JPH046740B2 - - Google Patents
Info
- Publication number
- JPH046740B2 JPH046740B2 JP61192837A JP19283786A JPH046740B2 JP H046740 B2 JPH046740 B2 JP H046740B2 JP 61192837 A JP61192837 A JP 61192837A JP 19283786 A JP19283786 A JP 19283786A JP H046740 B2 JPH046740 B2 JP H046740B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- ultra
- high molecular
- weight polyethylene
- paraffin wax
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 78
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 78
- 239000012188 paraffin wax Substances 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 14
- 150000002894 organic compounds Chemical class 0.000 claims description 13
- 239000001993 wax Substances 0.000 claims description 10
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 22
- -1 polyethylene Polymers 0.000 description 19
- 238000009987 spinning Methods 0.000 description 19
- 239000004698 Polyethylene Substances 0.000 description 17
- 229920000573 polyethylene Polymers 0.000 description 17
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 14
- 238000002156 mixing Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 238000002844 melting Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 9
- 239000000155 melt Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- HOWGUJZVBDQJKV-UHFFFAOYSA-N docosane Chemical compound CCCCCCCCCCCCCCCCCCCCCC HOWGUJZVBDQJKV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 2
- FIGVVZUWCLSUEI-UHFFFAOYSA-N tricosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCC FIGVVZUWCLSUEI-UHFFFAOYSA-N 0.000 description 2
- 239000011240 wet gel Substances 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超高分子量ポリエチレンから高弾性
率、高強度を有する繊維、フイルム等を製造する
ことができるパラフインワツクス融液の調整方法
に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for preparing a paraffin wax melt that can produce fibers, films, etc. having high elastic modulus and high strength from ultra-high molecular weight polyethylene. .
超高分子量ポリエチレンを用いて紡糸した後延
伸することにより、高強度高弾性率の延伸物が得
られることはよく知られている。例えば特開昭55
−107506号公報、特開昭56−15408号公報あるい
は特開昭58−5228号公報の如く、超高分子量ポリ
エチレンを濃度2〜10重量%程度の稀薄溶液とし
た後紡糸し、高倍率に延伸ある方法、及び特開昭
59−130313号公報の如く、超高分子量ポリエチレ
ンに特定のパラフイン系ワツクスを配合した組成
物において、超高分子量ポリエチレンを濃度15〜
80重量%の範囲にて該組成物を溶融押出した後延
伸する方法などが提案されており、それなりの効
果を上げている。又このような高強度高弾性率の
延伸物を得るためには超高分子量ポリエチレンの
ような高分子量ポリマーを適当な溶媒を用いて均
一な溶液を調整することがまず必要でありそのた
めにいくつかの方法が提案されている。例えば特
開昭60−40133の如く超高分子量ポリエチレンの
溶液を徐冷しながらゲル状物を析出させ、該ゲル
状物からフイルム状及び強固なかたまり形態のゲ
ル状物を取り除いた後のゲル状物を撹拌下で球晶
状ゲルを形成せしめた後、再度溶剤中に分散せし
める方法が堤案されている。しかしながらこの方
法を用いると不要なフイルム状及び強固なかたま
り形態のゲル状物を多量に生成するばかりでな
く、再溶解が必要なことなど操作が繁雑な上に有
効に超高分子量ポリエチレンが利用され得ないな
どの問題点がある。
It is well known that by spinning ultra-high molecular weight polyethylene and then stretching it, a stretched product with high strength and high modulus of elasticity can be obtained. For example, Japanese Patent Application Publication No. 55
As in JP-A-107506, JP-A-56-15408, or JP-A-58-5228, ultra-high molecular weight polyethylene is made into a dilute solution with a concentration of about 2 to 10% by weight, then spun and stretched to a high ratio. A certain method and JP-A-Sho
No. 59-130313, in a composition in which ultra-high molecular weight polyethylene is blended with a specific paraffin wax, ultra-high molecular weight polyethylene is added at a concentration of 15 to 15%.
A method has been proposed in which the composition is melt-extruded in a range of 80% by weight and then stretched, and this method has achieved some results. In addition, in order to obtain such a stretched product with high strength and high modulus, it is first necessary to prepare a uniform solution of a high molecular weight polymer such as ultra high molecular weight polyethylene using an appropriate solvent. method has been proposed. For example, as in JP-A-60-40133, a gel-like substance is precipitated while slowly cooling a solution of ultra-high molecular weight polyethylene, and the gel-like substance is removed from the gel-like substance in the form of a film and a solid lump. A method has been proposed in which a substance is stirred to form a spherulite gel and then dispersed again in a solvent. However, when this method is used, it not only produces a large amount of unnecessary film-like and solid gel-like substances, but also requires re-dissolution, making the operation complicated and making it difficult to effectively utilize ultra-high molecular weight polyethylene. There are some problems, such as not being able to get it.
又、超高分子量ポリエチレンの稀薄溶液を冷却
濃縮した後再溶解する方法(特開昭59−223307)
が提案されている。 Also, a method of cooling and concentrating a dilute solution of ultra-high molecular weight polyethylene and then redissolving it (Japanese Patent Laid-Open No. 59-223307)
is proposed.
また同様の方法は文献中にも認められる。(ビ
ー・カルブおよびエー・ジエー・ペニングス;ジ
ヤーナル・オブ・マテリアルス・サイエンス、15
巻、2584〜2590頁(1980))しかしこれらの方法
は操作が繁雑である上に二度にわたつて長時間高
温に曝され、分子量の低下を招く恐れがある。 Similar methods are also found in the literature. (B. Kalb and A. G. Pennings; Journal of Materials Science, 15
(Vol., pp. 2584-2590 (1980)) However, these methods require complicated operations and involve exposure to high temperatures twice for long periods of time, which may lead to a decrease in molecular weight.
原料の超高分子量ポリエチレンを溶媒にて膨潤
温度以下あるいは低温湿潤温度以上ポリチレンの
融点未満の温度において湿潤処理した後、そのま
ま加熱するか、又は加熱した溶媒とすみやかに接
触させるとともに、その後ゆるやかな撹拌を加え
ることにより、超高分子量ポリエチレンの均一溶
液を調整する方法が提案されている。 After humidifying the ultra-high molecular weight polyethylene as a raw material with a solvent at a temperature below the swelling temperature or above the low-temperature wet temperature and below the melting point of polyethylene, it is heated as it is or brought into contact with the heated solvent quickly, and then gently stirred. A method has been proposed for preparing a homogeneous solution of ultra-high molecular weight polyethylene by adding .
(特公昭60−22010、特開昭59−232123)
これらの方法はいずれも、あらかじめ超高分子
量ポリエチレンを湿潤あるいは膨潤せしめること
により該ポリエチレンへの熱溶媒の浸透速度を高
め、いわゆる「ままこ」の生成を避けることによ
り均一溶液を、極めて短時間にかつ高濃度にて調
整しようとするものである。しかしながらその均
一性と高濃度化は、使用する溶媒により大きく異
なり、比較的膨潤性能の低い流動パラフインなど
については、実施例にも記載されておらず、通常
ポリエチレンの溶媒として用いられる、比較的平
衡膨潤比の高い、p−キシレン、デカヒドロナフ
タリン等に限られて実施例が記載されているのみ
である。これらの溶媒を用いて比較的均一な溶液
を調整した場合でも、これらの溶媒が室温で液体
である為、紡糸後ボビン等に巻取る際、巻取テン
シヨンの変動、湿潤ゲルの融着、巻取後の時間経
過による溶媒脱離差によるボビン内外層での物性
変化など、延伸に用いるゲルの不均一性を生じ、
又、湿潤ゲルが軟弱で取扱いに注意を要すること
や、その断面形状が不規則で、最終延伸物におい
てデニールむらなどの問題も有している。(Japanese Patent Publication No. 60-22010, Japanese Patent Publication No. 59-232123) In both of these methods, the rate of penetration of the thermal solvent into the polyethylene is increased by pre-wetting or swelling the ultra-high molecular weight polyethylene. The aim is to prepare a homogeneous solution in a very short time and at a high concentration by avoiding the formation of . However, its uniformity and high concentration vary greatly depending on the solvent used, and liquid paraffin, which has relatively low swelling performance, is not described in the examples, and is generally used as a solvent for polyethylene. Examples are only given for p-xylene, decahydronaphthalene, etc., which have high swelling ratios. Even when a relatively uniform solution is prepared using these solvents, since these solvents are liquid at room temperature, there may be fluctuations in the winding tension, fusion of the wet gel, or winding when winding onto a bobbin after spinning. The gel used for stretching may become non-uniform due to changes in the physical properties of the inner and outer layers of the bobbin due to differences in solvent desorption over time after drawing.
In addition, the wet gel is soft and must be handled with care, and its cross-sectional shape is irregular, resulting in problems such as uneven denier in the final stretched product.
本発明者らは、超高分子量ポリエチレンを用い
て高強や高弾性率を有する延伸物を製造する方法
を鋭意研究した結果、超高分子量ポリエチレンを
高濃度においても均一性に優れた溶液を調製出来
ること、更にはその溶液を紡糸した後延伸する迄
の間、取扱いが容易であり、溶剤含有量が変動す
ることなく高い品質を保つことが、連続して品質
の安定した高強度高弾性率の延伸物を製造するた
めに必須であると考え、研究を重ねた。
The inventors of the present invention have conducted intensive research on a method for producing a stretched product with high strength and high elastic modulus using ultra-high molecular weight polyethylene, and as a result, it has been possible to prepare a solution with excellent uniformity even at a high concentration of ultra-high molecular weight polyethylene. Furthermore, it is easy to handle and maintain high quality without fluctuations in the solvent content during the period from spinning the solution to stretching. We considered this to be essential for producing stretched products and conducted repeated research.
すなわち、超高分子量ポリエチレンを溶かす溶
剤として、室温で固体でかつ超高分子量ポリエチ
レンとの相溶性に優れているパラフインワツクス
を用いることが、紡糸後の未延伸糸の取扱いが容
易でかつ巻取り等による溶剤含有量の変動がほと
んどないなど、連続して品質の安定した延伸物を
製造する上で特に優れていること、パラフインワ
ツクスに対して均一にかつ速やかに超高分子量ポ
リエチレンを相溶させる方法が従来知られていな
いことなどについて、その最適な方法として、予
め加熱溶融させたパラフインワツクスと、該パラ
フインワツクスと相溶性を有する液状有機化合物
により分散もしくは湿潤された超高分子量ポリエ
チレンとを混合することによつて得られた融液が
非常に均一であることを見出した。
In other words, using paraffin wax, which is solid at room temperature and has excellent compatibility with ultra-high molecular weight polyethylene, as a solvent for dissolving ultra-high molecular weight polyethylene makes it easier to handle the undrawn yarn after spinning and to make it easier to wind. It is especially excellent for producing stretched products with stable quality continuously, as there is almost no fluctuation in solvent content due to etc., and ultra-high molecular weight polyethylene is uniformly and quickly compatible with paraffin wax. The optimal method is to use paraffin wax that has been heated and melted in advance, and ultra-high molecular weight polyethylene that has been dispersed or wetted with a liquid organic compound that is compatible with the paraffin wax. It has been found that the melt obtained by mixing these is very uniform.
すなわち本発明は、重量平均分子量が少なくと
も1×106以上の超高分子量ポリエチレンを含む
パラフインワツクスの融液の調製方法において、
予め加熱溶融されたパラフインワツクスと該パラ
フインワツクスと相溶性を有する液状有機化合物
により分散または湿潤された該超高分子量ポリエ
チレンとを混合することを特徴とする、超高分子
量ポリエチレンを含むパラフインワツクス融液の
調製方法を提供する。 That is, the present invention provides a method for preparing a melt of paraffin wax containing ultra-high molecular weight polyethylene having a weight average molecular weight of at least 1 x 10 6 or more,
A paraffin wax containing ultra-high molecular weight polyethylene, which is characterized by mixing paraffin wax that has been heated and melted in advance and the ultra-high molecular weight polyethylene that has been dispersed or wetted with a liquid organic compound that is compatible with the paraffin wax. A method for preparing a tuxu melt is provided.
本発明に用いられる超高分子量ポリエチレンと
してはエチレンあるいはエチレンと少量の他のα
−オレフイン、例えばプロピレン、ブテン−1,
4−メチルペンテン−1、ヘキセン−1等とをい
わゆる4−グラー重合等遷移金属触媒を用いて重
合することにより得られるポリエチレンの中で、
重量平均分子量が1×106以上のものが用いられ
る。重量平均分子量が1×106未満のものは溶解
は容易であるが、延伸しても高い性能が得られに
くい傾向にある。上限については特に規定はない
が1×107を越えるものについては実用的な融液
を得ることは難しい傾向にある。 The ultra-high molecular weight polyethylene used in the present invention is ethylene or ethylene and a small amount of other α-polyethylene.
-olefins, such as propylene, butene-1,
Among polyethylenes obtained by polymerizing 4-methylpentene-1, hexene-1, etc. using a transition metal catalyst such as so-called 4-glar polymerization,
Those having a weight average molecular weight of 1×10 6 or more are used. Those having a weight average molecular weight of less than 1×10 6 are easy to dissolve, but they tend to be difficult to obtain high performance even when stretched. There is no particular regulation regarding the upper limit, but it tends to be difficult to obtain a practical melt if it exceeds 1×10 7 .
本発明に用いるパラフインワツクスとしては、
常温で固形であり、飽和脂肪族炭化水素化合物を
主体とするもので融点が40ないし120℃好ましく
は45ないし70℃でかつ分子量が2000以下、好まし
くは1000以下のものであり、具体的には、ドコサ
ン、トリコサン、テトラコサン等の炭素数22以上
のn−アルカンあるいはそれらを主成分とした低
級n−アルカン混合物、石油から分離精製された
パラフインワツクス、エチレンあるいはエチレン
と他のα−オレフインとを共重合して得られる低
分子量重合体である中低圧ポリエチレンワツク
ス、高圧法ポリエチレンワツクス、あるいは中低
圧ポリエチレン、高圧法ポリエチレンを熱減成等
により分子量を低下させたワツクス及びそれらワ
ツクスの酸化物あるいはマレイン酸変性物等の酸
化ワツクス、マレイン酸変性ワツクス等が挙げら
れる。 The paraffin wax used in the present invention includes:
It is solid at room temperature, is mainly composed of saturated aliphatic hydrocarbon compounds, has a melting point of 40 to 120°C, preferably 45 to 70°C, and has a molecular weight of 2000 or less, preferably 1000 or less, specifically: , n-alkanes with 22 or more carbon atoms such as docosane, tricosane, and tetracosane, or lower n-alkane mixtures containing these as main components, paraffin wax separated and refined from petroleum, ethylene or ethylene and other α-olefins. Medium-low pressure polyethylene wax, high-pressure polyethylene wax, which is a low molecular weight polymer obtained by copolymerization, or wax whose molecular weight has been reduced by thermal degradation of medium-low pressure polyethylene or high-pressure polyethylene, and oxides of these waxes. Alternatively, oxidized waxes such as maleic acid-modified waxes, maleic acid-modified waxes, etc. may be mentioned.
本発明における超高分子量ポリエチレンとパラ
フインワツクスとの混合比は特に規定はないが好
ましくは、超高分子量ポリエチレンとパラフイン
ワツクスの混合比が3対97ないし50対50、更に好
ましくは、5対95ないし30対70さらに好ましくは
5対95ないし15対85の範囲である。超高分子量ポ
リエチレンが3重量%未満においてはその融液を
紡糸した後形成されたストランドが脆く延伸に適
さない。又超高分子量ポリエチレンが50重量%を
超える範囲では、パラフインワツクス融液の粘度
が非常に高く、その後の成形性及び延伸性が悪く
なる。 The mixing ratio of ultra-high molecular weight polyethylene and paraffin wax in the present invention is not particularly limited, but preferably the mixing ratio of ultra-high molecular weight polyethylene and paraffin wax is 3:97 to 50:50, more preferably 5:50. The range is from 95 to 30:70, more preferably from 5:95 to 15:85. When the amount of ultra-high molecular weight polyethylene is less than 3% by weight, the strands formed after spinning the melt are brittle and unsuitable for drawing. Furthermore, if the ultra-high molecular weight polyethylene exceeds 50% by weight, the viscosity of the paraffin wax melt will be extremely high, resulting in poor moldability and stretchability.
本発明に用いられる該パラフインワツクスと相
溶性を有する液状有機化合物としては、該超高分
子量ポリエチレンを分散又は湿潤させることが可
能であれば特に限定されないが、該加熱パラフイ
ンワツクス中にすみやかに超高分子量ポリエチレ
ンを分散させ、かつ超高分子量ポリエチレン粒子
内に該加熱パラフインワツクスを浸透させる為に
は自ずから特定の溶解パラメーター範囲及び粘度
範囲を有する有機化合物に限定される。好ましく
は溶解パラメーターの範囲が7.3〜9.3であり、か
つ20℃での粘度が3c.p以下であることが好まし
い。例えばn−ヘキサン、n−ヘプタン、n−オ
クタン、n−ノナン及びn−デカン等の脂肪族炭
化水素化合物、及びトルエン、キシレン、ブチル
ベンゼン、シクロヘキシルベンゼン、ドデシルベ
ンゼン、デカリン、テトラリン及びシクロヘキサ
ン等の芳香族炭化水素化合物及びその水素化誘導
体、ハロゲン誘導体等が挙げられる。これらは任
意の割合で2種類以上混合して用いてもよい。こ
こでいう溶解パラメーターとは、単位体積当りの
蒸発エネルギーの平方根で定義されるものであり
蒸発エネルギーを△E〔cal/mole〕、その物質の
分子容をV〔cc〕で表わすとすれば、溶解パラメ
ーターδは下式で表わされる。 The liquid organic compound that is compatible with the paraffin wax used in the present invention is not particularly limited as long as it can disperse or wet the ultra-high molecular weight polyethylene; In order to disperse the ultra-high molecular weight polyethylene and to penetrate the heated paraffin wax into the ultra-high molecular weight polyethylene particles, organic compounds having specific solubility parameter ranges and viscosity ranges are naturally required. Preferably, the solubility parameter range is from 7.3 to 9.3, and the viscosity at 20° C. is preferably 3 c.p or less. Aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-octane, n-nonane and n-decane, and aromatics such as toluene, xylene, butylbenzene, cyclohexylbenzene, dodecylbenzene, decalin, tetralin and cyclohexane. Examples include group hydrocarbon compounds, hydrogenated derivatives thereof, and halogen derivatives. Two or more of these may be used as a mixture in any proportion. The solubility parameter here is defined as the square root of the evaporation energy per unit volume. If the evaporation energy is expressed as △E [cal/mole] and the molecular volume of the substance is expressed as V [cc], then The solubility parameter δ is expressed by the following formula.
δ=(△E/V)1/2
本発明における加熱溶融されたパラフインワツ
クスの温度としては、混合後の系内が該超高分子
量ポリエチレンの融点以上に保持できる温度であ
れば特に限定はなく、好ましくは140℃以上該超
高分子量ポリエチレン及びパラフインワツクスの
分解温度以下、更に好ましくは150℃以上270℃以
下の範囲である。該パラフインワツクスの温度が
140℃未満の場合、該超高分子量ポリエチレンの
分散又は湿潤液と該加熱パラフインワツクスとの
浸透が不充分で、該超高分子量ポリエチレンは均
一に膨潤しにくい。従つてこのまま紡糸しても、
あるいは、押出機を通過後紡糸した場合でも、均
一なストランドが得られにくく、高い性能を発現
するに充分な延伸を行うことが難しい。 δ=(△E/V) 1/2 The temperature of the heated and melted paraffin wax in the present invention is not particularly limited as long as the temperature in the system after mixing can be maintained at a temperature higher than the melting point of the ultra-high molecular weight polyethylene. The temperature is preferably 140°C or higher and lower than the decomposition temperature of the ultra-high molecular weight polyethylene and paraffin wax, and more preferably 150°C or higher and 270°C or lower. The temperature of the paraffin wax is
If the temperature is lower than 140°C, the dispersion of the ultra-high molecular weight polyethylene or the penetration of the wetting liquid into the heated paraffin wax is insufficient, and the ultra-high molecular weight polyethylene is difficult to uniformly swell. Therefore, even if you continue spinning as is,
Alternatively, even when spinning is performed after passing through an extruder, it is difficult to obtain a uniform strand, and it is difficult to perform sufficient stretching to achieve high performance.
一方該分解温度を越える温度では、該超高分子
量ポリエチレンの分子量が低下し、延伸後も高い
性能を有する延伸物が得られない。 On the other hand, if the temperature exceeds the decomposition temperature, the molecular weight of the ultra-high molecular weight polyethylene decreases, and a stretched product with high performance cannot be obtained even after stretching.
本発明における該加熱溶融したパラフインワツ
クスと該液状有機化合物に分散又は湿潤した該超
高分子量ポリエチレンとを混合して融液をつくる
方法としては、該加熱溶融したパラフインワツク
スの撹拌下に該分散又は湿潤状態の超高分子量ポ
リエチレンをその中に加える方法、あるいは該分
散又は湿潤状態の超高分子量ポリエチレンの撹拌
下に該加熱溶融させたパラフインワツクスをその
中に加える方法、及び該加熱溶融パラフインワツ
クスと該分散又は湿潤状態の超高分子量ポリエチ
レンとを同時に接触せしめた後加熱混練可能な装
置に供給する方法などがあげられるが、特に限定
されるものではない。 In the present invention, the method of mixing the heated and melted paraffin wax and the ultra-high molecular weight polyethylene dispersed in or wetted with the liquid organic compound to form a melt includes stirring the heated and melted paraffin wax. A method of adding dispersed or wet ultra-high molecular weight polyethylene therein, or a method of adding the heated and melted paraffin wax into the dispersed or wet ultra-high molecular weight polyethylene while stirring, and the heated melting. Examples include a method in which the paraffin wax and the ultra-high molecular weight polyethylene in a dispersed or wet state are brought into contact at the same time and then fed into an apparatus capable of heating and kneading, but the method is not particularly limited.
又、超高分子量ポリエチレンの濃度が高いパラ
フインワツクス融液の調整においては、あらかじ
め該液状有機化合物に分散又は湿潤状態の超高分
子量ポリエチレンを該液状有機化合物の沸点以下
に加温せしめた後、該加熱溶融させたパラフイン
ワツクスと混合する方法、あるいはこのようにし
て調整した混合物を押出機に通す方法なども利用
出来る。 In addition, in preparing a paraffin wax melt with a high concentration of ultra-high molecular weight polyethylene, after heating the ultra-high molecular weight polyethylene dispersed or wet in the liquid organic compound to a temperature below the boiling point of the liquid organic compound, A method of mixing with the paraffin wax heated and melted, or a method of passing the thus prepared mixture through an extruder can also be used.
本発明における超高分子量ポリエチレンを該液
状有機化合物に分散又は湿潤する方法としては超
高分子量ポリエチレンとそれと等量ないし約3倍
量の該液状有機化合物とを混合できれば特に限定
されないが、好ましくは該超高分子量ポリエチレ
ンが沈降しない状態で分散又は湿潤されているこ
とが望ましい。そのために粘度改良剤を加えた
り、超音波振動を加えながら混合する方法も用い
られる。 The method of dispersing or wetting the ultra-high molecular weight polyethylene in the liquid organic compound in the present invention is not particularly limited as long as the ultra-high molecular weight polyethylene and the liquid organic compound can be mixed in an amount equal to or about three times the amount of the ultra-high molecular weight polyethylene. It is desirable that the ultra-high molecular weight polyethylene is dispersed or wetted without settling. For this purpose, a method of adding a viscosity improver or mixing while applying ultrasonic vibration is also used.
パラフイン系ワツクスを用いて超高分子量ポリ
エチレンの高延伸物を得る方法として特開昭59−
130313号公報が提案されている。しかしながら該
パラフイン系ワツクスと該超高分子量ポリエチレ
ンを均一に混合する方法としてヘンシエルミキサ
ー、V−ブレンダー等による混合、あるいは混合
後更に単軸あるいは多軸押出機で溶融混練して造
粒する方法(引例明細書11頁4行〜8行)が記さ
れているものの、均一性が充分でない為超高分子
量ポリエチレンの量が15重量部未満では、充分な
延伸が出来ない(引例明細書比較例3)等の結果
が得られている。本発明の方法を用いて該パラフ
インワツクスと該超高分子量ポリエチレンを混合
することによつて比較的低濃度から高濃度の超高
分子量ポリエチレンの均一なパラフインワツクス
融液が調整出来る要因の1つは、溶融した超高分
子量ポリエチレンパウダーが互いに融着する前に
充分膨潤させ、膨潤後均一に分散することにより
均一融液を形成するためであると考えられる。そ
のためには該超高分子量ポリエチレンを分散又は
湿潤させる液状有機化合物が高温において該パラ
フインワツクスと相溶性を有することが重要であ
り、又、混合後すみやかに該超高分子量ポリエチ
レンをその融点を超える温度に昇温せしめること
によつて該超高分子量ポリエチレンが該パラフイ
ンワツクスにて充分に膨潤せしめられる温度で、
該パラフインワツクスが加熱溶融されていること
が重要である。 Japanese Unexamined Patent Application Publication No. 1983-1980 on a method for obtaining highly drawn products of ultra-high molecular weight polyethylene using paraffin wax.
Publication No. 130313 has been proposed. However, methods for uniformly mixing the paraffin wax and the ultra-high molecular weight polyethylene include mixing using a Henschel mixer, V-blender, etc., or melt-kneading and granulating using a single-screw or multi-screw extruder after mixing ( However, if the amount of ultra-high molecular weight polyethylene is less than 15 parts by weight, sufficient stretching cannot be achieved (Comparative Example 3 of the cited specification) because the uniformity is not sufficient. ) results have been obtained. One of the reasons why a uniform paraffin wax melt of relatively low to high concentration ultra-high molecular weight polyethylene can be prepared by mixing the paraffin wax and the ultra-high molecular weight polyethylene using the method of the present invention. One reason is that the molten ultra-high molecular weight polyethylene powder is sufficiently swollen before being fused together, and is uniformly dispersed after swelling to form a uniform melt. To this end, it is important that the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene has compatibility with the paraffin wax at high temperatures, and that the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene has compatibility with the paraffin wax at high temperatures, and that the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene quickly exceeds its melting point after mixing. at a temperature at which the ultra-high molecular weight polyethylene is sufficiently swollen in the paraffin wax by raising the temperature;
It is important that the paraffin wax is heated and melted.
本発明において用いられる超高分子量ポリエチ
レン及びパラフインワツクスには本発明の目的を
損わない範囲で、耐熱安定剤、耐候安定剤、顔
料、染料、滑剤及び少量の無機充填剤等の通常ポ
リオレフインに添加して使用される各種添加剤で
延伸を大きく阻害しないものを配合して用いても
よい。 The ultra-high molecular weight polyethylene and paraffin wax used in the present invention may contain conventional polyolefins such as heat stabilizers, weather stabilizers, pigments, dyes, lubricants, and small amounts of inorganic fillers, to the extent that the purpose of the present invention is not impaired. Among the various additives that are used, those that do not significantly inhibit the stretching may be used.
本発明の超高分子量ポリエチレンを含むパラフ
インワツクス融液を用いることにより、従来の方
法で得られる溶液を用いて高強度高弾性率を有す
る延伸物を得る場合に比較して、各工程におい
て、原材料の回収ロスが極めて少なくて済み、か
つ超高分子量ポリエチレンの濃度が最高50重量%
迄の範囲で利用出来、生産性が向上するばかりで
なく、極めて短時間の調整で比較的緩やかな混練
によつて調整でき、その融液は安全にかつ安定的
に連続押出することが可能であり、紡糸後の種々
の不均一性を防止出来る。
By using the paraffin wax melt containing the ultra-high molecular weight polyethylene of the present invention, in each step, compared to the case where a stretched product having high strength and high modulus is obtained using a solution obtained by a conventional method, Extremely low recovery loss of raw materials, and ultra-high molecular weight polyethylene concentration up to 50% by weight
Not only can it be used in a wide range of applications, improving productivity, but it can also be adjusted in an extremely short time with relatively gentle kneading, and the melt can be safely and stably continuously extruded. This can prevent various non-uniformities after spinning.
本発明の方法によつて得られる超高分子量ポリ
エチレンのパラフインワツクス融液を紡糸して得
られる未延伸物は、室温にて固体状態であり、か
つ柔軟性にも富み、その取扱いも容易であり貯蔵
安定性も高い。又、これを延伸して得られる延伸
物は、高強力高弾性率を有しており、幅広い分野
で利用出来、産業上極めて有用な製品となる。 The unstretched product obtained by spinning the paraffin wax melt of ultra-high molecular weight polyethylene obtained by the method of the present invention is solid at room temperature, highly flexible, and easy to handle. It also has high storage stability. Moreover, the drawn product obtained by drawing this has high strength and high elastic modulus, and can be used in a wide range of fields, making it an extremely useful product industrially.
(実施例)
次に実施例を挙げて、本発明を更に具体的に説
明するが、本発明はこれらの実施例に何んら制約
されるものではない。(Examples) Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.
実施例 1
超高分子量ポリエチレン(サンフアイン−
UUH900,重量平均分子量3.3×106)を最終的な
濃度が5重量%になるように秤量し、室温で超高
分子量ポリエチレンの重量に対し2倍量n−ヘプ
タンを加えた後充分に撹拌しスリラー化した超高
分子量ポリエチレンスラリーを得た。一方、別の
容器中に所定量のパラフインワツクス(融点=52
〜54℃、分子量=350)を190℃に加熱溶融させ、
撹拌装置を取付け、60回転にて撹拌された加熱溶
融パラフインワツクスにはパラフインワツクスの
重量に対して0.2%のジ・ターシヤルブチル・パ
ラクレゾールを添加しておいた。Example 1 Ultra-high molecular weight polyethylene (Sanhuain)
UUH900, weight average molecular weight 3.3×10 6 ) was weighed so that the final concentration was 5% by weight, and after adding n-heptane in an amount twice the weight of ultra-high molecular weight polyethylene at room temperature, the mixture was thoroughly stirred. An ultra-high molecular weight polyethylene slurry made into a thriller was obtained. Meanwhile, in another container, put a predetermined amount of paraffin wax (melting point = 52
~54℃, molecular weight = 350) was heated and melted at 190℃,
A stirring device was attached, and 0.2% di-tert-butyl paracresol was added to the heated and melted paraffin wax which was stirred at 60 revolutions based on the weight of the paraffin wax.
撹拌された熱パラフインワツクスに先に調製し
た超高分子量ポリエチレンスラリーを沈降しない
ように撹拌しながら、すみやかに注入しその混合
物の温度が190℃を保つように引続き加熱した。
注入後超高分子量ポリエチレン粒子は急激に膨潤
し、撹拌棒に沿つてパラフインワツクス融液がも
り上がる、いわゆる「ワイゼンベルク効果」が認
められた。この時点で撹拌をやめ、5分間放置し
たところ、極めて均一なパラフインワツクス融液
が生成した。融液はn−ヘプタン蒸発の為、かな
りの気泡を含んでいたが、脱気処理後170℃に加
熱された紡糸筒(ノズル径1.0mmφ)より水中に
押出したところ、形状のむら、紡糸切れを生じる
ことなく巻取ることが出来た。巻取つたパラフイ
ンワツクスストランドは、柔軟性があり、室温で
も容易に8倍迄延伸することが出来た。又、紡糸
中にワツクスの浸出し、巻取りボビン内外層での
デニールむらなどは認められなかつた。 The previously prepared ultra-high molecular weight polyethylene slurry was quickly poured into the stirred hot paraffin wax while stirring to prevent sedimentation, and the mixture was continuously heated to maintain a temperature of 190°C.
After injection, the ultra-high molecular weight polyethylene particles swelled rapidly, and the so-called ``Weisenberg effect'' was observed, in which the paraffin wax melt rose along the stirring rod. At this point, stirring was stopped and the mixture was allowed to stand for 5 minutes, resulting in an extremely uniform paraffin wax melt. The melt contained a considerable amount of bubbles due to the evaporation of n-heptane, but when extruded into water through a spinning tube (nozzle diameter 1.0 mmφ) heated to 170°C after degassing, unevenness in shape and breakage of the spun fibers were observed. I was able to wind it up without any problems. The wound paraffin wax strand was flexible and could be easily stretched up to 8 times even at room temperature. Further, no wax leaching during spinning, no denier unevenness in the inner and outer layers of the winding bobbin, etc. were observed.
実施例 2
実施例1と同様のポリエチレンを用いて、最終
的な濃度が8重量%になるように秤量し、室温で
超高分子量ポリエチレンの重量に対して2倍量の
n−デカンを加えた後、充分に撹拌しスリラー化
した超高分子量ポリエチレンスラリーを得た。一
方別容器中で所定量のパラフインワツクス(融点
69℃分子量=460)を200℃に加熱溶融させた後、
撹拌装置を取付け、撹拌しながら180℃に保温し
た。パラフインワツクスの重量に対して0.2%の
ジターシヤルブチル・パラクレゾールを上記熱パ
ラフインワツクスに加えその中に先に調製した超
高分子量ポリエチレンスラリーを実施例1と同様
にして加えて均一なパラフインワツクス融液を得
た。実施例1と同様に脱気処理後、180℃に加熱
された紡糸筒(ノズル1mmφ)より水中に押出し
た後、種々のドラフト率にて巻取つてみた。最高
ドラフト率は15倍であつた。得られたストランド
を用いて130℃に加熱されたn−デカン中にて延
伸したところ延伸倍率40倍迄延伸出来た。Example 2 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 8% by weight, and twice the amount of n-decane was added to the weight of the ultra-high molecular weight polyethylene at room temperature. Thereafter, an ultra-high molecular weight polyethylene slurry was obtained by thoroughly stirring and turning into a thriller. Meanwhile, in a separate container, add a predetermined amount of paraffin wax (melting point
After heating and melting 69℃ molecular weight = 460) to 200℃,
A stirring device was attached, and the temperature was kept at 180°C while stirring. Ditertiary butyl paracresol in an amount of 0.2% based on the weight of the paraffin wax was added to the hot paraffin wax, and the ultra-high molecular weight polyethylene slurry prepared earlier was added thereto in the same manner as in Example 1 to form a uniform paraffin wax. A wax melt was obtained. After degassing in the same manner as in Example 1, the fibers were extruded into water through a spinning tube (nozzle 1 mmφ) heated to 180° C., and then wound at various draft rates. The highest draft rate was 15x. When the obtained strand was stretched in n-decane heated to 130°C, it was possible to stretch it to a stretching ratio of 40 times.
実施例 3
実施例1と同様のポリエチレンを用いて、最終
的な濃度が20重量%になるように秤量し、100℃
に加熱された超高分子量ポリエチレンの重量と等
量のn−デカンを加えた後、充分に撹拌し超高分
子量ポリエチレンスラリーを作成した。一方別容
器中で所定量のパラフインワツクス(融点42〜44
℃分子量=300)を220℃に加熱溶融させた後、撹
拌装置を取付け、実施例1と同様にして混合しパ
ラフインワツクス融液を得た。この融液は非常に
粘度が高いためあらかじめ180℃に設定された単
軸押出機に供給して、紡糸口径2mmのダイスより
水中に押出し、未延伸物を得た。得られたストラ
ンドを用いて、130℃に加熱されたn−デカン中
であるいは沸騰n−ヘキサンを用いて渦剰のパラ
フインワツクスを抽出した後、130℃オーブン中
で延伸したところ、それぞれ、32倍、22倍迄延伸
することが出来た。Example 3 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 20% by weight, and heated at 100°C.
After adding n-decane in an amount equal to the weight of the heated ultra-high molecular weight polyethylene, the mixture was sufficiently stirred to prepare an ultra-high molecular weight polyethylene slurry. Meanwhile, in a separate container, add a predetermined amount of paraffin wax (melting point 42-44
After melting the mixture by heating to 220°C (molecular weight = 300°C), a stirring device was attached and the mixture was mixed in the same manner as in Example 1 to obtain a paraffin wax melt. Since this melt had a very high viscosity, it was supplied to a single-screw extruder preset at 180°C and extruded into water through a die with a spinning diameter of 2 mm to obtain an unstretched product. Using the obtained strands, after extracting the residual paraffin wax in n-decane heated to 130°C or using boiling n-hexane, the strands were stretched in an oven at 130°C. It was possible to stretch it up to 22 times.
比較例 1
実施例2と同様のポリエチレン10gとパラフイ
ンワツクス(融点=52〜54℃分子量=350)190g
を同時に容器に入れ、パラフインワツクスを溶融
させた後撹拌しながら200℃迄急速に加熱し、そ
の温度に保ちながら撹拌を続けた。しかしなが
ら、設定温度に到達後20分間経過した後も、超高
分子量ポリエチレンの溶融した固まりと所定の濃
度より希薄な溶液との2相に分離したままで極め
て不均一であつた。その後更に60分間撹拌を続け
たが均一化は起こらなかつた。この融液をあらか
じめ180℃に加熱された紡糸筒に移し紡糸しよう
としたが、溶融したパラフインワツクスのみがノ
ズルから流れ出し紡糸不可能であつた。Comparative Example 1 10 g of polyethylene similar to Example 2 and 190 g of paraffin wax (melting point = 52-54°C, molecular weight = 350)
was placed in a container at the same time, and after melting the paraffin wax, it was rapidly heated to 200°C while stirring, and stirring was continued while maintaining that temperature. However, even after 20 minutes had passed after reaching the set temperature, the mixture remained extremely non-uniform as it remained separated into two phases: a molten mass of ultra-high molecular weight polyethylene and a solution diluted from the predetermined concentration. After that, stirring was continued for an additional 60 minutes, but no homogenization occurred. An attempt was made to spin this melt by transferring it to a spinning tube preheated to 180°C, but only the molten paraffin wax flowed out of the nozzle, making spinning impossible.
比較例 2
実施例1と同様のポリエチレンを用いて、最終
的な濃度が5重量%になるように秤量し、室温で
超高分子量ポリエチレンの重量に対して2倍量の
デカリンを加え、更にこのポリマーの重量に対し
て0.2%のジ・ターシヤルブチル・パラクレゾー
ルを添加し、該ポリエチレン粒子が湿潤するよう
にかきまぜた。一方、別の容器中に所定量のデカ
リンを沸騰するまで加熱し、この熱デカリンをさ
きにデカリンを用いて湿潤させておいたポリエチ
レン粒子の入つた容器中に素早く注入しつつ撹拌
を行つた。ポリエチレン粒子は会合することなく
デカリンを吸収して膨潤し、時間の経過とともに
粘稠な溶液が得られた。この溶液をあらかじめ
150℃に加熱された紡糸筒から水中に押出し、デ
カリンを多量に含んだゲル状繊維を得た。しかし
紡糸中かなりのデカリンが冷却槽、巻取ボビン上
に浸出し、又デカリンを含んだまま巻取ボビン上
に巻取り放置すると、湿つたゲル状繊維同士の融
着が起こり、延伸工程での糸切れの原因となつ
た。又得られた延伸糸は、巻取ボビンの内外層の
差によつて、断面が不均一でかつ大きなデニール
むらを有する結果となつた。Comparative Example 2 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 5% by weight, and twice the amount of decalin was added to the weight of the ultra-high molecular weight polyethylene at room temperature. 0.2% di-tert-butyl para-cresol based on the weight of the polymer was added and stirred to wet the polyethylene particles. Meanwhile, a predetermined amount of decalin was heated to boiling in another container, and the hot decalin was quickly poured into the container containing the polyethylene particles, which had been moistened with decalin, while stirring. The polyethylene particles absorbed decalin and swelled without association, and a viscous solution was obtained over time. Add this solution in advance
A gel-like fiber containing a large amount of decalin was obtained by extruding it into water from a spinning tube heated to 150°C. However, during spinning, a considerable amount of decalin leaches out into the cooling tank and onto the take-up bobbin, and if the decalin is left to be wound on the take-up bobbin while still containing decalin, the moist gel-like fibers will fuse together, causing problems during the drawing process. This caused thread breakage. Further, the obtained drawn yarn had a non-uniform cross section and large denier unevenness due to the difference between the inner and outer layers of the winding bobbin.
実施例 4
超高分子量ポリエチレン(ハイフアツクス
1900,ハーキユレス,重量平均分子量5.1×106)
を用いて実施例3と同様の方法にて混合し、超高
分子量ポリエチレンを含むパラフインワツクス融
液を調製した。この融液を用いて、あらかじめ
180℃に加熱された紡糸筒(ノズル径2mm)から
水中に押出し、パラフインワツクスの浸み出しも
なく又ストランド径も均一な連続したストランド
が得られた。得られたストランドを、130℃に加
熱されたn−デカン浴中で延伸を行つたところ、
延伸倍率30倍迄延伸することが出来た。Example 4 Ultra-high molecular weight polyethylene
1900, Hercules, weight average molecular weight 5.1×10 6 )
A paraffin wax melt containing ultra-high molecular weight polyethylene was prepared by mixing in the same manner as in Example 3. Using this melt,
It was extruded into water from a spinning tube (nozzle diameter: 2 mm) heated to 180°C, and a continuous strand with no paraffin wax seeping out and a uniform strand diameter was obtained. When the obtained strand was stretched in an n-decane bath heated to 130°C,
It was possible to stretch to a stretching ratio of 30 times.
実施例 5
実施例1と同様のポリエチレンを用いて、あら
かじめ100℃に加熱された流動パラフインを該超
高分子量ポリエチレン100重量部に対して等量加
え、充分撹拌し、湿潤した超高分子量ポリエチレ
ンパウダーのスラリーケーキを作成した。一方別
に、230℃に加熱溶融したパラフインワツクス
(融点42〜44℃、分子量300)を調整し、両者を該
超高分子量ポリエチレンの最終的な濃度が30重量
%になるように、同時に混合しながら押出機に供
給した。押出機の温度は200℃に保ち、押出機で
の滞留時間を3分間とした。得られた該超高分子
量ポリエチレンを含むパラフインワツクス融液は
非常に粘調であり、溶融したポリマーに近い性状
であつた。上記押出機にノズル径2mmのノズルを
有するダイスを取付け紡糸を行つたところ最大ド
ラフト率50倍迄の巻取りが可能で、ストランド切
れなどの不良現象は認められなかつた。Example 5 Using the same polyethylene as in Example 1, an equal amount of liquid paraffin preheated to 100°C was added to 100 parts by weight of the ultra-high molecular weight polyethylene, and the mixture was thoroughly stirred to obtain wet ultra-high molecular weight polyethylene powder. made a slurry cake. Separately, prepare paraffin wax (melting point: 42-44°C, molecular weight: 300) heated and melted at 230°C, and mix both at the same time so that the final concentration of the ultra-high molecular weight polyethylene is 30% by weight. It was then fed to the extruder. The temperature of the extruder was maintained at 200°C, and the residence time in the extruder was 3 minutes. The resulting paraffin wax melt containing the ultra-high molecular weight polyethylene was very viscous and had properties similar to those of a molten polymer. When a die having a nozzle with a nozzle diameter of 2 mm was attached to the above extruder and spinning was carried out, winding was possible at a maximum draft rate of 50 times, and no defects such as strand breakage were observed.
得られたストランドを用いて、130℃に加熱さ
れたn−デカン中で延伸したところ、最大ドラフ
ト率50のものでも、延伸倍率10倍迄延伸あること
が出来た。 When the obtained strand was stretched in n-decane heated to 130°C, it was possible to stretch the strand to a stretching ratio of 10 times even at a maximum draft ratio of 50.
Claims (1)
該パラフインワツクスと相溶性を有する液状有機
化合物により分散又は湿潤された重量平均分子量
が少なくとも1×106以上の超高分子量ポリエチ
レンとを混合することを特徴とする、超高分子量
ポリエチレンを含むパラフインワツクス融液の調
製方法。1 Paraffin wax heated and melted in advance,
A paraffin containing ultra-high molecular weight polyethylene, characterized in that it is mixed with ultra-high molecular weight polyethylene having a weight average molecular weight of at least 1×10 6 or more, which is dispersed or wetted with a liquid organic compound that is compatible with the paraffin wax. Method for preparing wax melt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192837A JPS6351437A (en) | 1986-08-20 | 1986-08-20 | Preparation of paraffin wax melt of ultrahigh-molecular weight polyethylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192837A JPS6351437A (en) | 1986-08-20 | 1986-08-20 | Preparation of paraffin wax melt of ultrahigh-molecular weight polyethylene |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6351437A JPS6351437A (en) | 1988-03-04 |
JPH046740B2 true JPH046740B2 (en) | 1992-02-06 |
Family
ID=16297803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61192837A Granted JPS6351437A (en) | 1986-08-20 | 1986-08-20 | Preparation of paraffin wax melt of ultrahigh-molecular weight polyethylene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6351437A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102615153A (en) * | 2012-03-30 | 2012-08-01 | 重庆电力建设总公司 | Method for manufacturing staircase leapfrog plate by using plate bending roll |
-
1986
- 1986-08-20 JP JP61192837A patent/JPS6351437A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102615153A (en) * | 2012-03-30 | 2012-08-01 | 重庆电力建设总公司 | Method for manufacturing staircase leapfrog plate by using plate bending roll |
Also Published As
Publication number | Publication date |
---|---|
JPS6351437A (en) | 1988-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4612148A (en) | Process for producing stretched articles of ultrahigh-molecular-weight polyethylene | |
EP2080824B1 (en) | A process for producing fiber of ultra high molecular weight polyethylene | |
JP5144641B2 (en) | High molecular weight poly (α-olefin) solutions and articles made therefrom | |
US5032338A (en) | Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution | |
JPH06102846B2 (en) | Method for producing ultra-high molecular weight polyethylene stretched product | |
JP2017507216A5 (en) | ||
JPH0240763B2 (en) | ||
JPS648083B2 (en) | ||
JPH046740B2 (en) | ||
EP0139141B1 (en) | Production of stretched polymeric material having high strength and high modulus | |
JPH0246053B2 (en) | CHOKOBUNSHIRYOHORIECHIRENYOEKINOSEIZOHOHO | |
US2966474A (en) | Method of preparing stable polyolefin dispersion | |
JPS6189232A (en) | Continuous production of polymer uniform solution | |
JPH0336929B2 (en) | ||
JPH036246B2 (en) | ||
JPH0240764B2 (en) | ||
JPS618323A (en) | Manufacture of super high molecular polyethylene stretched product | |
JPH0336930B2 (en) | ||
JPS58208343A (en) | Homogeneous solution based on polyvinyl chloride and manufacture | |
JPS6173743A (en) | Method for continuously preparing stock solution of high-molecular polyolefin | |
US5202073A (en) | Production of stretched polymeric material having high strength and high modulus | |
JPS61143439A (en) | Continuous preparation of high molecular weight polymer stock solution | |
JPS6022010B2 (en) | Method for preparing high molecular weight polyethylene molding dope | |
JPH0655839B2 (en) | Manufacturing method of high strength, high modulus polyolefin molded products by dissolving particles and molding the solution | |
JPH0261146A (en) | Coated net form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |