JPS6173743A - Method for continuously preparing stock solution of high-molecular polyolefin - Google Patents

Method for continuously preparing stock solution of high-molecular polyolefin

Info

Publication number
JPS6173743A
JPS6173743A JP19811384A JP19811384A JPS6173743A JP S6173743 A JPS6173743 A JP S6173743A JP 19811384 A JP19811384 A JP 19811384A JP 19811384 A JP19811384 A JP 19811384A JP S6173743 A JPS6173743 A JP S6173743A
Authority
JP
Japan
Prior art keywords
stock solution
polyolefin
dispersion
solution
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19811384A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Yuji Kawase
川瀬 裕司
Noriaki Hayashikoshi
林越 則昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP19811384A priority Critical patent/JPS6173743A/en
Publication of JPS6173743A publication Critical patent/JPS6173743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a homogeneous high-viscosity polyolefin soln. continuously, by continuously dissolving a dispersion of a polyolefin in a solvent in a homogeneous stock soln. of a polyolefin. CONSTITUTION:A polyolefin (a) having a weight-average MW of 800,000 or above and a solvent (h) having a b.p. (TB) of 140 deg.C or above are fed to a slurry tank 1 and the mixture is stirred by heating at a temp. of not higher than the dissolution initiating temp. (TS) of component (a) to not lower than TS-50 deg.C to obtain a dispersion (A) having the predetermined concn. Component A is continuously added at a rate satisfying the formula [wherein VA is the quantity (kg/min) of component A to be added; LB is the quantity (kg) of component B] to a dissolving tank 2 contg. a stock soln. contg. component (a) dissolved in component (b) at the predetermined concn., which is stirred by heating at a temp. of not lower than TS+20 deg.C to not higher than TB under an internal pressure of 200-500Torr, to dissolve component (a). The soln. is continuously fed through a booster pump 4 to a kneader and/or extruder 4 at a temp. of not lower than TS+20 deg.C to homogeneously dissolve component (a) and dis charged through a metering pump 5 from a nozzle 6.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は引張強度ならびにモジュラスのきわめて大きな
ポリオレフィン繊維あるいはフィルム等成形物を製造す
るための紡糸原液調製法に関するものであシ、特に安価
で連i的に均一な高粘度ポリオレフィン溶液を得ようと
するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for preparing a spinning dope for producing molded products such as polyolefin fibers or films having extremely high tensile strength and modulus, and particularly relates to a method for preparing a spinning solution that is inexpensive and continuous. The purpose is to obtain a highly uniform high viscosity polyolefin solution.

〈従来の技術〉 一般にポリマーの分子鎖末端は繊維微細構造上の欠陥部
となるため、分子量の大きいポリマーはど単位体積当シ
の分子鎖末端が少なく大きな強度が出ると期待されてい
る。
<Prior Art> Generally, the molecular chain ends of a polymer become defects in the fiber microstructure, so it is expected that a polymer with a large molecular weight will have fewer molecular chain ends per unit volume and will have greater strength.

とζろで、高分子量ポリオレフィンを紡糸する場合、高
溶融粘性のために単独で溶融紡糸することは困難であ如
、通常高分子量ポリオレフィンを溶剤に溶解した希薄溶
液を用い紡糸時に冷却固化する、いわゆるゲル紡糸法が
特公昭44−26409号公報、特開昭55−1075
06号公報、特開昭58−5228号公報などに示され
ている。
When spinning high-molecular-weight polyolefin using a ζ-rotation method, it is difficult to perform melt-spinning alone due to its high melt viscosity.Usually, a dilute solution of the high-molecular-weight polyolefin dissolved in a solvent is used and solidified by cooling during spinning. The so-called gel spinning method is disclosed in Japanese Patent Publication No. 44-26409 and Japanese Patent Application Laid-Open No. 55-1075.
This method is disclosed in Japanese Patent Application Laid-Open No. 06-06, Japanese Unexamined Patent Publication No. 58-5228, and the like.

しかしこれらの方法はポリオレフィン濃度が低く、工業
生産の場合溶剤回収費や生産盪低下による設備費などの
増大が考えられ好ましくない。
However, these methods are not preferable because the polyolefin concentration is low, and in industrial production, solvent recovery costs and equipment costs due to decreased production are considered to increase.

一一□方ポリオレフィン濃度を高くした場合本発明者の
実験によるとパッチ式でポリオレフィンと溶剤の分散液
を加熱してポリオレフィンを溶解せしめる際に、ポリマ
ーが溶解の始まった部分に凝集し粘度のきわめて大きな
塊シを作り不均一溶液となシ易く、かつ均一化するのに
長時間かか如、ひいてはコスト高となって好ましくない
ことが判明した。またパッチ式では原液排出後に溶解機
内に一部原液が残シ、その処置と溶解機の洗浄が必要で
ある欠点もみられた。
In the case of increasing the concentration of polyolefin, the inventor's experiments show that when a dispersion of polyolefin and solvent is heated in a patch system to dissolve the polyolefin, the polymer aggregates at the point where dissolution has begun, resulting in extremely high viscosity. It has been found that this method is undesirable because it tends to create large lumps and result in a non-uniform solution, and it takes a long time to homogenize, resulting in high cost. In addition, the patch type had the disadvantage that some of the stock solution remained in the dissolver after discharging the stock solution, which required treatment and cleaning of the dissolver.

操業におけるスケールアップを考えた場合、原液調製は
パッチ方式より連続方式の方が設備費や電気蒸気などの
原動費が安くなシ有利であるが、原液状態はポリオレフ
ィンの溶解開始温度で急変し低粘度の分散液から高粘度
の不均一溶液に変化するため通常連続方式で均一原液を
作るのは難しいと思われていた。
When considering scale-up of operations, it is advantageous to use a continuous method rather than a patch method to prepare a stock solution because equipment costs and power costs such as electric steam are lower, but the state of the stock solution changes suddenly at the temperature at which the polyolefin begins to dissolve It was thought that it would be difficult to make a homogeneous stock solution using a continuous method because it changes from a viscous dispersion to a highly viscous heterogeneous solution.

〈発明が解決しようとする問題点〉 以上の背景をふまえて本発明は、ポリオレフィン濃度の
高い均一な溶解原液を連続的に得る、ポリオレフィン原
液の連続調整法を提供せんとするものである。
<Problems to be Solved by the Invention> In view of the above background, the present invention aims to provide a method for continuously preparing a polyolefin stock solution, which continuously obtains a uniform solution stock solution with a high polyolefin concentration.

く問題点を解決するだめの手段〉 即ち本発明は、ポリオレフィンの均一な溶解原液を連続
的に得るだめの方法として、前もってつくられたポリオ
レフィンの均一溶解原液Bに、ポリオレフィンと溶剤と
の分散液Aを連続的に添加混合して調整するものである
が、その際特に、添加混合する際の分散液Aの温度、均
一溶解原液Bの温度、さらに好ましくは、均一溶解原液
Bに対する分散成人の添加量等を選定することによって
、ポリオレフィン均一溶解原液を連続的に製造しうるよ
うになしたものである。
Means to Solve the Problems〉 That is, the present invention provides a method for continuously obtaining a uniform solution of polyolefin, in which a dispersion of polyolefin and a solvent is added to a uniform solution of polyolefin B prepared in advance. It is adjusted by continuously adding and mixing A, and in this case, in particular, the temperature of the dispersion A at the time of addition and mixing, the temperature of the uniformly dissolved stock solution B, and more preferably the temperature of the dispersed adult solution with respect to the uniformly dissolved stock solution B. By selecting the amount added, etc., it is possible to continuously produce a uniformly dissolved stock solution of polyolefin.

更に詳しく述べれば本発明は、。More specifically, the present invention has the following features.

「10重量平均分子量が80万以上のポリオレフィンを
、沸点TBが140℃以上の溶剤に3〜30重量%均一
溶解させる方法において、ポリオレフィンと溶剤とを、
その時の溶剤に対するポリオレフィンの溶解開始温度T
Sより低く、かつT、 −50℃より高い温度に攪拌下
で加熱した所定濃度の分散成人を、予め、前記TS +
 20℃から前記TS+までの温度で攪拌下に加熱して
いる、ポリオレフィンと溶剤との所定濃度の溶解原液B
中に連続的に添加し溶解させた後、 該溶解液を、TS + 20℃より高い温度の混練機お
よび/または押出機に連続供給して均一溶解原液とする
ことを特徴とする、高分子量ポリオレフィン原液の連続
調製法。
``10 In a method of homogeneously dissolving 3 to 30% by weight of a polyolefin having a weight average molecular weight of 800,000 or more in a solvent having a boiling point TB of 140°C or more, the polyolefin and the solvent are
The melting start temperature T of the polyolefin in the solvent at that time
A predetermined concentration of dispersed adults heated under stirring to a temperature lower than S and higher than T, −50° C. is preliminarily added to the TS +
Stock solution B of dissolving polyolefin and solvent at a predetermined concentration, heated with stirring at a temperature from 20°C to the above TS+
After continuously adding and dissolving the solution into the solution, the solution is continuously fed to a kneader and/or extruder at a temperature higher than TS + 20°C to obtain a uniformly dissolved stock solution. Continuous preparation method for polyolefin stock solution.

2、特許請求の範囲第1項において、分散液Aの添加量
を、溶解原液Bの量に対して、次式 %式% ただし■二分散液人の添加量(#/分)Lm:溶解原液
Bの量(kg) を満足するように添加することを特徴とする、高分子量
ポリオレフィン原液の連続調製法。
2. In claim 1, the amount of dispersion A to be added is determined by the following formula, %, with respect to the amount of stock solution B for dissolution. A method for continuously preparing a high molecular weight polyolefin stock solution, characterized by adding stock solution B in an amount (kg) that satisfies the amount of stock solution B.

3、特許請求の範囲第1ないし2項において、溶解原液
B中へ添加している分散液Aが該溶解原液B中で3分以
上滞留させるようになしたことを特徴とする、高分子量
ポリオレフィン原液の連続調製法。
3. A high molecular weight polyolefin according to claims 1 or 2, characterized in that the dispersion A added to the stock solution B is allowed to stay in the stock solution B for 3 minutes or more. Continuous preparation method of stock solution.

4、特許請求の範囲第1ないし3項において、溶解原液
Bを有する溶解槽の内圧を200〜500Torrにし
、脱泡を行なうと同時にスクリュー方式にて押出し、連
続的に混練機および/または押出機に供給することを特
徴とする、高分子量ポリオレフィン原液の連続調製法。
4. In claims 1 to 3, the internal pressure of the dissolving tank containing the dissolving stock solution B is set to 200 to 500 Torr, and at the same time defoaming is performed, extrusion is carried out using a screw system, and the dissolving solution B is continuously extruded using a kneader and/or extruder. A method for continuously preparing a high molecular weight polyolefin stock solution, characterized by supplying a stock solution of a high molecular weight polyolefin.

             」である。           .

以下に本発明について詳述する。The present invention will be explained in detail below.

本発明に言うポリオレフィンとは、ポリエチレン、ホリ
プロピレン、ホリブテン、工fVンプロピレン共重合体
、あるいは染色、制電、耐熱、耐光、難燃などを向上さ
せる目的で該ポリマーに20モル%以下の改質剤を共重
合したもの、または光沢、着色、高比重、導電、磁性、
補強などを目的としたフィラーを20重量%以下および
/または酸化防止剤や紫外線吸収剤を5重量%以下添加
したものあるいはこれらを2種類以上混合したものを意
味する。
The polyolefin referred to in the present invention refers to polyethylene, polypropylene, polybutene, polypropylene copolymer, or a polymer that has been modified by 20 mol% or less for the purpose of improving dyeing, antistatic, heat resistance, light resistance, flame retardance, etc. Copolymerized with quality agents, or glossy, colored, high specific gravity, conductive, magnetic,
It means a material containing 20% by weight or less of a filler for reinforcing purposes and/or 5% by weight or less of an antioxidant or ultraviolet absorber, or a mixture of two or more of these.

ポリオレフィンの重量平均分子量は、80万未満では高
強力および高モジコラスな繊維ならびに成型物を得るこ
とは難しく、6oo万を超えると原液粘度が高く高濃度
で均一な原液を得るのが容易でなくなるので、80万以
上好ましくは130万〜500万のものが用いられる。
If the weight average molecular weight of the polyolefin is less than 800,000, it is difficult to obtain highly tenacious and highly modicolus fibers and molded products, and if it exceeds 60,000, the viscosity of the stock solution is high and it is difficult to obtain a highly concentrated and uniform stock solution. , 800,000 or more, preferably 1,300,000 to 5,000,000.

ポリオレフィンを溶解する溶剤は沸点が140℃以上の
1種または2種以上のものが用いられる。該溶剤の沸点
に温度範囲がある場合には、本発明における沸点TBは
その温度範囲の最低温度を意味する。また溶剤は冷却に
ょシボリオレフィンと相分離を起こすものであって紡糸
性、乾燥などの点から相分離温度(ゲル化温度)は70
℃以上であるものが好ましい。ここにおける相分離温度
とは、ポリオレフィン濃度1重量%溶液を0.5℃/分
の冷却速度で静置状態で冷却したとき肉眼で検知できる
程度の濁シを°発生する温度とする。
As the solvent for dissolving the polyolefin, one or more solvents having a boiling point of 140° C. or higher are used. When the boiling point of the solvent has a temperature range, the boiling point TB in the present invention means the lowest temperature in the temperature range. In addition, the solvent causes phase separation from the polyolefin when cooled, and the phase separation temperature (gelation temperature) is 70°C from the viewpoint of spinnability and drying.
It is preferable that the temperature is at least ℃. The phase separation temperature herein is defined as the temperature at which a 1% by weight polyolefin solution generates turbidity that can be detected with the naked eye when it is cooled in a stationary state at a cooling rate of 0.5° C./min.

かかる溶剤としては、たとえばノナン、デカン、ウンデ
カン、ドデカン、パラフィン、デカリン、テトラリン、
ナフタリンなどの脂肪族または脂環族戻化水素あるいは
脂肪族あるいは芳香族次代水素が主成分の石油系ツルベ
ン)4るいはジクロルベンゼンなどのハロゲン(tl化
水素などがある。
Such solvents include, for example, nonane, decane, undecane, dodecane, paraffin, decalin, tetralin,
Examples include petroleum-based turbens whose main components are aliphatic or alicyclic reverted hydrogen such as naphthalene, aliphatic or aromatic hydrogen, or halogens such as dichlorobenzene (tl hydrogen).

本発明において深川できるポリオレフィンの濃度は3〜
30重量%である。3重量%未満では溶剤回収や生産量
の低下で不利であシ、30重量%を超えると高粘度とを
ル不均一溶解となると同時に脱泡や送液が困難となシ好
ましくない。原液粘度は脱泡、均一溶解、安定吐出など
の点で500〜5000ボイズが好ましい。ポリオレフ
ィンの分子量により最適濃度は異な如、ポリエチレンの
場合、コスト、均一溶解性および繊維性能の点から重量
平均分子量130万ないし500万で濃度5〜15重量
%が好ましい。なお高濃度の場合粘度を低下させるため
に高温にすることは熱分解による分子鎖切断や着色など
を起こし易く好ましい温度は150〜200’Cである
In the present invention, the concentration of polyolefin produced by Fukagawa is 3 to 3.
It is 30% by weight. If it is less than 3% by weight, it is disadvantageous in terms of solvent recovery and a decrease in production, and if it exceeds 30% by weight, it is undesirable because high viscosity results in non-uniform dissolution, and at the same time, defoaming and liquid feeding are difficult. The viscosity of the stock solution is preferably 500 to 5000 voids in terms of defoaming, uniform dissolution, stable discharge, etc. Although the optimum concentration varies depending on the molecular weight of the polyolefin, in the case of polyethylene, a weight average molecular weight of 1.3 million to 5 million and a concentration of 5 to 15% by weight are preferred from the viewpoint of cost, uniform solubility, and fiber performance. In addition, in the case of a high concentration, raising the temperature to a high temperature in order to lower the viscosity tends to cause molecular chain scission and coloring due to thermal decomposition, so the preferred temperature is 150 to 200'C.

本発明において連続的に原液を調製する場合、第1図に
示す如く大別して3つの工程がある。
In the present invention, when a stock solution is continuously prepared, there are roughly three steps as shown in FIG.

第1はスラリ一槽1におけるポリオレフィンと溶剤の分
散液Aの調製工程、第2は溶解槽2における溶解原液B
の調製工程、第3は混練機および/または押出機3にお
ける均一原液の調製工程である。なお全工程ともポリマ
ーの酸化分解を防ぐために系内の酸素をチッ素や不活性
ガスに置換する方が望ましい。
The first is the preparation process of polyolefin and solvent dispersion A in slurry tank 1, and the second is the dissolution stock solution B in dissolution tank 2.
The third step is the step of preparing a uniform stock solution in the kneader and/or extruder 3. In all steps, it is preferable to replace oxygen in the system with nitrogen or an inert gas in order to prevent oxidative decomposition of the polymer.

第1工程におけるポリオレフィンと溶剤の所定濃度分散
液はポリオレフィンの溶解開始温度T8より低く、かっ
TS50℃より高い温度に攪拌下で加熱される必要があ
る。分散液Aが加熱されずTS50℃より低い温度の場
合には、その分散浪人を溶解原液Bに添加すると、分散
液中のポリオレフィンが溶解するのに時間がかかシ、ポ
リオレフィンの粉末が凝集して白色塊となって濃度斑を
作り易い。またTBよりも高い温度では、粘度の高い不
均一溶液となシ第2工程の溶解原液Bに添加することが
困難になるかあるいは添加しても濃度が変動するため好
ましくない。
The predetermined concentration dispersion of polyolefin and solvent in the first step needs to be heated under stirring to a temperature lower than the polyolefin's dissolution start temperature T8 and higher than TS50°C. If dispersion A is not heated and the temperature is lower than TS50°C, adding the dispersion Ronin to the solution B will take time to dissolve the polyolefin in the dispersion, and the polyolefin powder will aggregate. It tends to form white lumps and create density spots. Further, a temperature higher than TB is not preferable because it becomes a highly viscous and heterogeneous solution, making it difficult to add it to the stock solution B in the second step, or even if it is added, the concentration fluctuates.

なお、ポリx y V :/の溶解開始温度は、用嘘溶
剤によって変化するが、本発明に言うポリエチレンの溶
解開始温度とは、1%濃度のポリオレフィンが攪拌下で
白色粉末から一部透明になり高粘度原液をつくる時の温
度とする。
Note that the melting start temperature of polyx y V :/ varies depending on the solvent used, but the melting start temperature of polyethylene referred to in the present invention is the temperature at which 1% polyolefin changes from white powder to partially transparent under stirring. This is the temperature when making a high viscosity stock solution.

上述のように、分散液Aの温度は、TI]より低く、か
つTS50℃より高くすることが必要で、TSよtpl
o〜30℃低い温度が好ましい。
As mentioned above, the temperature of dispersion A needs to be lower than TI and higher than TS50°C, and
Temperatures lower than 0 to 30°C are preferred.

また分散液Aは、該分散液を溶解原液Bへ連続添加する
本願連続調整法においては、ポリオレフィン濃度が、溶
解原液Bのポリオレフィン濃度と一致するように両者混
合比を選定することは当然である。
In addition, in the continuous adjustment method of the present application in which the dispersion liquid A is continuously added to the dissolution stock solution B, it is natural that the mixing ratio of both is selected so that the polyolefin concentration matches the polyolefin concentration of the dissolution stock solution B. .

分散液Aは攪拌しないとすぐにポリオレフィンが沈降し
易いので、攪拌下で配管内に滞留部がないようにして溶
解原液Bに添加することが必要である。
If dispersion A is not stirred, the polyolefin tends to settle immediately, so it is necessary to add it to the stock solution B while stirring so that there is no stagnation in the piping.

第2工程の溶解原液Bは、TS + 20℃からTSま
での温度で加熱攪拌することが必要である。該原液Bの
温度がTS +20℃より低い場合には、添加される分
散液Aを溶解するのに時間を要し、濃度斑を生じ易い。
The stock solution B in the second step needs to be heated and stirred at a temperature from TS + 20°C to TS. If the temperature of the stock solution B is lower than TS +20° C., it takes time to dissolve the added dispersion A, which tends to cause concentration unevenness.

またTBを超える温度では溶剤が沸騰し、加圧下で脱泡
が不十分となシ、また溶剤の蒸発−凝縮による濃度斑を
起こし易く、好ましくない。
Further, at a temperature exceeding TB, the solvent boils, degassing becomes insufficient under pressure, and concentration unevenness is likely to occur due to evaporation and condensation of the solvent, which is not preferable.

また溶解槽2において、分散液Aの添加は温度斑と濃度
斑を生じ易いので、原液の捲付きが激しくない程度に攪
拌機の形状や攪拌回転を最適にして攪拌効果を高めかつ
少量ずつ添加するのが好ましい。
In addition, in dissolution tank 2, addition of dispersion liquid A tends to cause temperature and concentration unevenness, so the shape and stirring rotation of the stirrer should be optimized to avoid excessive swirling of the stock solution to increase the stirring effect and add it little by little. is preferable.

定常状態の場合、分散液Aの添加量と溶解原液Bの量が
次式を満足することが特に好ましい。
In the case of a steady state, it is particularly preferable that the amount of dispersion A added and the amount of stock solution B satisfy the following formula.

0、I X 10−2≦VA / La ≦3 X j
O−2VA/ Lsが0.lX10’未満では、添加量
が少なく均一溶解の点で有利であるが、添加量を多くし
ようとする場合LBの値が大きくする必要があり、溶解
様槽の容量増大による設備費および原動費の増加を招い
て好ましくない。
0, I X 10-2≦VA / La ≦3 X j
O-2VA/Ls is 0. If it is less than lX10', the amount added is small and it is advantageous in terms of uniform dissolution, but if you try to increase the amount added, it is necessary to increase the value of LB, and the equipment cost and driving cost will be reduced due to the increase in the capacity of the dissolution tank. This is undesirable as it causes an increase.

VA/Leが3 X l O−2を超えると不均一な未
溶解ポリオレフィン塊が生成し易く好ましくない。
If VA/Le exceeds 3 X l O-2, non-uniform undissolved polyolefin lumps are likely to be formed, which is not preferable.

なお定常状態では分散液Aの添加量は、混練機および/
または押出機より計量ポンプにて紡糸時に吐出される蔗
(吐出i)に等しくなる。
In addition, in the steady state, the amount of dispersion A added is determined by the kneader and/or
Or, it is equal to the amount of sugar (discharge i) discharged from the extruder with a metering pump during spinning.

さらに分散液Aが溶解するためには溶解槽中をショート
パスせず溶解原液B中で少なくとも3分以上の滞留時間
を有するようにすることが望、ましく、第1図の溶解槽
2の攪拌翼の構造の如く、分散液Aの経路が屈曲した経
路となるように構成するのが好ましい。溶解原液Bは部
分的に(微視的に)不均一溶液であっても良いが分散液
A中のポリオレフィンは溶解して透明になシ巨視的には
均一であるのが好ましい。
Furthermore, in order for the dispersion liquid A to dissolve, it is desirable that the dispersion liquid A has a residence time of at least 3 minutes or more in the dissolution stock solution B without short-passing in the dissolution tank, and preferably, in the dissolution tank 2 shown in FIG. It is preferable to configure the structure so that the path of the dispersion liquid A is a curved path, like the structure of the stirring blade. Although the solution stock solution B may be a partially (microscopically) non-uniform solution, it is preferable that the polyolefin in the dispersion solution A be dissolved and transparent and macroscopically uniform.

また脱泡の点で溶解原液Bを有する溶解槽2の内圧を2
00〜500 ’porrにすることは好ましいが、2
00 Torr未満では原液面の上昇と次の工程への押
出しが難しくなる。
In addition, from the point of view of defoaming, the internal pressure of the dissolving tank 2 containing the dissolving stock solution B was set at 2.
It is preferable to set it to 00 to 500'porr, but 2
If the temperature is less than 0.00 Torr, it becomes difficult to raise the level of the raw liquid and to extrude it to the next step.

内圧が200〜500 Torrの場合スクリュー方式
で原液Bを押出すと共に圧力を上昇させ、場合によって
は外圧ポンプ4を用い混練機および/または押出機3の
供給口までの配管内原液を流動させるのが良い。
When the internal pressure is 200 to 500 Torr, the stock solution B is extruded using a screw system and the pressure is increased, and in some cases, the external pressure pump 4 is used to flow the stock solution in the piping to the supply port of the kneader and/or extruder 3. is good.

第3工程における混練機および/または押出機3は、溶
解原液Bを最終的に均一溶解原液にするものでなければ
ならず好ましくは2軸混練機や2軸混練押出機である。
The kneader and/or extruder 3 in the third step must be a device that ultimately converts the stock solution B into a uniform solution, and is preferably a twin-screw kneader or a twin-screw kneading extruder.

なお溶解原液Bがほとんど均一溶解原液である場合は単
軸押出機のみでも何んら支障なく脱泡された均一溶解原
液が紡糸ノズルより吐出される状態であれば良い。
In addition, when the dissolving stock solution B is a substantially uniform dissolving stock solution, a single screw extruder alone may be used as long as the degassed uniform dissolving stock solution is discharged from the spinning nozzle without any problem.

混練機および/または押出機内の原液温度はTS +2
0℃より高く、均一溶解、脱泡、ポリオレフィンの分解
などの点から150℃〜200℃が好ましい。
The stock solution temperature in the kneader and/or extruder is TS +2
The temperature is higher than 0°C, and preferably 150°C to 200°C from the viewpoint of uniform dissolution, defoaming, and decomposition of polyolefin.

〈作 用〉 以上説明したように、本願発明は、連続方式で高分子量
ポリオレフィン均一溶解原液をつくるのに、ポリオレフ
ィンと溶剤との分散液を予め出来ている両者溶解原液中
に添加する方式で、該分散液と溶解原液とのそれぞれの
温度を規制し、望ましくは分散液の溶解原液に対する添
加蓋を、さらに望ましくは分散液の溶解原液中での滞留
時間、溶解槽の内圧等を規制することによって、可能と
し、バッチ式で見られた原液の不均一性、残液の問題な
どを解消したものである。
<Function> As explained above, the present invention is a method in which a dispersion of polyolefin and a solvent is added to a pre-made stock solution for dissolving both, in order to produce a stock solution for uniformly dissolving high molecular weight polyolefin in a continuous manner. Regulating the respective temperatures of the dispersion liquid and the dissolution stock solution, preferably regulating the addition lid to the dissolution stock solution of the dispersion liquid, and more preferably regulating the residence time of the dispersion liquid in the dissolution stock solution, the internal pressure of the dissolution tank, etc. This eliminates the problems of non-uniformity of the stock solution and residual liquid that were observed in batch-type systems.

〈実施例〉 以下に本発明を実施例により具体的に説明する。。<Example> The present invention will be specifically explained below using examples. .

実施例1 重量平均分子量が150万のポリエチレン粉末と酸化防
止剤(ポリエチレンに対し1重量%)とを沸点185〜
210℃の脂肪族系が主成分の石油系ソルベントに、ポ
リエチレン濃度が10重量%になるようにスラリ一槽へ
投入し、攪拌しながら真空脱泡ならびにN2置換をした
後110℃に加熱して、分散液Aを30 kg作成した
。該ポリエチレンの石油系ソルベントに対する溶解開始
温度は119℃で11分散液A中のポリエチレンは白粉
の状態であった。なおスラリ一槽へは1時間毎にあらか
じめ110℃に加熱された溶剤1.35kgとポリエチ
レン粉末0.15&gが添加され物質収支によりヌラリ
一槽内の分散液Aの量はtlとんど変化しないようにし
た。
Example 1 Polyethylene powder with a weight average molecular weight of 1.5 million and an antioxidant (1% by weight based on polyethylene) were mixed at a boiling point of 185~
A petroleum-based solvent whose main component is aliphatic at 210°C is poured into a slurry tank so that the polyethylene concentration is 10% by weight, and after vacuum defoaming and N2 substitution with stirring, it is heated to 110°C. , 30 kg of Dispersion A was prepared. The dissolution start temperature of the polyethylene in the petroleum solvent was 119°C, and the polyethylene in 11 Dispersion A was in the state of white powder. Note that 1.35 kg of solvent preheated to 110°C and 0.15 g of polyethylene powder are added to each slurry tank every hour, and the amount of dispersion A in each slurry tank does not change at all due to mass balance. I did it like that.

一方、同じポリエチレンおよび石油系ソルベントを用い
10重量%の濃度で真空脱泡ならびにN2置換後175
℃×4時間攪拌して溶解原液Bを20に9作成した。
On the other hand, using the same polyethylene and petroleum solvent at a concentration of 10% by weight, 175
The mixture was stirred at ℃ for 4 hours to prepare 9 to 20 diluted stock solutions B.

該溶解原液Bを溶解させた溶解槽内は400 Torr
にし、該溶解槽へ前記分散液Aを0.251g7’分ず
つ添加した。なお溶解槽の供給口にはポリエチレンの融
着を防止するために水道水で冷却した。
The temperature inside the dissolution tank in which the stock solution B was dissolved was 400 Torr.
Then, 0.251 g of the dispersion A was added to the dissolution tank in 7' portions. Note that the supply port of the dissolution tank was cooled with tap water to prevent polyethylene from fusing.

該溶解槽の攪拌翼は第1図の如く錨型で槽壁面に接して
いると同時に回転軸と錨の間に棚板があシ分散液Aの滞
留時間が10分以上になるように工夫した。また攪拌翼
の先をスクリュータイプにして原液Bを押出し次の同方
向2軸混練押出機に供給した。分散液Aを添加している
時の攪拌回転数は25 rpmであった。
As shown in Figure 1, the stirring blades of the dissolution tank are anchor-shaped and in contact with the tank wall, and at the same time there is a shelf plate between the rotating shaft and the anchor, so that the residence time of the dispersion liquid A is at least 10 minutes. did. In addition, the tip of the stirring blade was of a screw type, and the stock solution B was extruded and supplied to the next twin-screw kneading extruder in the same direction. The stirring rotation speed during the addition of dispersion A was 25 rpm.

分散液Aを添加する前の溶解原液Bは巨視的には均一溶
液であり、これに分散液Aを0.25 kti/分ずつ
添加する(■ム/LB= 1.25 XI 0−2)と
添加直後でポリエチレンの白色粉が見られたが、1〜2
分で透明になシ溶解槽出口での原液を観察した結果透明
溶液と一部小さなポリエチレンの膨潤透明粒が混在した
状態であった。また真空下のためポリエチレンの含まれ
ていた気泡はほとんどな(10時間後でも着色や分解物
は見られなかった。更に混練押出機より押出された原液
を見だが小さなポリエチレンの膨潤透明粒は見られず均
一な透明溶液であシ粘度は約1500ボイズであった。
The solution stock B before adding the dispersion A is macroscopically a homogeneous solution, and the dispersion A is added thereto at a rate of 0.25 kti/min (■mu/LB=1.25 XI 0-2) Immediately after addition, white powder of polyethylene was seen, but 1-2
The solution became transparent after a few minutes, and when the stock solution was observed at the outlet of the dissolving tank, it was found that the clear solution and some small swollen transparent polyethylene particles were mixed together. Also, because it was under vacuum, there were almost no bubbles containing polyethylene (no coloring or decomposition was observed even after 10 hours. Furthermore, when I looked at the stock solution extruded from the kneading extruder, I did not see any small swollen transparent particles of polyethylene. It was a homogeneous, transparent solution with a viscosity of about 1500 voids.

同方向2軸混練押出機3は混練部が2カ所、押出部が3
カ所の5つのセクションに分れスクリュー回転数は20
0 rpmで各セクションとも温度は175℃で一定と
した。混練押出機における滞留時間は約15分であった
。スクリュー先端圧は38kt)/dであシ、計量ポン
プ(ギヤポンプ)5で針足して150f/分の吐出量で
紡糸ヘッド(ノズル)6より押出し冷却固化して繊維化
した。
The co-directional twin-screw kneading extruder 3 has two kneading sections and three extrusion sections.
Divided into 5 sections, screw rotation speed is 20
The temperature was kept constant at 175° C. in each section at 0 rpm. The residence time in the kneading extruder was approximately 15 minutes. The screw tip pressure was 38 kt)/d, needles were added using a metering pump (gear pump) 5, and the material was extruded from a spinning head (nozzle) 6 at a discharge rate of 150 f/min, cooled, solidified, and made into fibers.

40ホールのノズルを用い吐出量2’501/分、捲取
速度20恒/分にて連続5日間紡糸を行なったが断糸は
1度もなく、フィルター詰シによる紡糸ヘッド圧の上昇
は#1とんど見られなかった。吐出された原液を採取し
、溶剤飛散前後の重量測定により5日間のポリエチレン
濃度を算出したが、10十0.09%とほぼ一定値を示
した。また得られた紡糸原糸のデニール変動率を測定し
たところ2.5%以内で低く、均一な原液が得られてい
ることが判明した。さらに分子鎖の切断やからみ度合の
差からくる延伸性および繊維性能の変動をみだが、10
日間の延伸で毛羽捲付きが2回あったが断糸はなく、延
伸糸の強度が20 f/r1以上、モジユラスが700
Vd以上のものが安定して得られることが判明した。
Spinning was carried out for 5 consecutive days using a 40-hole nozzle at a discharge rate of 2'501/min and a winding speed of 20/min, but there was no yarn breakage, and no increase in spinning head pressure due to filter clogging occurred. 1 I couldn't see it at all. The discharged stock solution was collected, and the polyethylene concentration for 5 days was calculated by weight measurement before and after the solvent scattering, and it was found to be approximately constant at 100.09%. Furthermore, when the denier fluctuation rate of the obtained spun yarn was measured, it was found that it was low within 2.5% and that a uniform stock solution was obtained. Furthermore, we observed fluctuations in stretchability and fiber performance due to molecular chain scission and differences in the degree of entanglement.
There was fluffing twice during the day-long drawing, but there was no yarn breakage, and the strength of the drawn yarn was 20 f/r1 or more, and the modulus was 700.
It has been found that Vd or higher can be stably obtained.

実施例2 重量平均分子量が300万のポリエチレン12重量%と
、ポリエチレンに対し酸化防止剤1重量%および紫外線
吸収剤0.2重量%とを、沸点187〜196℃のデカ
リンに分散せしめ、100℃の分散液Aを15kg作成
した。これを、予めつくった同じ組成の185℃の溶解
原液B10kgの中へ30y/分ずつ添加した( VA
/LB = 0.3 X 10−2)。
Example 2 12% by weight of polyethylene having a weight average molecular weight of 3 million, 1% by weight of an antioxidant and 0.2% by weight of an ultraviolet absorber based on the polyethylene were dispersed in decalin having a boiling point of 187 to 196°C, and heated at 100°C. 15 kg of Dispersion A was prepared. This was added at a rate of 30y/min into 10kg of a previously prepared solution B of the same composition at 185°C (VA
/LB = 0.3 x 10-2).

なお溶解槽の攪拌は自転と公転をするフックおよび槽壁
面に接するスクレーパーによって行なわれフックの自転
を39 rpm 、公転を15 rpm 、スクレーバ
ーの回転を15 rpmとして、分散液Aの滞留時間は
5分以上であった。
The dissolution tank was stirred by a hook that rotated and revolved and a scraper that was in contact with the tank wall.The hook was rotated at 39 rpm, the revolution was at 15 rpm, the scraper was rotated at 15 rpm, and the residence time of dispersion A was 5 minutes. That was it.

該ポリエチレンのデカリンに対する溶解開始温度は11
5℃であシ、分散液Aを溶解原液Bに添加した場合、実
施例1と同様の原液状態を示したが、添加量が少ないた
めポリエチレンの膨潤透明粒はわずかに見られる程度で
ほぼ均一溶解の透明度であった。
The temperature at which the polyethylene begins to dissolve in decalin is 11
When dispersion A was added to dissolution stock solution B at 5°C, the stock solution state was similar to that in Example 1, but because the amount added was small, the swollen transparent particles of polyethylene were slightly visible and almost uniform. The clarity of the dissolution was.

なお溶解槽内を300 TOrrにしたが原液粘度が約
4000ボイスと高いため少し気泡を含んでいた。
Although the temperature inside the dissolution tank was set to 300 TOrr, the viscosity of the stock solution was as high as about 4000 torr, so it contained some air bubbles.

しかし外圧ポンプで次の単軸押出機に供給し押出した場
合、先端圧がs o kg/dと高いため気泡は押出機
のスクリュー後方に押しもどされ押出機内で完全に脱泡
されていることが判明した。なおスクリュー径は25s
+mで回転数は3 Q rpmであり、温度は185℃
に設定した。
However, when the material is fed to the next single-screw extruder using an external pressure pump and extruded, the air bubbles are pushed back to the rear of the extruder screw and are completely defoamed within the extruder because the tip pressure is as high as so kg/d. There was found. The screw diameter is 25s.
+ m, the rotation speed is 3 Q rpm, and the temperature is 185°C.
It was set to

12ホールのノズルを用い吐出量30g/分、捲取速度
10 m1分にて2日間紡糸を行なったが断糸はなく、
紡糸ヘッド圧は65〜7 s kg/dとはホ一定でフ
ィルター詰シは見られなかった。
Spinning was carried out for two days using a 12-hole nozzle at a discharge rate of 30 g/min and a winding speed of 10 ml/min, but there was no yarn breakage.
The spinning head pressure was constant at 65 to 7 s kg/d, and no filter clogging was observed.

また1時間毎にポリエチレン濃度を測定したが12±0
.11%とほとんど変動していない事が判明した。得ら
れた紡糸原糸を乾燥して溶剤含有率を5%以下にしヒー
ターを用いてローラー間で最大延伸倍率の85%に相当
する31倍の延伸を10日間行なったが毛羽および断糸
は2回ずつあるだけで紡糸原糸がほぼ均一であることが
裏付けられた。また延伸糸の性能は強伸度が23 f/
d −4,2%でモジュラスが980Vdであった。
In addition, the polyethylene concentration was measured every hour, and it was 12 ± 0.
.. It turned out that there was almost no change at 11%. The obtained spun yarn was dried to a solvent content of 5% or less, and was stretched for 10 days between rollers at a rate of 31 times, equivalent to 85% of the maximum stretching ratio, using a heater, but fluff and yarn breakage were 2. It was confirmed that the spun yarn was almost uniform just because of the number of times. In addition, the performance of the drawn yarn is that the strength and elongation is 23 f/
The modulus was 980 Vd at -4.2%.

実施例3 重量平均公刊100万のポリプロピレンを濃度7重量%
になるように沸点が215〜242℃の石油系ソルベン
トに添加し、120℃で分散液Aを作成した。ついで予
めつくった同じ組成の195℃の溶解原液B5kgに1
00f/分ずつ分散液Aを添加し、滞留時間が4分以上
になるように攪拌翼および回転数を設定した( Va 
/ Lm = 2 X 10−” )。
Example 3 Polypropylene with a weight average publication of 1 million at a concentration of 7% by weight
It was added to a petroleum solvent having a boiling point of 215 to 242°C so that the dispersion liquid A was prepared at 120°C. Next, add 1 to 5 kg of a pre-prepared solution of the same composition at 195°C.
Dispersion A was added at a rate of 00 f/min, and the stirring blade and rotation speed were set so that the residence time was 4 minutes or more (Va
/ Lm = 2 x 10-”).

分散液A中のポリプロピレンは白色粉末であシ、それが
溶解原液Bに添加されると白色な塊如を生じたが2〜3
分で透明な膨潤粒になった。溶解槽より押出された原液
は部分的に不均一であり気泡をかなシ含んでいたが、2
軸混練機に−ダー)および2軸押出機を通った後では気
泡のない均一な原液が観察された。なおポリプロピレン
濃度ハフ±0.05%であった。念のため紡糸延伸を行
なったがデニール変動は#1とんどなく、延伸倍率も安
定しており、高強力ポリプロピレン繊維が得られた。
The polypropylene in dispersion A was a white powder, and when it was added to the stock solution B, white lumps were produced.
It became a transparent swollen grain in minutes. The stock solution extruded from the dissolution tank was partially non-uniform and contained some air bubbles, but 2
A homogeneous stock solution without air bubbles was observed after passing through the axial kneader and twin-screw extruder. Note that the polypropylene concentration was Huff ±0.05%. Spinning and drawing was carried out just in case, but there was almost no denier variation (#1), the drawing ratio was stable, and a high-strength polypropylene fiber was obtained.

比較例1 実施例1において分散浪人の濃度を室温にし実施例1と
同様の操作を行なった。しかし分散液Aの温度が低いた
め、溶解槽において添加部分の原液温度が下がり、ポリ
エチレンの大きな白色塊が生成して透明に溶解せず、同
方向2軸混練押出機より吐出された原液にはポリエチレ
ンの膨潤透明粒が存在し、紡糸時にフィルター詰シや断
糸が多発した。
Comparative Example 1 The same operation as in Example 1 was performed except that the concentration of dispersed Ronin was set to room temperature. However, because the temperature of dispersion liquid A is low, the temperature of the stock solution at the addition part in the dissolution tank drops, and large white lumps of polyethylene are formed and it does not dissolve transparently, and the stock solution discharged from the twin-screw extruder in the same direction does not Swollen transparent grains of polyethylene were present, and filter clogging and yarn breakage occurred frequently during spinning.

比較例2 実施例1において分散液Aの添加量を1kg7分ずつ多
量に添加する( VA/ Ln = 5 X 10′)
点を除いて実施例と同様の操作を行なった。この場合分
散液の添加量が多く、比較例1と同様白色塊が生成し最
終的に若干不均一な原液となった。
Comparative Example 2 In Example 1, the amount of dispersion A was added in large amounts of 1 kg over 7 minutes (VA/Ln = 5 x 10')
The same operation as in Example was performed except for this point. In this case, the amount of dispersion added was large, and as in Comparative Example 1, white lumps were produced, resulting in a slightly non-uniform stock solution.

比較例3 実施例1において溶解原液の温度を130℃と溶解開始
温度TSより11℃高くした。しかしこの溶解原液の加
熱温度が低過ぎ、該溶解原液へ分散液Aを添加するとポ
リエチレンの大きな白色塊が生成し、この場合本比較例
1.2の場合と同様に不均一原液となり、紡糸時にフィ
ルター詰シや断糸が多発した。
Comparative Example 3 In Example 1, the temperature of the dissolution stock solution was set to 130°C, which was 11°C higher than the dissolution start temperature TS. However, the heating temperature of this dissolved stock solution was too low, and when dispersion A was added to the dissolved stock solution, large white lumps of polyethylene were formed. Filter clogging and thread breakage occurred frequently.

〈発明の効果〉 実施例で示されるように、本発明はポリオレフィン濃度
の高い均一な溶解原液が連続式に得られるもので、バッ
チ式に比べて原液の均一化、設備費の低下、残液処理の
不要など多くの利点を有するものである。
<Effects of the Invention> As shown in the examples, the present invention allows a continuous solution to obtain a uniform solution with a high concentration of polyolefin, resulting in a more uniform solution, lower equipment costs, and less residual liquid than a batch method. It has many advantages such as no processing required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における高分子量ポリオレフィン原液の
連続調製プロセスの1例を示す図で、lは分散液Aのス
ラリ一槽、2は溶解槽、3は混練押出機、4は昇圧ポン
プ、5は計量ポンプ、6は紡糸ヘッドを示す。
FIG. 1 is a diagram showing an example of the continuous preparation process of a high molecular weight polyolefin stock solution according to the present invention, where l is a slurry tank of dispersion liquid A, 2 is a dissolution tank, 3 is a kneading extruder, 4 is a booster pump, 5 indicates a metering pump, and 6 indicates a spinning head.

Claims (1)

【特許請求の範囲】 1、重量平均分子量が80万以上のポリオレフィンを、
沸点T_Bが140℃以上の溶剤に3〜30重量%均一
溶解させる方法において、 ポリオレフィンと溶剤とを、その時の溶剤に対するポリ
オレフィンの溶解開始温度T_Sより低く、かつT_S
−50℃より高い温度に攪拌下で加熱した所定濃度の分
散液Aを、 予め、前記T_S+20℃から前記T_Bまでの温度で
攪拌下に加熱している、ポリオレフィンと溶剤との所定
濃度の溶解原液B中に連続的に添加し溶解させた後、 該溶解液を、T_S+20℃より高い温度の混練機およ
び/または押出機に連続供給して均一溶解原液とするこ
とを特徴とする、高分子量ポリオレフィン原液の連続調
製法。 2、特許請求の範囲第1項において、分散液Aの添加量
を、溶解原液Bの量に対して、次式 0.1×10^−^2≦V_A/L_B≦3×10^−
^2ただしV_A:分散液Aの添加量(kg/分)L_
B:溶解原液Bの量(kg) を満足するように添加することを特徴とする、高分子量
ポリオレフィン原液の連続調製法。 3、特許請求の範囲第1ないし2項において、溶解原液
B中へ添加している分散液Aが該溶解原液B中で3分以
上滞留させるようになしたことを特徴とする、高分子量
ポリオレフィン原液の連続調製法。 4、特許請求の範囲第1ないし3項において、溶解原液
Bを有する溶解槽の内圧を200〜500Torrにし
、脱泡を行なうと同時にスクリュー方式にて押出し、連
続的に混練機および/または押出機に供給することを特
徴とする、高分子量ポリオレフィン原液の連続調製法。
[Claims] 1. A polyolefin with a weight average molecular weight of 800,000 or more,
In a method of uniformly dissolving 3 to 30% by weight in a solvent with a boiling point T_B of 140°C or higher, the polyolefin and the solvent are lower than the dissolution start temperature T_S of the polyolefin in the solvent at that time, and T_S
Dispersion A with a predetermined concentration heated under stirring to a temperature higher than -50°C is a stock solution of a polyolefin and a solvent with a predetermined concentration, which has been previously heated with stirring at a temperature between the above T_S+20°C and the above T_B. A high molecular weight polyolefin characterized in that after being continuously added and dissolved in B, the dissolved solution is continuously supplied to a kneader and/or an extruder at a temperature higher than T_S + 20°C to obtain a uniformly dissolved stock solution. Continuous preparation method of stock solution. 2. In claim 1, the amount of dispersion A to be added is determined by the following formula: 0.1×10^-^2≦V_A/L_B≦3×10^-
^2 However, V_A: Addition amount of dispersion A (kg/min) L_
B: A method for continuously preparing a high molecular weight polyolefin stock solution, which is characterized by adding the solution stock solution B in an amount (kg) that satisfies the amount. 3. A high molecular weight polyolefin according to claims 1 or 2, characterized in that the dispersion A added to the stock solution B is allowed to stay in the stock solution B for 3 minutes or more. Continuous preparation method of stock solution. 4. In claims 1 to 3, the internal pressure of the dissolving tank containing the dissolving stock solution B is set to 200 to 500 Torr, and at the same time defoaming is performed, extrusion is carried out using a screw system, and the dissolving solution B is continuously extruded using a kneader and/or extruder. A method for continuously preparing a high molecular weight polyolefin stock solution, characterized by supplying a stock solution of a high molecular weight polyolefin.
JP19811384A 1984-09-20 1984-09-20 Method for continuously preparing stock solution of high-molecular polyolefin Pending JPS6173743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19811384A JPS6173743A (en) 1984-09-20 1984-09-20 Method for continuously preparing stock solution of high-molecular polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19811384A JPS6173743A (en) 1984-09-20 1984-09-20 Method for continuously preparing stock solution of high-molecular polyolefin

Publications (1)

Publication Number Publication Date
JPS6173743A true JPS6173743A (en) 1986-04-15

Family

ID=16385686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19811384A Pending JPS6173743A (en) 1984-09-20 1984-09-20 Method for continuously preparing stock solution of high-molecular polyolefin

Country Status (1)

Country Link
JP (1) JPS6173743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436326B1 (en) * 1999-06-15 2002-08-20 Dow Global Technologies Inc. Forming slurry of reactive components and continuously feeding into continuous reactor
JP2005146114A (en) * 2003-11-14 2005-06-09 Shiseido Co Ltd Method for producing crosslinked gel
CN102277632A (en) * 2011-08-05 2011-12-14 青岛华世洁环保科技有限公司 Method for manufacturing gel-spun ultra-high molecular weight polyethylene fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436326B1 (en) * 1999-06-15 2002-08-20 Dow Global Technologies Inc. Forming slurry of reactive components and continuously feeding into continuous reactor
JP2005146114A (en) * 2003-11-14 2005-06-09 Shiseido Co Ltd Method for producing crosslinked gel
JP4537038B2 (en) * 2003-11-14 2010-09-01 株式会社資生堂 Method for producing crosslinked gel
CN102277632A (en) * 2011-08-05 2011-12-14 青岛华世洁环保科技有限公司 Method for manufacturing gel-spun ultra-high molecular weight polyethylene fiber

Similar Documents

Publication Publication Date Title
JP5144641B2 (en) High molecular weight poly (α-olefin) solutions and articles made therefrom
EP0183285B1 (en) Process for the continuous preparation of homogeneous solutions of high-molecular polymers
US5032338A (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
NO146987B (en) PROCEDURE FOR THE PREPARATION OF FORMED ARTICLES OF CELLULOSE.
Kye et al. Continuous polymerization of caprolactam in a modular intermeshing corotating twin screw extruder integrated with continuous melt spinning of polyamide 6 fiber: Influence of screw design and process conditions
KR100517721B1 (en) Process for making fibres from poly(p-phenylene terephthalamide)
JPS6173743A (en) Method for continuously preparing stock solution of high-molecular polyolefin
US4784820A (en) Preparation of solution of high molecular weight polymers
JPS6189232A (en) Continuous production of polymer uniform solution
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
US20180179667A1 (en) Process for the production of acrylic or modacrylic fibers
JPS61143439A (en) Continuous preparation of high molecular weight polymer stock solution
JPS6034614A (en) Preparation of spinning dope for high-tenacity fiber
EP0212133B1 (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
KR870001724B1 (en) Process for the continuous preparation of homogeneous solutions of high molecular polymers
US2756218A (en) Solutions of acrylonitrile polymers in 1, 5-dimethylpyrrolidone-2
JPH0357963B2 (en)
JPS59223307A (en) Preparation of stock solution for polyolefin yarn
JPS5930825A (en) Preparation of concentrated cellulose triacetate solution
JPH0357964B2 (en)
JPH01234425A (en) Novel, continuous preparation of polymer solution
US2732359A (en) Solutions of acrylonitrile polymers in
JPH046740B2 (en)
JPS60146008A (en) Preparation of spinning stock solution of high-molecular weight polyolefin
JPH01234424A (en) Novel, continuous preparation of polymer solution