JPH0468522A - Vertical heat treatment device - Google Patents

Vertical heat treatment device

Info

Publication number
JPH0468522A
JPH0468522A JP18069390A JP18069390A JPH0468522A JP H0468522 A JPH0468522 A JP H0468522A JP 18069390 A JP18069390 A JP 18069390A JP 18069390 A JP18069390 A JP 18069390A JP H0468522 A JPH0468522 A JP H0468522A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
treatment
tube
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18069390A
Other languages
Japanese (ja)
Inventor
Shingo Watanabe
伸吾 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP18069390A priority Critical patent/JPH0468522A/en
Priority to US07/674,884 priority patent/US5279670A/en
Publication of JPH0468522A publication Critical patent/JPH0468522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Abstract

PURPOSE:To improve sectional heat equalization property of a treatment object and to realize in-plane uniformity of a high density element by making treatment gas flow inside a vertical reaction tube which contains a plurality of treatment objects for pre-heating and by injecting treatment gas to the treatment objects thereafter. CONSTITUTION:When a wafer 19 is mounted on a specified position of a boat 20 and is transferred into a reaction tube 11, the tube 11 is heated to a set temperature by a heater 17. A clearance is provided to an outer peripheral wall of the reaction tube 11 to arrange an outer tube 12 coaxially and gas distribution means 13 is provided to the inside of the clearance; then, treatment gas supplied to a gas supply port 15 rises and flows in laminar flow uniformly through gas distribution holes 14a to 14e provided inside a clearance between the reaction tube 11 and the outer tube 12. Since treatment gas is pre-heated uniformly by the heater 17 and gas whose temperature is close to a gas temperature inside the reaction tube 11 is introduced, generation of downflow is reduced and a treatment gas temperature is approximately the same in any places in a plane of the wafer 19. Thereby, it is possible to improve sectional heat equalization property and to realize in-plane uniformity of a high density element.

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 "Purpose of invention"

【産業上の利用分野】[Industrial application field]

本発明は、縦型熱処理装置に関するものである。 The present invention relates to a vertical heat treatment apparatus.

【従来の技術とその課題1 近年、LSIの高集積度化に伴って、例えば4MDRA
Mの最小設計幅が1μm以下にもなり、またゲート酸化
膜の膜厚も200Å以下になってきている。 特に、 16MDRAMのゲート酸化膜は、100Å以
下と更に薄膜化の傾向となっている。 このように膜厚が薄くなると、半導体ウェハ上での膜厚
の面内均一性の要求に対応するのが極めて困難となる。 この面内均一性に応えるためには、半導体ウェハ上の処
理条件を均一にすることが必要であり、特に温度条件を
均一にすることが極めて重要事項である。 通常、縦型熱処理炉は、横型熱処理炉に比較して処理炉
の軸方向の温度勾配を少なくでき、高密度化素子の製造
に有利であるため、最近は縦型熱処理炉が採用される傾
向にある。 従来の縦型熱処理炉において、例えば、半導体ウェハを
酸化炉や拡散炉の反応チューブ内に搬入して加熱処理を
行なう場合、縦方向に所定間隔をおいて多数枚のウェハ
を搭載した処理用ボートを搬出搬入機構を介して反応チ
ューブ内に搬入し、このチューブ内に処理ガスを供給し
て加熱処理を実施するようにしている。 この場合、処理ガスをチューブ内に供給する手段として
は、第3図に示すように、反応チューブ1の外周壁に対
し間隙を設けてアウターチューブ2を設け、この間隙を
処理ガスを導入するための流路10とし、処理ガスは導
入口4から流路10を経て反応チューブ上の上端に設け
た流入孔9より内部に流入させ、反応チューブ1の下部
に設けた排気口5より排気するように設け、一方、縦方
向に所定間隔をおいて多数枚の半導体ウェハ8を搭載し
た処理用ボート7をボートエレベータ6を介して反応チ
ューブ1内に搬入可能に設け、更に、反応チューブ1の
外周に設けたヒータ3により加熱して半導体ウェハ8の
熱処理を行なうようにしている。 この反応チューブ1内は通常、900〜1200℃程度
まで加熱されているが、処理ガスは導入口4から流路1
oを経て反応チューブ1の上端に設けた流入孔9より内
部に流入する。この場合、導入口4に近い流路1oの領
域部分はど処理ガスが偏って上昇し、処理ガスが不均一
な状態で流れるため、反応チューブ1内のガス流入部近
傍の温度分布が不均一になり、そのためチューブ内の断
面均熱性が低下し、その結果ウェハの面内の温度分布が
不均一になる等の問題がある。 本発明は上記した従来の課題を解決するために2発した
ものであり、処理ガスを均一に層流状態で導入して、処
理ガスを均一に予備加熱することにより被処理体の断面
均熱性を向上させ、しかも高密度素子の面内均一性を期
することを目的としたものである。 「発明の構成」 【課題を解決するための手段1 上記の目的を達成するため1本発明は、複数枚の被処理
体を収容した縦型反応チューブ内に処理ガスを導入して
熱処理を行なう縦型熱処理装置において、上記反応チュ
ーブ内に設けられた被処理体の熱処理温度雰囲気に処理
ガスを流動させて予備加熱したのち上記被処理体に処理
ガスを流入させるようにした縦型熱処理装置である。 [作 用] 従って、本発明によると、導入された処理ガスは、反応
チューブとアウターチューブの間隙内に設けたガス分配
手段を経て導入されるので、処理ガスは均一に層流状態
で間隙内を上昇し、この間に処理ガスは予めヒータから
の熱により予熱された後に反応チューブ内に導入され、
導入された処理ガスは、ヒータにより均一に予備加熱さ
れて反応チューブ内のガス温度に近い温度のガスが導入
されるため、反応チューブ内への導入後に下降流を生じ
ることが少なくなり、チューブの径方向への拡散が行な
われ、断面均熱が向上する。 【実施例1 以下、本発明における縦型熱処理装置の実施例を図面を
参照して説明する。 第1図において、反応チューブ11は、石英ガラスによ
り円筒状に形成され、その軸方向を垂直方向とすること
により縦型熱処理部を構成している。この反応チューブ
11の外周壁に対し間隙を設け、石英ガラス製円筒状の
アウターチューブ12を同軸的に配設し、この間隙内の
ガス供給口15の近傍位置に石英ガラス製のリングパイ
プ13を固着し、リングパイプ13にガス分配孔14a
乃至14eを複数個形成してガス分配手段を構成してい
る。このガス分配孔14a乃至14eは、ガス供給口1
5の近傍領域に近ずくに従って分配孔同志の間隔が大き
く、しかも分配孔を小さく形成している。この分配孔は
、上記の例に限ることなく、ガス供給口15の近傍領域
に近ずくに従って分配孔を密から粗になるように形成す
るようにしても良い。 また、反応チューブ11の外周囲には円筒状のヒータ1
7を設け、反応チューブ11内を、例えば、900〜1
200℃程度まで加熱して、酸化や拡散処理を実施する
ようにしている。 この反応チューブ11は下端が開口し、多数の被処理体
例えば半導体ウェハ19を水平状態で縦方向に離間して
搭載したボート20を搬出入できるように垂直に支持さ
れている。 このボート20は、保温筒21に垂直に支持され、保温
筒21をボートエレベータ18に支持し、このボートエ
レベータ18を上下駆動することによりボート20の搬
出入を可能とし、ボートエレベータ18のフランジ18
aで反応チューブ11の下端開口部を密閉する。 また、反応チューブ11の下端部より処理ガスを排気す
るためのガス排気管16が接続され、反応チューブ11
の上端に多数の流入孔23を有するバッファ板22を設
けている。 即ち、ガス供給口15から流入した反応ガスは、ガス分
配孔14a、14b・・・・・を介してアウターチュー
ブ12と反応チューブ11の外壁間を上方に流動し、反
応チューブ11の頂部に設けられた流入孔23から反応
チューブ11内に反応ガスが導入されるように排気孔1
6が設けられている。 次に上記実施例の作用を説明する。 例えば半導体ウェハ19に酸化膜を形成する場合につい
て説明する。ボート20の所定位置にウェハ】−9を搭
載し、反応チューブ11内に搬入されると、チューブ1
1はヒータ17により設定温度に加熱される。そして、
反応チューブ11の外周壁に対し間隙を設けてアウター
チューブ12を同軸的に配設し、この間隙内にガス分配
手段13を設けているので、ガス供給口15に供給され
た処理ガスは、反応チューブ11とアウターチューブ1
2の間隙内に設けたガス分配孔14a乃至14eを経て
均一に層流状態で上昇して均一に流れるため、処理ガス
は、ヒータ17により均一に予備加熱されて反応チュー
ブ11内のガス温度に近い温度のガスが導入されるため
、反応チューブ11内への導入後に下降流を生じること
が少なくなる。 従って、従来のような温度差に起因した下降流の形成が
少なくなるので、処理ガスが十分に径方向に拡散して下
降することになり、ウェハ19の面内のいずれの位置で
も処理ガス温度がほぼ同一となり、ウェハ19の面内均
一性が向上する。 上記実施例では、2重管構造の例について説明したが、
この例に限らず、総ての処理ガスが等しく予備加熱され
たのち被処理体に流入させる手段であれば、何れの手段
でもよい。 「発明の効果」 以上のことから明らかなように、本発明によると次のよ
うな優れた効果がある。 即ち、処理ガスが均一に層流状態で導入される際に、ウ
ェハの受ける処理温度で均一に予備加熱された処理ガス
を反応チューブ内に導入することにより断面均熱性を向
上させ、しかも高密度素子の面内均一性を図ることがで
きる等の効果がある。
[Conventional technology and its issues 1] In recent years, with the increase in the degree of integration of LSI, for example, 4MDRA
The minimum design width of M has become less than 1 μm, and the thickness of the gate oxide film has also become less than 200 Å. In particular, the gate oxide film of 16M DRAM is becoming thinner to 100 Å or less. When the film thickness becomes thin in this manner, it becomes extremely difficult to meet the requirement for in-plane uniformity of the film thickness on the semiconductor wafer. In order to meet this in-plane uniformity, it is necessary to make the processing conditions on the semiconductor wafer uniform, and in particular, it is extremely important to make the temperature conditions uniform. Usually, vertical heat treatment furnaces can reduce the temperature gradient in the axial direction of the processing furnace compared to horizontal heat treatment furnaces, and are advantageous for manufacturing high-density elements, so there is a recent trend of adopting vertical heat treatment furnaces. It is in. In a conventional vertical heat treatment furnace, for example, when semiconductor wafers are carried into the reaction tube of an oxidation furnace or diffusion furnace for heat treatment, a processing boat carrying a large number of wafers at predetermined intervals in the vertical direction is used. is carried into a reaction tube via a carrying-out/carrying mechanism, and a processing gas is supplied into this tube to carry out heat treatment. In this case, as a means for supplying the processing gas into the tube, as shown in FIG. The processing gas is made to flow from the inlet 4 through the flow path 10 into the interior through the inflow hole 9 provided at the upper end of the reaction tube 1, and to be exhausted from the exhaust port 5 provided at the bottom of the reaction tube 1. On the other hand, processing boats 7 loaded with a large number of semiconductor wafers 8 at predetermined intervals in the longitudinal direction are provided so as to be able to be carried into the reaction tube 1 via the boat elevator 6, and The semiconductor wafer 8 is heated by a heater 3 provided in the wafer 3 to perform heat treatment on the semiconductor wafer 8. The inside of this reaction tube 1 is normally heated to about 900 to 1200°C, and the processing gas is supplied from the inlet 4 to the flow path 1.
It flows into the inside of the reaction tube 1 through the inlet hole 9 provided at the upper end of the reaction tube 1 through the tube. In this case, the processing gas rises unevenly in the region of the flow path 1o near the inlet 4, and the processing gas flows in an uneven state, resulting in an uneven temperature distribution near the gas inlet in the reaction tube 1. As a result, cross-sectional thermal uniformity within the tube deteriorates, resulting in problems such as non-uniform temperature distribution within the wafer surface. The present invention was developed in two ways to solve the above-mentioned conventional problems, and by uniformly introducing the processing gas in a laminar flow state and uniformly preheating the processing gas, it is possible to improve the cross-sectional thermal uniformity of the object to be processed. The purpose is to improve the in-plane uniformity of high-density devices. "Structure of the Invention" [Means for Solving the Problems 1] In order to achieve the above object, 1 the present invention performs heat treatment by introducing a processing gas into a vertical reaction tube containing a plurality of objects to be processed. In the vertical heat treatment apparatus, the processing gas is caused to flow into the heat treatment temperature atmosphere of the object to be processed provided in the reaction tube to preheat it, and then the processing gas is caused to flow into the object to be processed. be. [Function] Therefore, according to the present invention, the introduced processing gas is introduced through the gas distribution means provided in the gap between the reaction tube and the outer tube, so that the processing gas is uniformly distributed in the gap in a laminar flow state. During this time, the processing gas is preheated by heat from the heater and then introduced into the reaction tube.
The introduced processing gas is uniformly preheated by the heater and the gas is introduced at a temperature close to the gas temperature in the reaction tube, so it is less likely to cause a downward flow after being introduced into the reaction tube, and the tube Radial diffusion takes place, improving cross-sectional heat uniformity. [Example 1] Hereinafter, an example of a vertical heat treatment apparatus according to the present invention will be described with reference to the drawings. In FIG. 1, a reaction tube 11 is formed of quartz glass into a cylindrical shape, and its axial direction is vertical, thereby forming a vertical heat treatment section. A cylindrical outer tube 12 made of quartz glass is coaxially arranged in a gap between the outer circumferential wall of the reaction tube 11, and a ring pipe 13 made of quartz glass is placed in the vicinity of the gas supply port 15 within this gap. The gas distribution hole 14a is fixed to the ring pipe 13.
A plurality of gas distribution means are formed by forming a plurality of gas distribution means 14e to 14e. The gas distribution holes 14a to 14e are connected to the gas supply port 1.
The distance between the distribution holes becomes larger as the region approaches the vicinity of 5, and the distribution holes are formed to be smaller. The distribution holes are not limited to the above example, and may be formed so that the distribution holes become denser to sparser as they approach the region near the gas supply port 15. Further, a cylindrical heater 1 is provided around the outer periphery of the reaction tube 11.
7 is provided, and the inside of the reaction tube 11 is, for example, 900 to 1
Oxidation and diffusion treatments are performed by heating to about 200°C. The reaction tube 11 has an open lower end and is vertically supported so that a boat 20 carrying a large number of objects to be processed, such as semiconductor wafers 19, horizontally and spaced apart in the vertical direction can be carried in and out. This boat 20 is vertically supported by a heat insulating cylinder 21, the heat insulating cylinder 21 is supported by a boat elevator 18, and the boat 20 can be carried in and out by driving the boat elevator 18 up and down, and the flange 18 of the boat elevator 18
The lower end opening of the reaction tube 11 is sealed with a. Further, a gas exhaust pipe 16 for exhausting processing gas from the lower end of the reaction tube 11 is connected to the reaction tube 11.
A buffer plate 22 having a large number of inflow holes 23 is provided at the upper end of the buffer plate 22 . That is, the reaction gas flowing in from the gas supply port 15 flows upward between the outer tube 12 and the outer wall of the reaction tube 11 via the gas distribution holes 14a, 14b, and so on. The exhaust hole 1 is arranged so that the reaction gas is introduced into the reaction tube 11 from the inflow hole 23 that is
6 is provided. Next, the operation of the above embodiment will be explained. For example, a case where an oxide film is formed on the semiconductor wafer 19 will be described. When the wafer ]-9 is loaded in a predetermined position on the boat 20 and carried into the reaction tube 11, the tube 1
1 is heated to a set temperature by a heater 17. and,
Since the outer tube 12 is disposed coaxially with a gap provided to the outer peripheral wall of the reaction tube 11, and the gas distribution means 13 is provided within this gap, the processing gas supplied to the gas supply port 15 can be used for reaction. Tube 11 and outer tube 1
2, the processing gas rises uniformly in a laminar flow state and flows uniformly through the gas distribution holes 14a to 14e provided in the gaps between the two. Since the gas having a similar temperature is introduced, a downward flow is less likely to occur after being introduced into the reaction tube 11. Therefore, the formation of a downward flow caused by a temperature difference as in the conventional case is reduced, and the processing gas is sufficiently diffused in the radial direction and descends. are almost the same, and the in-plane uniformity of the wafer 19 is improved. In the above embodiment, an example of a double pipe structure was explained, but
The present invention is not limited to this example, and any means may be used as long as all the processing gases are equally preheated and then flowed into the object to be processed. "Effects of the Invention" As is clear from the above, the present invention has the following excellent effects. In other words, when the processing gas is uniformly introduced in a laminar flow state, the processing gas uniformly preheated at the processing temperature experienced by the wafer is introduced into the reaction tube, thereby improving cross-sectional thermal uniformity and achieving high density. There are effects such as being able to improve the in-plane uniformity of the element.

【図面の簡単な説明】 第1図は本発明における縦型熱処理装置の一実施例を示
した断面図であり、第2図は同上のA −へ線拡大断面
図であり、第3図は従来例を示した断面図である。 第1図 11・・・反応チューブ 12・・・アウターチューブ 13・・ガス分配手段 17・・ヒータ 第 図 第 図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing an embodiment of the vertical heat treatment apparatus of the present invention, FIG. 2 is an enlarged sectional view taken along the line A- in the same example, and FIG. FIG. 2 is a sectional view showing a conventional example. Fig. 1 11... Reaction tube 12... Outer tube 13... Gas distribution means 17... Heater Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)複数枚の被処理体を収容した縦型反応チューブ内
に処理ガスを導入して熱処理を行なう縦型熱処理装置に
おいて、上記反応チューブ内に設けられた被処理体の熱
処理温度雰囲気に処理ガスを流動させて予備加熱したの
ち上記被処理体に処理ガスを流入させるようにしたこと
を特徴とする縦型熱処理装置。
(1) In a vertical heat treatment device that performs heat treatment by introducing a processing gas into a vertical reaction tube containing a plurality of objects to be processed, the processing is carried out at the temperature atmosphere for the heat treatment of the objects provided in the reaction tube. A vertical heat treatment apparatus characterized in that a processing gas is caused to flow into the object to be processed after preheating it by flowing the gas.
JP18069390A 1990-03-31 1990-07-10 Vertical heat treatment device Pending JPH0468522A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18069390A JPH0468522A (en) 1990-07-10 1990-07-10 Vertical heat treatment device
US07/674,884 US5279670A (en) 1990-03-31 1991-03-26 Vertical type diffusion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18069390A JPH0468522A (en) 1990-07-10 1990-07-10 Vertical heat treatment device

Publications (1)

Publication Number Publication Date
JPH0468522A true JPH0468522A (en) 1992-03-04

Family

ID=16087656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18069390A Pending JPH0468522A (en) 1990-03-31 1990-07-10 Vertical heat treatment device

Country Status (1)

Country Link
JP (1) JPH0468522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559198B1 (en) * 1999-12-21 2006-03-10 액셀리스 테크놀로지스, 인크. Bell jar having integral gas distribution channeling
JP2010239142A (en) * 2010-05-31 2010-10-21 Tokyo Electron Ltd Heat treatment apparatus, and heat treatment method
CN109737747A (en) * 2019-01-10 2019-05-10 张翔 A kind of high tenacity colliery wastes brick agglomerating plant of the pre- heat recovery function of band
WO2020121789A1 (en) * 2018-12-13 2020-06-18 オリンパス株式会社 Heating furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559198B1 (en) * 1999-12-21 2006-03-10 액셀리스 테크놀로지스, 인크. Bell jar having integral gas distribution channeling
JP2010239142A (en) * 2010-05-31 2010-10-21 Tokyo Electron Ltd Heat treatment apparatus, and heat treatment method
WO2020121789A1 (en) * 2018-12-13 2020-06-18 オリンパス株式会社 Heating furnace
JP2020094765A (en) * 2018-12-13 2020-06-18 オリンパス株式会社 heating furnace
CN109737747A (en) * 2019-01-10 2019-05-10 张翔 A kind of high tenacity colliery wastes brick agglomerating plant of the pre- heat recovery function of band

Similar Documents

Publication Publication Date Title
CN109559975A (en) The manufacturing method and program of substrate board treatment, reaction tube, semiconductor device
JPH03224217A (en) Heat-treating device
TW300327B (en)
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
TW201313943A (en) Film forming apparatus
JPH0758696B2 (en) Semiconductor wafer heating device
CN109478500B (en) Substrate processing method and substrate processing apparatus
KR102424677B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and computer program
JPH0468522A (en) Vertical heat treatment device
JP3501768B2 (en) Substrate heat treatment apparatus and method of manufacturing flat panel device
JP3863786B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2007096334A (en) Substrate treatment apparatus, method of manufacturing semiconductor device, and heating unit
JPH0468528A (en) Vertical heat treatment apparatus
JP5403984B2 (en) Substrate heat treatment equipment
JP4954176B2 (en) Substrate heat treatment equipment
KR0155951B1 (en) Vertical type diffusion apparatus
JP2010073978A (en) Method for processing substrate
JP2005032883A (en) Substrate treatment equipment
JP2000077346A (en) Heat treatment apparatus
JP3322472B2 (en) Heat treatment equipment
JP2000008167A (en) Device for treating substrate
JPH0451522A (en) Vertical heat treatment device
JPH0794435A (en) Diffusion device
JPH08335575A (en) Heat treatment equipment and its method
JP2006245491A (en) Equipment and method for heat treating substrate