JPH0468564A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0468564A
JPH0468564A JP2182068A JP18206890A JPH0468564A JP H0468564 A JPH0468564 A JP H0468564A JP 2182068 A JP2182068 A JP 2182068A JP 18206890 A JP18206890 A JP 18206890A JP H0468564 A JPH0468564 A JP H0468564A
Authority
JP
Japan
Prior art keywords
trench
forming
ion implantation
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182068A
Other languages
Japanese (ja)
Inventor
Masayoshi Sasaki
佐々木 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2182068A priority Critical patent/JPH0468564A/en
Publication of JPH0468564A publication Critical patent/JPH0468564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of process by simplifying the process of forming an element isolation layer for forming a C-MOS which possesses an n-channel field effect transistor (n-MOS-FET) and a p-channel field-effect transistor (p- MOS-FET) on the same semiconductor substrate. CONSTITUTION:After forming element isolation trenches 4 on a semiconductor substrate 1, respective conductivity type channel stopper layers 5 and 6 are formed, then, an insulating layer is embedded in each trench 4. The insulating layer is etched back so as to form an element isolation separating layer 8, then, ions are implanted for forming a well region which forms respective conductivity type regions 10 and 11 having the trench 4 as the target. Therefore, conventional special target formation is not necessary for each well region formation. Since the well region formation is performed after the trench is formed, for, example, punch through prevention and ion implantation for Vth adjustment can be carried out using the same mask as the ion implantation mask simultaneously with the ion implantation process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製法、特に共通の半導体基体に
、nチャンネル電界効果トランジスタ(nMC)S−F
ET)とPチャンネル電界効果トランジスタ(pMO3
−FET)とを有する例えばいわゆるC−MOSが形成
された半導体装置の製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, in which an n-channel field effect transistor (nMC) S-F is formed on a common semiconductor substrate.
ET) and P-channel field effect transistor (pMO3
-FET), for example, in which a so-called C-MOS is formed.

〔発明の概要〕[Summary of the invention]

本発明は半導体装置の製法において、半導体基体に、そ
れぞれ回路素子形成部となる第1導電型領域及び第2導
電型領域を有し、素子分離用トレンチが設けられて成る
半導体装置の製法において、この半導体基体に素子分離
用トレンチを形成し、このトレンチ内に絶縁材を充填し
た後、第1導電型領域と第2導電型領域とを所定部に形
成するためのウェル領域形成の不純物のイオン注入を行
うイオン注入工程とを経ることによって、製造方法の簡
易化、特に製造工程数の減少化をはかる。
The present invention relates to a method for manufacturing a semiconductor device, in which a semiconductor substrate has a first conductivity type region and a second conductivity type region each serving as a circuit element formation portion, and an element isolation trench is provided. After forming an element isolation trench in this semiconductor substrate and filling the trench with an insulating material, impurity ions are used to form a well region for forming a first conductivity type region and a second conductivity type region in predetermined portions. By performing the ion implantation process, the manufacturing method is simplified, and in particular, the number of manufacturing steps is reduced.

〔従来の技術〕[Conventional technology]

従来、第4図にその製造工程図を示すように、例えばC
−MOSを有する半導体集積回路を製造する場合、先ず
第4図Aに示すように、p型またはn型の高比抵抗半導
体より成る半導体基体(1)例えばSi基体を用意し、
その表面に後述するマークを形成するための材料層(2
2)を、例えば基体(1)の表面熱酸化によって形成す
る。
Conventionally, as shown in the manufacturing process diagram in Fig. 4, for example, C
- When manufacturing a semiconductor integrated circuit having a MOS, first, as shown in FIG. 4A, a semiconductor substrate (1) made of a p-type or n-type high resistivity semiconductor, such as a Si substrate, is prepared;
A material layer (2) for forming marks to be described later on its surface.
2) is formed, for example, by surface thermal oxidation of the substrate (1).

次に材料層(22)に対して、第4図Bに示すように、
フォトリソグラフィを用いたRIE(反応性イオンエツ
チング)によるパターンエツチングを行って、所定位置
に所定形状のターゲラ) (23)を形成し、このマー
ク形成のフォトリソグラフィで用いたフォトレジストを
除去し、その後このターゲット(23)を目印として、
例えばP型ウェルとn型ウェルとをそれぞれ形成して、
各ウェルによるP型頭域(24)とn型領域(25)と
を形成する。これら各領域(24)及び(25)、即ち
各ウェル領域の形成は、ターゲットを目印に先ず例えば
n型ウェルを形成するためのP型不純物のイオン注入作
業を行い、次に他方のn型ウェルを形成するためのn型
不純物のイオン注入作業を行う。その後これら注入不純
物の活性化と拡散の熱処理を行って、各n型及びn型ウ
ェル領域によるn型頭域(24)及びn型領域(25)
を形成する。
Next, as shown in FIG. 4B, for the material layer (22),
Pattern etching is performed by RIE (reactive ion etching) using photolithography to form a target layer (23) of a predetermined shape at a predetermined position, and the photoresist used in the photolithography for forming this mark is removed, and then With this target (23) as a landmark,
For example, by forming a P-type well and an n-type well, respectively,
A P-type head region (24) and an N-type region (25) are formed by each well. To form each of these regions (24) and (25), that is, each well region, first perform ion implantation of P-type impurities to form an n-type well, using the target as a mark, and then implant the other n-type well. An ion implantation operation of n-type impurity is performed to form a . After that, heat treatment for activation and diffusion of these implanted impurities is performed to form an n-type head region (24) and an n-type region (25) by each n-type and n-type well region.
form.

その後ターゲラ) (23)を目印に、所定位置例えば
各領域(24)及び(25)間、更に各領域(24)及
び(25)内の所定部にトレンチ(30)をフォトリソ
グラフィを用いたRIEによって形成する。このトレン
チ(30)の形成は、例えば第4図Cに示すように、熱
酸化によりSiO2層(2ε)を例えば1000人の厚
さに全面的に形成して後、これの上に1500人の厚さ
に多結晶シリコン層(27)を形成し、フォトレジスト
(28)を全面的に塗布し、これを露光現像して、トレ
ンチ形成部に芯(30)を穿設する。
After that, using photolithography to create trenches (30) at predetermined positions, for example, between each region (24) and (25), and further at a predetermined part within each region (24) and (25), using Tagela (23) as a landmark. formed by For example, as shown in FIG. A polycrystalline silicon layer (27) is formed to a certain thickness, a photoresist (28) is applied over the entire surface, and this is exposed and developed to form a core (30) in the trench forming area.

そして、第4図りに示すように、RIEによって深さ例
えば5000人にトレンチ(30)を形成した後、各ト
レンチ(30)の内面から、pチャンネルストップ領域
及びnチャンネルストップ領域形成のための各n型及び
n型の不純物のイオン注入を行う。
Then, as shown in the fourth diagram, after forming trenches (30) to a depth of, for example, 5,000 mm by RIE, each trench (30) for forming a p-channel stop region and an n-channel stop region is formed from the inner surface of each trench (30). Ion implantation of n-type and n-type impurities is performed.

その後第4図Eに示すように、トレンチ(30)内を含
んで熱酸化等によりSiO□膜(32)を形成部だ後、
トレンチ(30)内を含んで全面的にSiO□等より成
る絶縁材(33A)を例えばCVD (化学的気相成長
)法によって形成する。
After that, as shown in FIG. 4E, after forming a SiO□ film (32) by thermal oxidation, etc., including the inside of the trench (30),
An insulating material (33A) made of SiO□ or the like is formed on the entire surface including the inside of the trench (30) by, for example, CVD (chemical vapor deposition).

その後、第4図Fに示すように、RIE等の異方性エツ
チングによるエッチバックを行って、素子分離層(33
)を形成した後、SiO2層(26)及び多結晶シリコ
ン層(27)を除去する。
Thereafter, as shown in FIG.
), the SiO2 layer (26) and the polycrystalline silicon layer (27) are removed.

次に第4図Gに示すように、パンチスルー防止のために
、n型及びn型領域(24)及び(25)にそれぞれP
型及びn型不純物の比較的深いイオン注入を行って、更
にvth調整用の比較的浅いイオン注入を行って両P型
及びn型不純物導入領域(34)及び(35)を形成す
る。
Next, as shown in FIG. 4G, in order to prevent punch-through, P is applied to the n-type and n-type regions (24) and (25), respectively.
Relatively deep ion implantation of type and n type impurities is performed, and relatively shallow ion implantation for vth adjustment is performed to form both P type and n type impurity implanted regions (34) and (35).

上述したように、通常一般のトレンチ素子分離型の半導
体装置では、トレンチ形成前にP型頭域(24)及びn
型領域(25)を構成する各ウェル領域を形成するもの
であり、この場合は各領域(24)及び(25)を形成
して後に、トレンチ(30)の形成を行うことから、そ
の位置合わせのための目印即ちターゲット(23)を必
要とし、これを形成するための第4図Aで説明したよう
な煩雑な作業を必要とする。
As mentioned above, in a general trench element isolation type semiconductor device, the P-type head region (24) and n
Each well region constituting the mold region (25) is formed, and in this case, since the trenches (30) are formed after each region (24) and (25) are formed, their alignment is necessary. A mark or target (23) is required for this purpose, and the complicated work described in FIG. 4A is required to form this.

また、上述の方法による場合、各MO3形成部の領域(
24)及び(25)に対する闇値電圧vthの調整のた
めのイオン注入及びパンチスルー防止のイオン注入の工
程が、ウェル形成のイオン注入工程とは別工程で行われ
ることから、その作業工程数が多くなるという問題点が
ある。
In addition, in the case of the above method, the area of each MO3 forming part (
24) and (25), the ion implantation process for adjusting the dark value voltage vth and the ion implantation process for punch-through prevention are performed in separate processes from the ion implantation process for well formation, so the number of work steps is reduced. The problem is that there are too many.

尚、従来のトレンチ分離によらず、深い熱酸化により絶
縁層を形成してこれを分離絶縁層いわゆるLOGOSと
する半導体装置の製法が広く用いられている。この場合
は第5図Aに示すように、例えば基体(1)上に540
2層(51)を介してSiN層(52)が形成された酸
化マスク層(53)を用いて、これをマスクとしてイオ
ン注入を行ってチャンネルストッパーとウェル形成の為
の不純物注入を行い、その後第5図Bに示すように、マ
スク層(53)をマスクとして熱酸化を行って分離絶縁
層(54)を形成する方法がある。
Note that, instead of conventional trench isolation, a semiconductor device manufacturing method is widely used in which an insulating layer is formed by deep thermal oxidation and this is used as an isolation insulating layer, so-called LOGOS. In this case, as shown in FIG. 5A, for example, 540
Using an oxide mask layer (53) with a SiN layer (52) formed through the second layer (51), ion implantation is performed using this as a mask to implant impurities for forming a channel stopper and well, and then As shown in FIG. 5B, there is a method of forming an isolation insulating layer (54) by performing thermal oxidation using a mask layer (53) as a mask.

この場合は、上述したターゲットを形成する必要がない
という利点を有するが、この場合分離絶縁層(54)を
形成する際の、長時間の熱酸化によって注入不純物拡散
が大となる。このようにして形成されたチャンネルスト
ップ領域は素子形成部に大きく入り込むことになって、
MOS−FETの狭チャンネル効果が大となるという問
題がある。
This case has the advantage that it is not necessary to form the above-mentioned target, but in this case, the implanted impurity diffusion increases due to the long thermal oxidation when forming the isolation insulating layer (54). The channel stop region formed in this way largely penetrates into the element forming area,
There is a problem in that the narrow channel effect of the MOS-FET becomes large.

これに対し、第6図に示すように、分離絶縁層(54)
を形成した後、この分離絶縁層(54)を貫通するイオ
ン注入を行ってチャンネルストッパーを形成し、かつ各
ウェル領域を形成する方法が考えられるが、この場合分
離絶縁層(54)下ではチャンネルストッパー特性を満
足し、かつMOS−FET形成部の特性を満足する濃度
分布を得るようにイオン注入を行うことが必要となり、
このようなイオン注入条件の設定は難しく、再現性良く
形成することが難しいという問題がある。
On the other hand, as shown in FIG.
A conceivable method is to perform ion implantation through the isolation insulating layer (54) to form a channel stopper and to form each well region. It is necessary to perform ion implantation so as to obtain a concentration distribution that satisfies the stopper characteristics and also satisfies the characteristics of the MOS-FET forming part.
There is a problem in that it is difficult to set such ion implantation conditions and it is difficult to form with good reproducibility.

[発明が解決しようとする課題〕 本発明による半導体装置の製法は、上述した問題を解決
して、素子分離層形成工程の簡易化をはかり、目的とす
る特性の半導体装置を再現性よく確実に得ることができ
るようにする。
[Problems to be Solved by the Invention] The method for manufacturing a semiconductor device according to the present invention solves the above-mentioned problems, simplifies the process of forming an element isolation layer, and reliably produces a semiconductor device with desired characteristics with good reproducibility. be able to obtain it.

〔課題を解決するための手段] 本発明による半導体装置の製法の一例の工程図を第1図
A−Hに示す。
[Means for Solving the Problems] Process diagrams of an example of a method for manufacturing a semiconductor device according to the present invention are shown in FIGS. 1A-H.

本発明は、半導体基体(1)に、それぞれ回路素子形成
部となる第1導電型領域及び第2導電型領域を有し、素
子分離用トレンチが設けられて成る半導体装置の製法に
おいて、第1図Aに示すようにこの半導体基体(1)に
素子分離用トレンチ(4)を形成する工程と、第1図C
に示すように、このトレンチ(4)内に絶縁材(8A)
を充填する工程と、その後第1図F及びGに示すように
、第1導電型領域(10)と第2導電型領域(11)と
を所定部に形成するためのウェル領域形成の不純物のイ
オン注入を行うイオン注入工程とを経る。
The present invention provides a method for manufacturing a semiconductor device in which a semiconductor substrate (1) has a first conductivity type region and a second conductivity type region, each of which serves as a circuit element formation portion, and is provided with an element isolation trench. A step of forming an element isolation trench (4) in this semiconductor substrate (1) as shown in FIG.
As shown in this trench (4), insulating material (8A) is placed inside this trench (4).
Thereafter, as shown in FIG. An ion implantation process is performed to perform ion implantation.

〔作用〕[Effect]

上述したように、本発明による半導体装置の製法によれ
ば、半導体基体(1)に素子分離用トレンチ(4)を形
成した後、各導電型チャンネルストッパー層(5)及び
(6)を形成し、その後各トレンチ(4)内に絶縁層(
8A)を埋込んでこれをエッチハックして素子分離層(
8)を形成し、その後各導電型領域(10)及び(11
)を形成するウェル領域形成のイオン注入を行うので、
ウェル領域の形成に当っては、トレンチ(4)を目印に
即ちターゲットとして、所定位置ムこ形成することがで
きる。従って、従来のように各ウェル領域形成のための
ターゲットを特別に形成する必要がない。またこのウェ
ル領域形成をトレンチ形成後に行うので、このイオン注
入工程時に、このイオン注入マスクと同一マスクを用い
て、例えばパンチスルー防止及びvth調整用のイオン
注入を行うことができるので、工程数を減少させ、作業
の簡易化を計ることができる。
As described above, according to the method for manufacturing a semiconductor device according to the present invention, after forming the element isolation trench (4) in the semiconductor substrate (1), the channel stopper layers (5) and (6) of each conductivity type are formed. , then an insulating layer (
8A) and etch-hack it to form an element isolation layer (
8), and then each conductivity type region (10) and (11
), ion implantation is performed to form a well region.
In forming the well region, a well region can be formed at a predetermined position using the trench (4) as a mark, that is, as a target. Therefore, there is no need to specially form a target for forming each well region as in the conventional case. In addition, since this well region formation is performed after trench formation, the same ion implantation mask can be used during this ion implantation process to perform ion implantation for punch-through prevention and vth adjustment, for example, reducing the number of steps. This can simplify the work.

またイオン注入を行った後にはLOGO5形成等の長時
間の熱酸化工程がないため、不純物の拡散を抑制するこ
とができ、チャンネルストップ領域の素子形成部への入
り込みを抑制でき、MOS−FETの狭チャンネル効果
を抑制することができる。
Furthermore, since there is no long-term thermal oxidation process such as LOGO5 formation after ion implantation, it is possible to suppress the diffusion of impurities and to prevent the channel stop region from entering the element formation area, thereby suppressing the MOS-FET. Narrow channel effects can be suppressed.

C実施例〕 以下、本発明半導体装置の製法の一例の製造工程を第1
図A−Hを参照して詳細に説明する。
Example C] Hereinafter, the manufacturing process of an example of the method for manufacturing the semiconductor device of the present invention will be explained as follows.
This will be explained in detail with reference to Figures AH.

先ず第1図Aに示すように、p型またはn型の高比抵抗
半導体より成る半導体基体(1)例えばSi基体を用意
し、その表面の所定部に素子分離用トレンチ(4)をフ
ォトリソグラフィを用いたRIEによって形成する。こ
のトレンチ(4)の形成は、例えば熱酸化により5i(
h等より成る絶縁層(2)を例えば1000人の厚さに
全面的に形成して後、これの上に1500人の厚さに多
結晶半導体層(3)を形成する。そしてこの上にフォト
レジストを全面的に塗布し、これを露光現像してフォト
レジストパターンを形成し、このフォトレジストパター
ンをマスクとして多結晶半導体層(3)、絶縁層〔2)
及び基体(])をRIE等の異方性エツチングによって
所定の深さ例えば5000人の深さにトレンチ(4)を
形成する。
First, as shown in FIG. 1A, a semiconductor substrate (1), for example, a Si substrate, made of a p-type or n-type high resistivity semiconductor is prepared, and an element isolation trench (4) is formed in a predetermined portion of its surface by photolithography. It is formed by RIE using. Formation of this trench (4) is carried out by thermal oxidation, for example, 5i (
After forming an insulating layer (2) made of a material such as H on the entire surface to a thickness of, for example, 1,000 layers, a polycrystalline semiconductor layer (3) to a thickness of 1,500 layers is formed thereon. Then, photoresist is applied over the entire surface, and this is exposed and developed to form a photoresist pattern. Using this photoresist pattern as a mask, the polycrystalline semiconductor layer (3) and the insulating layer [2] are formed.
Then, a trench (4) is formed on the substrate (2) to a predetermined depth, for example, 5000 mm, by anisotropic etching such as RIE.

次に、各トレンチ(4)の内面から、Pチャンネルスト
ップ領域及びnチャンネルストップ領域形成のための各
P型及びn型の不純物のイオン注入を行う。この場合第
1図Bに示すように、先ず第2導電型例えばn型領域を
フオトレジス) (5R)を形成した後、このフォトレ
ジスト(5R)と多結晶半導体層(3)、絶縁層(2)
とをマスクとしてトレンチ(4)内に選択的に、第1導
電型例えばp型のボロンB等の不純物をイオン注入して
第1導電型チャンネルストッパー層(5)を形成する。
Next, ions of P-type and n-type impurities are implanted from the inner surface of each trench (4) to form a P-channel stop region and an n-channel stop region. In this case, as shown in FIG. 1B, first, a photoresist (5R) of the second conductivity type, for example, an n-type region, is formed, and then this photoresist (5R), a polycrystalline semiconductor layer (3), and an insulating layer (2) are formed. )
A channel stopper layer (5) of a first conductivity type is formed by selectively ion-implanting an impurity of a first conductivity type, for example, p-type boron B, into the trench (4) using the same as a mask.

その後P型領域上を同様にフォトレジストで覆ってこの
フォトレジストと多結晶半導体層(3)及び絶縁層(2
)とをマスクとして、トレンチ(4)内に選択的にひ素
As等のn型不純物をイオン注入して、第1図Cに示す
ように、第2導電型チャンネルストッパー層(6)を形
成する。そしてトレンチ(4)内を含んで熱酸化してS
iO□等より成る薄い酸化膜(7)を全面的に形成した
後、5iOz等より成る絶縁材(8A)をトレンチ(4
)内を含んで全面的に例えばCV、D法によって形成す
る。
After that, the P-type region is covered with a photoresist in the same way, and this photoresist is combined with the polycrystalline semiconductor layer (3) and the insulating layer (2).
) as a mask, an n-type impurity such as arsenic As is selectively ion-implanted into the trench (4) to form a channel stopper layer (6) of the second conductivity type, as shown in FIG. 1C. . Then, the inside of the trench (4) is thermally oxidized to S.
After forming a thin oxide film (7) made of iO□ etc. on the entire surface, an insulating material (8A) made of 5iOz etc. is formed in the trench (4).
) is formed entirely by CV or D method, for example.

次に第1図りに示すように、異方性RIE等によるエッ
チバンクを行って、素子分離層(8)を形成する。
Next, as shown in the first diagram, an etch bank is performed using anisotropic RIE or the like to form an element isolation layer (8).

その後第1図已に示すように、多結晶半導体層(3)及
び絶縁層(2)を除去した後、全面的に熱酸化等により
、薄い酸化膜より成る犠牲酸化膜(9)を形成する。
After that, as shown in Figure 1, after removing the polycrystalline semiconductor layer (3) and the insulating layer (2), a sacrificial oxide film (9) consisting of a thin oxide film is formed by thermal oxidation or the like on the entire surface. .

次に第1図Fに示すように、先ず例えばn型ウェル形成
領域上にフォトレジス)(IOR) ヲ形成シた後この
フォトレジスト(IOR)をマスクとしてB等のp型不
純物のイオン注入作業を行う。このとき、第2図にpM
O3−FETの不純物濃度分布を示すように、各a −
cのピークの位置する深さがそれぞれ第1導電型例えば
p型ウェル領域(10)、パンチスルー防止のためのイ
オン注入層(IOA)、vth調整用イオン注入層(I
OB)の深さに相当するように、イオン注入の条件を設
定した高加速イオン注入法によって不純物のイオン注入
を行う。
Next, as shown in FIG. 1F, first, for example, a photoresist (IOR) is formed on the n-type well formation region, and then a p-type impurity such as B is ion-implanted using the photoresist (IOR) as a mask. I do. At this time, pM
As shown in the impurity concentration distribution of O3-FET, each a −
The depth at which the peak of c is located is the first conductivity type, for example, the p-type well region (10), the ion implantation layer for punch-through prevention (IOA), and the ion implantation layer for vth adjustment (IOA).
Impurity ions are implanted by high-acceleration ion implantation with ion implantation conditions set to correspond to the depth of OB).

次に第1図Gに示すように、フォトレジスト(IOR)
を除去した後P型ウェル領域(10)上にフォトレジス
ト(IIR)を形成して、このフオトレジス) (II
R)をマスクとしてAs等のn型不純物のイオン注入作
業を行う。このとき、第3図にnMO5FETの不純物
濃度分布を示すように、各d〜rのピークの位置する深
さがそれぞれ第2導電型例えばn型ウェル領域(11)
、パンチスルー防止のためのイオン注入層(IIA)、
vth調整用イオン注入層(IIB)の深さに相当する
ようにイオン注入の条件を設定した高加速イオン注入法
によって不純物のイオン注入を行う。
Next, as shown in Figure 1G, photoresist (IOR) is applied.
After removing the photoresist (IIR), a photoresist (IIR) is formed on the P-type well region (10).
Using R) as a mask, ion implantation of n-type impurities such as As is performed. At this time, as shown in FIG. 3, which shows the impurity concentration distribution of the nMO5FET, the depth at which each of the peaks of d to r is located corresponds to the second conductivity type, for example, the n-type well region (11).
, ion implantation layer (IIA) for punch-through prevention,
Impurity ions are implanted by a high acceleration ion implantation method in which ion implantation conditions are set to correspond to the depth of the vth adjustment ion implantation layer (IIB).

その後第1図Hに示すように、全面的に熱酸化等によっ
てゲート酸化膜(12)を形成した後、各素子分離領域
に例えば多結晶Si層より成るゲート電極(13)を所
定のパターンに形成して、このゲート電極(13)及び
素子分離層(8)をマスクとして、低濃度にそれぞれp
型及びn型不純物を注入して低濃度ソース/ドレイン領
域(14)を形成し、更に例えばSiO□等より成る絶
縁層を全面的に形成した後エッチバックを施してゲート
電極(13)の側面にサイドウオール(15)を形成す
S、そしてこのサイドウオール(15)及びゲート電極
(13)、素子分離層(8)をマスクとして、各p型及
びn型の不純物を高濃度に注入してソース/ドレイン領
域(16)を形成し、各導電型領域にそれぞれ逆導電型
チャンネルのMOSを形成して、例えば多数のC−MO
Sを構成する半導体装置(18)を得る。
Thereafter, as shown in FIG. 1H, a gate oxide film (12) is formed on the entire surface by thermal oxidation, etc., and then a gate electrode (13) made of, for example, a polycrystalline Si layer is formed in a predetermined pattern in each element isolation region. Using the gate electrode (13) and element isolation layer (8) as a mask, p-p is applied at a low concentration.
A low concentration source/drain region (14) is formed by implanting type and n-type impurities, and an insulating layer made of, for example, SiO□ is formed on the entire surface and then etched back to form a side surface of the gate electrode (13). A sidewall (15) is formed on the S, and each p-type and n-type impurity is implanted at a high concentration using this sidewall (15), gate electrode (13), and element isolation layer (8) as a mask. A source/drain region (16) is formed, and a MOS with an opposite conductivity type channel is formed in each conductivity type region, so that, for example, a large number of C-MOs are formed.
A semiconductor device (18) constituting S is obtained.

尚、上述した例においては、高比抵抗半導体基体即ちS
i基体(1)上に各導電型領域を形成する場合について
述べたが、その他n型半導体基体上にp型ウェルを形成
することによって両扉電型の領域を形成する場合等、種
々の構成による半導体装置に適用することができる。
In the above-mentioned example, the high resistivity semiconductor substrate, that is, S
Although the case where each conductivity type region is formed on the i-substrate (1) has been described, various other configurations are possible, such as the case where a double-door conductivity type region is formed by forming a p-type well on an n-type semiconductor substrate. The present invention can be applied to semiconductor devices according to the present invention.

〔発明の効果] 上述したように、本発明による半導体装置の製法によれ
ば、半導体基体(1)に素子分離用トレンチ(4)を形
成した後、各導電型チャンネルストッパー(5)及び(
6)を形成し、その後各トレンチ(4)内に絶縁層(8
A)を埋込んでこれをエッチバンクして素子分離層(8
)を形成し、その後各導電型領域(10)及び(11)
を形成するウェル領域形成のイオン注入を行うので、ウ
ェル領域の形成に当っては、トレンチ(4)を目印に即
ちターゲットとして、所定位置に形成することができる
。従って、従来のように各つエル領域形成のためのター
ゲットを特別に形成する必要がなく、工程数を減少させ
ることができる。
[Effects of the Invention] As described above, according to the method for manufacturing a semiconductor device according to the present invention, after forming the element isolation trench (4) in the semiconductor substrate (1), each conductivity type channel stopper (5) and (
6) and then an insulating layer (8) in each trench (4).
A) is buried and etched banked to form an element isolation layer (8).
), and then each conductivity type region (10) and (11)
Since ion implantation is performed to form a well region, the well region can be formed at a predetermined position using the trench (4) as a mark, that is, as a target. Therefore, there is no need to specially form targets for forming each L region as in the prior art, and the number of steps can be reduced.

またこのウェル領域形成をトレンチ形成後に行うので、
このイオン注入工程時に、このイオン注入マスクと同一
マスクを用いて、例えばバンチスルー防止及びvth調
整用のイオン注入を行うことができるので、工程数を減
少させ、作業の簡易化を計ることができる。
Also, since this well region is formed after trench formation,
During this ion implantation process, the same ion implantation mask can be used to perform, for example, ion implantation for bunch-through prevention and VTH adjustment, which reduces the number of steps and simplifies the work. .

またイオン注入を行った後にはLOGO5形成等の長時
間の熱酸化工程がないため、不純物の拡散を抑制するこ
とができ、チャンネルストンブ領域の素子形成部への入
り込みを抑制でき、MOS−FETの狭チャンネル効果
を抑制することができる。
In addition, since there is no long-term thermal oxidation process such as LOGO5 formation after ion implantation, it is possible to suppress the diffusion of impurities and to prevent them from entering the element forming area in the channel stomb region. The narrow channel effect can be suppressed.

更に、第2図に示すように、例えばP型ウェル領域(1
0)中のp型不純物濃度を深い部分で高くするので、こ
れによって成る場合は、トレンチ(4)底部でのチャン
ネルストッパー拡散層の形成を省略することも可能とな
り、このようにするときは、より工程の簡略化をはかる
ことができる。
Furthermore, as shown in FIG. 2, for example, a P-type well region (1
Since the p-type impurity concentration in the trench (4) is increased in the deep part, it is possible to omit the formation of the channel stopper diffusion layer at the bottom of the trench (4). The process can be further simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Hは本発明による半導体装置の製法の一例を
示す製造工程図、第2図はpMO3,−FETの不純物
濃度分布を示1品、第3図はn M O5FETの不純
物濃度分布を示す図、第4図A〜Gは従来の半導体装置
の製法の一例を示す製造工程図、第5図A及びBは従来
の半導体装置の製法の他の例を示す製造工程図、第6図
は従来の半導体装置の製法の他の例を示す路線的断面図
である。 (1)は半導体基体、(2)は絶縁層、(3)は多結晶
半導体層、(4)はトレンチ、(5)及び(6)は第1
導電型及び第2導電型チャンネルストッパー層、(7)
は酸化膜、(8A)は絶縁材、(8)は素子分離層、(
9)は犠牲酸化膜、(10)は第1導電型領域、(10
4)及び(IOB)はイオン注入層、(11)は第2導
電型領域、(IIA)及び(IIB)はイオン注入層、
(IOR)及び(IIR)はフォトレジスト、(12)
はゲート酸化膜、(13)はゲート電極、(14)は低
濃度ソース/ドレイン領域、(15)はサイドウオール
、(16)はソース/トレイン領域、(18)は半導体
装置、(22)は材料層、(23)はターゲット、(2
4)はp型頭域、(25)はn型領域、(26)はSi
n□層、(27)は多結晶Si層、(28)はフォトレ
ジスト、(29)は窓、(30)はトレンチ、(32)
はSi02層、(33A)は絶縁材、(33)は素子分
離層、(51)はSiO□層、(52)はSiN層、(
53)はマスク層、(54)は素子分離層である。
Figures 1A-H are manufacturing process diagrams showing an example of the method for manufacturing a semiconductor device according to the present invention, Figure 2 shows the impurity concentration distribution of a pMO3,-FET, and Figure 3 shows the impurity concentration distribution of an nM O5FET. 4A to 4G are manufacturing process diagrams showing an example of a conventional method for manufacturing a semiconductor device, FIGS. 5A and 5B are manufacturing process diagrams showing another example of a conventional method for manufacturing a semiconductor device, and FIG. The figure is a cross-sectional view showing another example of the conventional method for manufacturing a semiconductor device. (1) is a semiconductor substrate, (2) is an insulating layer, (3) is a polycrystalline semiconductor layer, (4) is a trench, (5) and (6) are a first
conductivity type and second conductivity type channel stopper layer, (7)
is an oxide film, (8A) is an insulating material, (8) is an element isolation layer, (
9) is a sacrificial oxide film, (10) is a first conductivity type region, and (10) is a sacrificial oxide film.
4) and (IOB) are ion implantation layers, (11) are second conductivity type regions, (IIA) and (IIB) are ion implantation layers,
(IOR) and (IIR) are photoresists, (12)
is a gate oxide film, (13) is a gate electrode, (14) is a low concentration source/drain region, (15) is a side wall, (16) is a source/train region, (18) is a semiconductor device, (22) is a material layer, (23) is the target, (2
4) is a p-type head region, (25) is an n-type region, and (26) is a Si
n□ layer, (27) is polycrystalline Si layer, (28) is photoresist, (29) is window, (30) is trench, (32)
is Si02 layer, (33A) is insulating material, (33) is element isolation layer, (51) is SiO□ layer, (52) is SiN layer, (
53) is a mask layer, and (54) is an element isolation layer.

Claims (1)

【特許請求の範囲】  半導体基体に、それぞれ回路素子形成部となる第1導
電型領域及び第2導電型領域を有し、素子分離用トレン
チが設けられて成る半導体装置の製法において、 上記半導体基体に上記素子分離用トレンチを形成する工
程と、 該トレンチ内に絶縁材を充填する工程と、 その後上記第1導電型領域と第2導電型領域とを所定部
に形成するためのウェル領域形成の不純物のイオン注入
を行うイオン注入工程とを経ることを特徴とする半導体
装置の製法。
[Scope of Claims] A method for manufacturing a semiconductor device in which a semiconductor substrate has a first conductivity type region and a second conductivity type region each serving as a circuit element forming portion, and is provided with an element isolation trench, forming the element isolation trench, filling the trench with an insulating material, and then forming a well region for forming the first conductivity type region and the second conductivity type region in predetermined portions. 1. A method for manufacturing a semiconductor device, comprising: an ion implantation step of implanting impurity ions.
JP2182068A 1990-07-10 1990-07-10 Manufacture of semiconductor device Pending JPH0468564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182068A JPH0468564A (en) 1990-07-10 1990-07-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182068A JPH0468564A (en) 1990-07-10 1990-07-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0468564A true JPH0468564A (en) 1992-03-04

Family

ID=16111791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182068A Pending JPH0468564A (en) 1990-07-10 1990-07-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0468564A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
WO1998006137A1 (en) * 1996-08-07 1998-02-12 Advanced Micro Devices, Inc. Selectively doped channel region for increased idsat and method for making same
EP0827205A2 (en) * 1996-08-29 1998-03-04 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
KR19990033746A (en) * 1997-10-27 1999-05-15 구본준 Device isolation method of semiconductor device
US6188106B1 (en) 1998-09-03 2001-02-13 Advanced Micro Devices, Inc. MOSFET having a highly doped channel liner and a dopant seal to provide enhanced device properties
US6281562B1 (en) * 1995-07-27 2001-08-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device which reduces the minimum distance requirements between active areas
JP2002043534A (en) * 2000-07-28 2002-02-08 Nec Corp Semiconductor device and manufacturing method thereof
US6362510B1 (en) 1998-12-07 2002-03-26 Advanced Micro Devices, Inc. Semiconductor topography having improved active device isolation and reduced dopant migration
US6461946B2 (en) 2000-05-01 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
FR2826182A1 (en) * 2001-06-15 2002-12-20 St Microelectronics Sa High voltage CMOS integrated circuit includes substrate and casing of different conductivity, and inter-casing separation regions
KR100415085B1 (en) * 2001-06-28 2004-01-13 주식회사 하이닉스반도체 method for preventing latch-up from semiconductor device
US7129148B2 (en) * 2000-08-15 2006-10-31 Seiko Epson Corporation Methods for manufacturing semiconductor devices and semiconductor devices having trench isolation regions
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation
US7387943B2 (en) * 2001-02-23 2008-06-17 Samsung Electronics Co., Ltd. Method for forming layer for trench isolation structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399895A (en) * 1993-03-23 1995-03-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
US6281562B1 (en) * 1995-07-27 2001-08-28 Matsushita Electric Industrial Co., Ltd. Semiconductor device which reduces the minimum distance requirements between active areas
US6967409B2 (en) 1995-07-27 2005-11-22 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
US7126174B2 (en) 1995-07-27 2006-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
US6709950B2 (en) 1995-07-27 2004-03-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method of manufacturing the same
WO1998006137A1 (en) * 1996-08-07 1998-02-12 Advanced Micro Devices, Inc. Selectively doped channel region for increased idsat and method for making same
EP0827205A2 (en) * 1996-08-29 1998-03-04 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
EP0827205A3 (en) * 1996-08-29 1998-09-23 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device
KR19990033746A (en) * 1997-10-27 1999-05-15 구본준 Device isolation method of semiconductor device
US6188106B1 (en) 1998-09-03 2001-02-13 Advanced Micro Devices, Inc. MOSFET having a highly doped channel liner and a dopant seal to provide enhanced device properties
US6362510B1 (en) 1998-12-07 2002-03-26 Advanced Micro Devices, Inc. Semiconductor topography having improved active device isolation and reduced dopant migration
US6461946B2 (en) 2000-05-01 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
JP2002043534A (en) * 2000-07-28 2002-02-08 Nec Corp Semiconductor device and manufacturing method thereof
US7129148B2 (en) * 2000-08-15 2006-10-31 Seiko Epson Corporation Methods for manufacturing semiconductor devices and semiconductor devices having trench isolation regions
US7714325B2 (en) 2001-02-23 2010-05-11 Samsung Electronics Co., Ltd. Trench isolation structure
US7387943B2 (en) * 2001-02-23 2008-06-17 Samsung Electronics Co., Ltd. Method for forming layer for trench isolation structure
FR2826182A1 (en) * 2001-06-15 2002-12-20 St Microelectronics Sa High voltage CMOS integrated circuit includes substrate and casing of different conductivity, and inter-casing separation regions
US7012309B2 (en) 2001-06-15 2006-03-14 Stmicroelectronics S.A. High-voltage integrated CMOS circuit
WO2002103797A3 (en) * 2001-06-15 2003-03-13 St Microelectronics Sa High-voltage integrated cmos circuit
KR100415085B1 (en) * 2001-06-28 2004-01-13 주식회사 하이닉스반도체 method for preventing latch-up from semiconductor device
CN100359665C (en) * 2002-07-24 2008-01-02 三星电子株式会社 Method for fabricating low well of semiconductor device using low energy ion implantation

Similar Documents

Publication Publication Date Title
US6071783A (en) Pseudo silicon on insulator MOSFET device
US7691698B2 (en) Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain
US6174754B1 (en) Methods for formation of silicon-on-insulator (SOI) and source/drain-on-insulator(SDOI) transistors
JP5605134B2 (en) Semiconductor device and manufacturing method thereof
JPH0355984B2 (en)
JPH04229650A (en) Manufacture of cmos device
JPS6219061B2 (en)
JPH0468564A (en) Manufacture of semiconductor device
US5422301A (en) Method of manufacturing semiconductor device with MOSFET
US6784073B1 (en) Method of making semiconductor-on-insulator device with thermoelectric cooler
JP2002134701A (en) Method for manufacturing semiconductor device
US6737315B2 (en) Method of manufacturing semiconductor device including steps of forming both insulating film and epitaxial semiconductor on substrate
US20080233695A1 (en) Integration method of inversion oxide (TOXinv) thickness reduction in CMOS flow without added pattern
JPH07153952A (en) Semiconductor device and manufacture thereof
JP2001007323A (en) Manufacture of semiconductor device
JPH0818042A (en) Method for manufacturing mos transistor
JP2003031679A (en) Method for manufacturing semiconductor device
KR20010107707A (en) Method for manufacturing semiconductor device having a sti structure
JPH0423329A (en) Manufacture of semiconductor device
KR100523606B1 (en) Isolation method in a semiconductor manufacturing device
US6955958B2 (en) Method of manufacturing a semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2000049334A (en) Semiconductor device and fabrication thereof
JPS59138377A (en) Metal insulator semiconductor transistor and manufacture thereof
JPH10284589A (en) Semiconductor device and its manufacture