B2 (en) Piezoelectric sound generator
GB2242312A (en) Laminated displacement device
US20060049715A1 (en) Method and appartus for driving electro-mechanical transducer
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JPH0443684A (en) Laminated bimorph type piezoelectric element
JPS62298189A (en) Piezoelectric actuator
JPH0443685A (en) Laminated bimorph type piezoelectric element
JPH03273870A (en) Piezoelectric actuator
JPH046885A (en) Laminated unimorph type piezoelectric element
JPH046884A (en) Laminated unimorph type piezoelectric element
JPS61150287A (en) Piezoelectric displacement device
JPS5930543Y2 (en) Stacked electrostrictive drive device
JP2921310B2 (en) Multilayer piezoelectric actuator
JPH0685451B2 (en) Multilayer piezoelectric bimorph element and method of using the same
JPH0639468Y2 (en) Ceramics actuator
JPH0739252Y2 (en) Piezoelectric actuator
JP2791838B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP3116176B2 (en) Multilayer piezoelectric actuator
JPH01261879A (en) Lamination type displacement element
JP2008300430A (en) Multilayer piezoelectric element, and manufacturing method thereof
JPH01226187A (en) Method of driving laminated piezoelectric element
JP3280924B2 (en) Piezoelectric / electrostrictive actuator
CN114695640A (en) Piezoelectric element