JPS59223307A - Preparation of stock solution for polyolefin yarn - Google Patents

Preparation of stock solution for polyolefin yarn

Info

Publication number
JPS59223307A
JPS59223307A JP9594283A JP9594283A JPS59223307A JP S59223307 A JPS59223307 A JP S59223307A JP 9594283 A JP9594283 A JP 9594283A JP 9594283 A JP9594283 A JP 9594283A JP S59223307 A JPS59223307 A JP S59223307A
Authority
JP
Japan
Prior art keywords
concentration
solvent
polyolefin
solution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9594283A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Yuji Kawase
川瀬 裕司
Takeshi Inoue
井上 猛司
Yukio Sugita
杉田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP9594283A priority Critical patent/JPS59223307A/en
Publication of JPS59223307A publication Critical patent/JPS59223307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled uniform and inexpensive stock solution for providing yarn having extremely high tensile strength and modulus, by blending a high-molecular-weight polyolefin with a solvent having a specific phase separation temperature at a given temperature, cooling the blend to remove the solvent, concentrating it, dissolving it under heating. CONSTITUTION:A polyolefin (e.g., polyethylene, etc.0 having >=400,000 weight- average molecular weight is blended with a solvent (e.g., decalin, etc.) having >=80 deg.C phase separation temparature (Ts) at a concentration to satisfy the formula (C1 is polyolefin concentration of wt%, and Mw is weight-average molecular weight) at solution temperature of Ts+10 deg.C-boiling point of the solvent -20 deg.C with stirring, cooled to >=15 deg.C and <Ts of the solvent, concentrated to 6-60wt% polyolefin concentration, and redissolved under heating in the range of the above-mentioned solution temperature, to give the desired stock solution.

Description

【発明の詳細な説明】 本発明は、引張り強度ならびにモジュラスの極めて大き
なポリオレフィン繊維を製造するtこめの原液調製法に
関する。とくに本発明は、超高分子量のポリオレフィン
溶液を紡糸して高強度高モジュラス繊維を得る際に、低
コストかつ紡糸延伸性を良好ならしめる均一な高濃度ポ
リオレフィン溶液を調製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing a bulk solution for producing polyolefin fibers with extremely high tensile strength and modulus. In particular, the present invention relates to a method for preparing a uniform high-concentration polyolefin solution at a low cost and with good spinning drawability when spinning an ultra-high molecular weight polyolefin solution to obtain high-strength, high-modulus fibers.

一般に、有機重合体の分子鎖末端は固体の場合、一種の
微細構造上の欠陥部となる。したがって、有機重合体か
ら人造繊維を製造する場合、分子鎖末端が少なく分子量
の大きい重合体はど大きな強度が得られることが期待さ
れる。しかし、実際のM4維製造工程ではある程度以上
分子量が大きくなると繊維内部に不均一構造を生じて強
度が低下する傾向を示すようになる。また分子量の増大
とともに粘度が急速に増大し、紡糸操作を困難にする。
Generally, when an organic polymer is solid, the molecular chain terminals become a type of microstructural defect. Therefore, when manufacturing artificial fibers from organic polymers, it is expected that a polymer with fewer molecular chain ends and a higher molecular weight will provide greater strength. However, in the actual M4 fiber manufacturing process, when the molecular weight increases beyond a certain level, a non-uniform structure occurs inside the fiber and the strength tends to decrease. Furthermore, as the molecular weight increases, the viscosity increases rapidly, making spinning operations difficult.

たとえば、分子量100万程度のポリマーを溶融紡糸し
ようとすると溶融粘度は数100刀ポイズから数10億
ポイズに達するために紡糸時の細化が困難であるうえ溶
融紡糸の長所である畠速性も失なわれてしまう。一方、
高粘度の問題を解決するため溶剤に溶解して乾式紡糸す
る場合には、溶液濃度を通常の分子量の重合体の場合よ
リモ小さくする必要があるため乾燥が難しく、紡糸が不
安定になる。また、湿式紡糸する場合でも凝固速度が非
″rlζに小さくなるため均一凝固が困難になり、紡糸
が不安定(どなる。
For example, when trying to melt-spun a polymer with a molecular weight of about 1 million, the melt viscosity ranges from several hundreds of poise to several billion poise, making it difficult to thin the fiber during spinning, and also to reduce the feed speed, which is an advantage of melt-spinning. It gets lost. on the other hand,
In order to solve the problem of high viscosity, when dry spinning is performed by dissolving it in a solvent, the concentration of the solution needs to be lower than that of a polymer with a normal molecular weight, making drying difficult and making spinning unstable. Furthermore, even when wet spinning is performed, the coagulation rate becomes extremely low, making uniform coagulation difficult, resulting in unstable spinning.

従来、分子量が非常ζζ大きい重合体を繊維化する方法
として、溶液を冷却するだけで実質的に溶剤が除去され
ない状態で固化するような溶媒を用いる方法が特公昭4
4−26409号公報に示されている。この方法は、稀
薄な重合体溶液から安定に紡糸を行なって繊維化する方
法としてきわめてすぐれたものであるが、溶液濃度が低
いため溶剤の乾燥、回収や生産量の低下などにより製造
コストは急激に上昇する。このような欠点を解決するた
めには紡糸原液の濃度を高くすればよいが、重量平均分
子量40万以上のいわゆる超高分子量ポリオレフィンの
高濃度溶液を作ることはきわめて難かしい。撹拌機を備
えたタンク式の溶解機で溶解する場合、重合体は溶解が
始まった部分に凝集し粘度のきわめて大きい塊りを作り
、とくに分子量が150万以上では均一な溶液を作る限
界濃度は4〜5%である。また高濃度で高粘度の部分を
小さく粉砕しようとして大きな剪断を与えた場合、重合
体が絡合した繊維状の固形物を生じたり気泡を多量に巻
込んで紡糸原液としては奸才しくない性状のものとなる
。そして、このような不均一な原液から得られる紡糸原
糸は延伸性がきわめて劣りかつ重合体の絡合点が多いた
め高強度、高モジュラスな繊維は得難いことが判明し1
こ。
Conventionally, as a method for making fibers from polymers with very large molecular weights, there is a method using a solvent that solidifies without substantially removing the solvent by simply cooling the solution.
It is shown in the publication No. 4-26409. This method is an extremely excellent method for stably spinning and forming fibers from a dilute polymer solution, but because the solution concentration is low, production costs increase rapidly due to drying and recovery of the solvent, and a decrease in production. rise to In order to solve these drawbacks, it is possible to increase the concentration of the spinning dope, but it is extremely difficult to prepare a highly concentrated solution of so-called ultra-high molecular weight polyolefins having a weight average molecular weight of 400,000 or more. When dissolving in a tank-type dissolver equipped with a stirrer, the polymer aggregates at the point where dissolution begins, creating a lump with extremely high viscosity. Especially when the molecular weight is 1.5 million or more, the critical concentration for making a uniform solution is It is 4-5%. In addition, if large shear is applied to a high concentration and high viscosity part in an attempt to crush it into small pieces, a fibrous solid substance with entangled polymers or a large amount of air bubbles may be generated, resulting in properties that are not suitable for use as a spinning dope. Becomes the property of It was found that the spun yarn obtained from such a non-uniform stock solution has extremely poor drawability and has many polymer entanglement points, making it difficult to obtain fibers with high strength and high modulus.
child.

このような問題点を解決するために本発明者らは種々検
討を行なった結果、超畠分子量ポリオレフィンをまず稀
薄濃度にて所定の温度範囲で撹拌   7混合すること
により溶剤に溶解したのち、冷却して溶剤除去によって
濃縮して高濃度ポリオレフィン溶液とすると均一な溶液
が得られることを見出した。かかる本発明に関連する従
来技術として、濃度05%のポリオレフィン稀薄溶液を
5〜10%に濃縮して用いることがJournal  
of Materials8cience 15 (1
980)にて知られているが、そこには濃縮条件につい
ては具体的に記載されておらず、本発明の如く最適濃度
と温度を設定し、とくに10%以上の均一な高濃度ポリ
オレフィン溶液を安価に得る方法は開示されていない。
In order to solve these problems, the present inventors conducted various studies and found that ultra-high molecular weight polyolefin is first dissolved in a solvent by stirring and mixing at a dilute concentration within a predetermined temperature range, and then cooled. It has been found that a homogeneous solution can be obtained by concentrating the polyolefin solution and removing the solvent to obtain a highly concentrated polyolefin solution. As a prior art related to the present invention, a dilute polyolefin solution having a concentration of 05% is used after being concentrated to 5 to 10%, as reported in the Journal.
of Materials8science 15 (1
980), but the concentration conditions are not specifically described therein, and the optimum concentration and temperature are set as in the present invention, and in particular, a uniform high concentration polyolefin solution of 10% or more is prepared. A method for obtaining it at low cost is not disclosed.

以下に本発明について詳述する。本発明でいうポリオレ
フィンとは、ポリエチレン、ポリプロピレン、ポリブテ
ン、エチレンプロピレン共車台べあるいは染色、制電、
耐熱、耐光、難燃などを向上する目的で該ポリマーに2
0モル%以下の改質剤を共重合したもの、または光沢、
着色、高比重、導電、磁性、補強などを目的としたフィ
ラーを20M< Mt%以下添加しtこものあるいはこ
れらを2種以上混合したものを慧味する。
The present invention will be explained in detail below. The polyolefin used in the present invention refers to polyethylene, polypropylene, polybutene, ethylene propylene, car body base, dyeing, antistatic, etc.
2 is added to the polymer for the purpose of improving heat resistance, light resistance, flame retardancy, etc.
Copolymerized with 0 mol% or less of a modifier, or gloss,
A filler for the purpose of coloring, high specific gravity, conductivity, magnetism, reinforcement, etc. is added in an amount of 20M<Mt% or less, or a mixture of two or more of these is used.

つぎに、ポリオレフィンを溶解する溶剤は80℃以上の
相分離温度(TS)を有するもので−あり、Tsが80
℃未満では冷却による固化が遅いために冷却温度を非常
に低くする必要があるので好ましくない。また溶剤の乾
燥温度を低くしないと紡糸原子の膠着やデニール斑を生
じるので乾燥時間を長くする必要もある。該溶剤として
は、ノナン、デカン、ウンデカン、ドデカン、デカリン
、キシレン、ナフタリンなどの脂肪族または環式炭化水
素あるいは脂肪族炭化水素が主成分の石油系ソルベント
、あるいはジクロルベンゼンなどのハロゲン化炭化水素
あるいはこれら2種以上の混合溶剤であるが、本発明は
これらに限定されるものではない。なお、相分離温度T
sとは、溶液を0.59q分の冷却速度で静置状態で冷
却したとき、肉眼で検知できる程度の濁りを発生する温
度であり、この温度以下に溶液を保つと溶液は溶剤と膨
潤した重合体のゲル状物に分離する。そして、相分離温
度は溶iV濃反が大きくなると少しずつ上昇するので、
本発明では濃度0.5%で測定したときの相分離温度を
短体する。また、該溶剤の沸点は原液調製や紡糸時の溶
剤蒸発の点と溶剤の乾燥回収の点で120〜200℃が
好ましい。
Next, the solvent for dissolving the polyolefin has a phase separation temperature (TS) of 80°C or higher, and Ts is 80°C or higher.
If the temperature is less than 0.degree. C., solidification by cooling is slow and the cooling temperature needs to be very low, which is not preferable. Furthermore, unless the drying temperature of the solvent is lowered, spinning atoms will stick together and denier unevenness will occur, so it is also necessary to lengthen the drying time. Examples of the solvent include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, xylene, and naphthalene, or petroleum-based solvents mainly composed of aliphatic hydrocarbons, or halogenated hydrocarbons such as dichlorobenzene. Alternatively, the solvent may be a mixed solvent of two or more of these, but the present invention is not limited thereto. In addition, the phase separation temperature T
s is the temperature at which turbidity that can be detected with the naked eye occurs when a solution is cooled in a stationary state at a cooling rate of 0.59 q min, and when the solution is kept below this temperature, it swells with the solvent. Separates into a polymer gel. The phase separation temperature increases little by little as the dissolved iV concentration increases, so
In the present invention, the phase separation temperature when measured at a concentration of 0.5% is shortened. Further, the boiling point of the solvent is preferably 120 to 200°C from the viewpoint of solvent evaporation during stock solution preparation and spinning, and dry recovery of the solvent.

本発明においては、まずポリオレフィンの稀薄溶液を調
製するのであるが、この場合、ポリオレフィン濃度(0
+重量%)とポリオレフィンの重量平均分子量Mwの関
係をC,−3,7X10シy「τ−±1.4にする必要
があることがわかった。ここで、C1を上式の範囲を越
えて大きくすると、溶液粘度が高く十分に撹拌混合する
ことが難しくなり、濃度斑を生じ易い。また、激しく撹
拌混合した場合は分子鎖の絡みが多くなり、高強度の繊
維は得られない。一方、C7が上式の範囲未満の場合は
十分混線が可能であるが、ついで行なう冷却して溶剤除
去して濃縮する場合に能率低下と溶剤回収の点でコスト
高となり好ましくない。
In the present invention, a dilute solution of polyolefin is first prepared, and in this case, the polyolefin concentration (0
It was found that the relationship between the weight average molecular weight Mw of the polyolefin (+% by weight) and the weight average molecular weight Mw of the polyolefin must be set to C, -3,7 If the solution is made too large, the viscosity of the solution becomes high, making it difficult to stir and mix thoroughly, which tends to cause concentration unevenness.Also, when stirring and mixing vigorously, molecular chains become entangled, making it impossible to obtain high-strength fibers. , C7 is less than the range given by the above formula, sufficient crosstalk is possible, but this is not preferable since the subsequent cooling, removal of solvent, and concentration will result in lower efficiency and higher costs due to solvent recovery.

本発明におけるかかる稀薄溶液の1.′」製時の溶解温
IWは、Ts+10°C〜溶剤の沸点−20℃とする必
要がある。ここで、Ts+10°Cより低い温度ではポ
リマーがゲル化して固化し易く均一な溶液は作りにくく
、また沸点−20℃より高い温度ではポリマーの着色、
分解や溶解時に溶剤の激しい蒸発凝縮による濃度斑が生
じ易く、また加熱から冷却に変換する際のエネルギー消
費が大きく好ましくない。そして、ポリオレフィンの稀
薄溶液を得るための撹拌混合は、加熱密閉タイプのタン
ク式溶解機や自転と公転を伴なう混線機などを用いて均
一でかつ分子鎖の絡みの少ない溶液を得る剪断力のあま
り強くない混合機であればよい。才だ、ついで行なう冷
却して溶剤除去する操作を同時に行なえるものであって
も支障ない。
1. of such dilute solutions in the present invention. The melting temperature IW during production must be between Ts + 10°C and the boiling point of the solvent - 20°C. Here, at a temperature lower than Ts + 10°C, the polymer tends to gel and solidify, making it difficult to create a uniform solution, and at a temperature higher than the boiling point -20°C, the polymer may become colored.
Concentration unevenness is likely to occur due to intense evaporation and condensation of the solvent during decomposition and dissolution, and energy consumption when converting from heating to cooling is undesirable. Stirring and mixing to obtain a dilute solution of polyolefin is performed using a heat-sealed tank-type melter or a mixer that rotates and revolves, using shearing force to obtain a uniform solution with less entanglement of molecular chains. A mixer that is not too strong will suffice. There is no problem even if the cooling and solvent removal operations that will be performed next can be performed at the same time.

ついで本発明では上述のようにして得られた稀薄溶液を
冷却して溶剤除去により高濃度溶液を得るが、冷却温度
(toC)は15℃以上にしてTs未満の温度好ましく
はt=Ts−a、6呵+ 1o (ただしC2は濃縮後
のポリオレフィン濃度で重量%)を満足する温度である
。ここで、tが上式の範囲を越の範囲未満の温度ではっ
ぎの再溶解時にエネルギ−を多く労貧し、また15℃よ
り低い温度ではポリマーが硬く多鰍の溶剤除去が困難に
なりいずれも好ましくない。ポリオレフィン溶液の濃縮
lζは遠心脱液、圧搾あるいは稀薄溶液を押出しペレッ
ト状またはブロック状に固化するときに溶剤を除去する
などいずれの方法を採用しても問題ない。
Next, in the present invention, the dilute solution obtained as described above is cooled and the solvent is removed to obtain a highly concentrated solution, and the cooling temperature (toC) is set to 15°C or higher and lower than Ts, preferably t=Ts-a. , 6 呵 + 1o (where C2 is the polyolefin concentration after concentration in weight %). Here, if t is below the range of the above formula, a lot of energy will be wasted when remelting the shellfish, and if the temperature is lower than 15°C, the polymer will be hard and it will be difficult to remove the solvent from the shellfish. Undesirable. There is no problem in concentrating the polyolefin solution by any method such as centrifugal dehydration, squeezing, or removing the solvent when solidifying the dilute solution into pellets or blocks by extrusion.

本発明における濃縮後のポリオレフィン濃度は6〜60
重泉%好ましくは10〜40M量%とするものであり、
ついで行なう再溶解時の溶液粘度から高分子量の場合は
ど濃度は低くなる。そして、60重量%を越える濃縮は
困難であり、6重量%未満では溶剤の回収や生産量低下
の点でコスト的メリットがなくなる。
The polyolefin concentration after concentration in the present invention is 6 to 60
Heavy spring % is preferably 10 to 40 M amount %,
If the molecular weight is high, the concentration will be low due to the viscosity of the solution during subsequent redissolution. It is difficult to concentrate more than 60% by weight, and if it is less than 6% by weight, there is no cost advantage in terms of solvent recovery and reduced production.

本発明において、濃縮後ポリマーを加熱溶解するに除し
ては、溶解後の溶液粘度により溶融格子式俗解枇、タン
ク式低回転混線枇、ラム式押出機、スクリュ一式押出機
などを使用し、前述と同じ理由でTs+10℃〜沸点−
20℃の温度で加熱溶解するのが好ましい。
In the present invention, depending on the viscosity of the solution after concentration, the polymer is heated and dissolved using a melting grid type general dissolution system, a tank type low-rotation mixing system, a ram type extruder, a single screw extruder, etc. For the same reason as above, Ts + 10℃ ~ boiling point -
It is preferable to heat and melt at a temperature of 20°C.

かくして得られた再加熱により溶解した溶液は紡糸機に
送られ、紡糸口金から吐出されて繊維となる。
The reheated and dissolved solution thus obtained is sent to a spinning machine and discharged from a spinneret to form fibers.

不発明番こより、均一で高濃度ポリオレフィン溶液を操
業的に得ることができるよう1ζなり、低コストで高強
度、高モジュラスのポリオレフィン繊維を得ることが可
能となった。
From this point of view, it has become possible to operationally obtain a uniform and highly concentrated polyolefin solution, and it has become possible to obtain polyolefin fibers with high strength and high modulus at low cost.

以下に本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 重量平均分子量190万のポリエチレン粉末を濃度5重
量%になるようにデカリン(沸点187量%におけるデ
カリンの相分離温度(Ts)は88℃であった。ついで
、上記の6重量%の溶液をプレス式の圧搾機に入れて4
0〜50℃に冷却後圧縮してポリエチレン濃度26重量
%の固形物を得た。ついで、該固形物を、自転、公転の
ある混線溶解機に入れ170℃で静置溶解後、低速で撹
拌して均一な原液を作製した。ついで、俗!S機の底部
よりギヤポンプ方式で原液を紡糸口金に送りノズル直径
1.5閣、長さ12Tfgn1小−ル数12の紡糸孔か
ら吐出量2597分、紡糸速度20撃分にて紡糸原糸を
捲取った。ついで、テ゛カリン含有量40〜50条の原
糸を130℃の延伸炉中で37倍延伸したところ、強度
34.5 p/d、伸度4.6%、引張りモジュラス7
10 g/dの繊維が得られた。
Example 1 Polyethylene powder with a weight average molecular weight of 1.9 million was mixed with decalin at a concentration of 5% by weight (the phase separation temperature (Ts) of decalin at a boiling point of 187% by weight was 88°C. Put the solution into a press-type squeezer 4
After cooling to 0 to 50°C, it was compressed to obtain a solid having a polyethylene concentration of 26% by weight. Next, the solid material was placed in a mixed-wire melting machine that rotates and revolves, and after standing to dissolve at 170° C., it was stirred at a low speed to prepare a uniform stock solution. Next, common sense! The raw solution is sent from the bottom of the S machine to the spinneret using a gear pump system, and the raw yarn is wound at a discharge rate of 2597 minutes and a spinning speed of 20 strokes through the spinning holes with a nozzle diameter of 1.5 mm and length of 12 Tfgn, 1 small number of spindles. I took it. Then, when the raw yarn with a tekarin content of 40 to 50 threads was stretched 37 times in a drawing furnace at 130°C, the strength was 34.5 p/d, the elongation was 4.6%, and the tensile modulus was 7.
10 g/d of fiber was obtained.

また、10時間連続紡糸して吐出されるポリマーのポリ
エチレン濃度を測定したところ25.6〜26.1ii
%とほぼ一定であり、紡糸時に糸ゆれ、断糸、ノズルパ
ック圧の変動などのトラブルは一度も起らず、均一な紡
糸原液であることが判明した。さらに延伸糸のデニール
、強伸度の経時変化を見たが、いずれも±5%以内の変
動でポリエチレン分子鎖の絡みに大きな斑がないことが
明らかとなった。
In addition, when the polyethylene concentration of the polymer discharged after continuous spinning for 10 hours was measured, it was 25.6 to 26.1ii.
%, and troubles such as yarn wobbling, yarn breakage, and nozzle pack pressure fluctuations never occurred during spinning, indicating that the spinning dope was uniform. Furthermore, changes over time in the denier and strength/elongation of the drawn yarn were examined, and it was found that both fluctuations were within ±5%, indicating that there were no large irregularities in the entanglement of polyethylene molecular chains.

実施例2 亀屋平均分子星80力のポリエチレン粉末を濃度5重量
%になるように石油系の殺虫ソルベント(沸点200〜
250℃)に添加し、自転、公転のあるフック型混線機
で160℃の溶液を作製した。ここで、0.5重量%に
おける殺虫ソルベントの相分離温度(Ts)は93℃で
あった。ついで、60〜58℃に冷却して圧延しシート
を切断してポリエチレン濃度42重量%の4mm角立方
体状のチップを得た。ついで、このチップをスクリュー
押出機を用いて溶解混練して紡糸機ζζ送り紡糸した。
Example 2 Polyethylene powder with an average molecular weight of 80 Kameya was mixed with a petroleum-based insecticidal solvent (boiling point 200~) to a concentration of 5% by weight.
250°C), and a solution at 160°C was prepared using a hook-type mixer that rotates and revolves. Here, the phase separation temperature (Ts) of the insecticidal solvent at 0.5% by weight was 93°C. The sheet was then cooled to 60 to 58 DEG C., rolled, and cut to obtain 4 mm cube-shaped chips having a polyethylene concentration of 42% by weight. Then, the chips were melted and kneaded using a screw extruder and spun using a spinning machine.

押出機シリンダ一温度170’C1紡糸ロ金温度180
℃で5日連続紡糸を行なったが、紡糸調子は良好で32
5メツシユのフィルター詰まりもほとんどなく、ポリエ
チレン濃度の変動も±6%とほぼ一定であった。また、
毎日、紡糸原糸のポリエチレン分子量分布の測定と絶乾
後の原糸をデカリンに溶解した溶液粘度の測定によって
、原料のポリエチレンはほとんど分解していないことが
判明した。本実施例1ζおいて殺虫ソルベント含有域1
%以下の紡糸原糸を140℃で延伸したところ、最大延
伸倍率は28〜32倍と5日間の同一条件下による紡糸
原糸はほぼ同じ延伸性を示し、均一な原液であることが
証明された。
Extruder cylinder temperature 170'C1 spinning rod temperature 180
Spinning was carried out continuously for 5 days at ℃, and the spinning condition was good.
There was almost no clogging of the 5-mesh filter, and the variation in polyethylene concentration was almost constant at ±6%. Also,
Daily measurements of the polyethylene molecular weight distribution of the spun fibers and measurements of the viscosity of a solution of completely dried fibers dissolved in decalin revealed that the raw material polyethylene was hardly decomposed. In this Example 1ζ, insecticidal solvent content area 1
% or less at 140°C, the maximum stretching ratio was 28 to 32 times, and the yarns spun under the same conditions for 5 days showed almost the same drawability, proving that it was a uniform stock solution. Ta.

実施例3 g o          y、左 M量平均分子量m万のポリプロピレン4部と相分離温度
(Ts)78℃、沸点180℃のオ9 左、t ルソジクロルベンゼン件キオ部をプロペラ翼の撹イう1
0 拌機つき溶解機に入れ中寺噌℃の温度で混合した。
Example 3 4 parts of polypropylene having an average molecular weight of 10,000 yen, a phase separation temperature (Ts) of 78°C, and a boiling point of 180°C. U1
0 The mixture was placed in a dissolver equipped with a stirrer and mixed at a temperature of Nakateraso°C.

ついで、50〜60℃に冷却して遠心脱液によりポリプ
ロピレン濃度10重量%の固形物を得た。
Then, the mixture was cooled to 50 to 60° C. and centrifuged to remove liquid, thereby obtaining a solid material having a polypropylene concentration of 10% by weight.

イ170 該固形物を1−44℃の原液槽に入れて静置溶解後に紡
糸、延伸を行なったが、毛羽、断糸はなく、延伸糸の強
伸度は平均21 Q/、1.7.8%で変動率は強度が
11,4%、伸度が6.8%でほぼ均一な繊維が得られ
た。なお、変動率(CV)はUV−Σcx−xP7<N
−1)+xx1on (X : 測定値、又:平均値、
N:測定個数で30)より求めた。
A170 The solid material was placed in a stock solution tank at 1-44°C and dissolved by standing for spinning and drawing, but there was no fuzz or yarn breakage, and the strength and elongation of the drawn yarn was 21 Q/, 1.7 on average. .8%, the variation rate was 11.4% for strength, 6.8% for elongation, and almost uniform fibers were obtained. In addition, the variation rate (CV) is UV-Σcx-xP7<N
-1)+xx1on (X: measured value, also: average value,
N: The number of measurements was calculated from 30).

また、紡糸ノズル後の吐出ポリマーの濃度は9.8〜1
0.1重電%であって測定誤差範囲内であり、着色は見
られなかった。
In addition, the concentration of the discharged polymer after the spinning nozzle is 9.8 to 1
The concentration was 0.1%, which was within the measurement error range, and no coloration was observed.

実施例4 M、ilt平均分子量270万のポリエチレンと1重量
%の赤色顔料をデカリンに添加し、160℃の08京星
形のポリエチレン溶液を作製した。ついで、該溶液を5
5〜75℃に冷却し、圧搾によりポリエチレン濃度8重
量%のゲル物を得たのち150℃で静置溶解して10時
間紡糸した。得られた紡糸原糸は890d/6f でデ
カリンを150%含んでいたが、中空ヒータ−120’
C1供給速度50帰分、1段延イi倍率12倍、2段延
伸倍率2.8倍にて延伸して強度28.5 ff/d 
、伸度5.1%の原着高強力ポリエチレン繊維を得た。
Example 4 M, ilt Polyethylene having an average molecular weight of 2.7 million and 1% by weight of a red pigment were added to decalin to prepare a 0.8 quintillion star-shaped polyethylene solution at 160°C. Then, the solution was
The gel was cooled to 5 to 75°C and compressed to obtain a gel having a polyethylene concentration of 8% by weight, then dissolved at 150°C and spun for 10 hours. The obtained spun yarn was 890d/6f and contained 150% decalin, but the hollow heater 120'
Stretched at C1 supply rate of 50, 1st stage drawing ratio 12x, 2nd stage stretching ratio 2.8x, strength 28.5 ff/d
A spun-dyed high-strength polyethylene fiber having an elongation of 5.1% was obtained.

該原着糸を筒編にして色相斑をみたり吸光度により顔料
含有量を単繊維間で評価したが、いずれも顔料は均一に
分散され高濃度ポリエチレン溶液は均一なものであるこ
とが判った。また、紡糸時間による延伸糸強伸度のばら
つきも少なく、はぼ一定の単繊維デニールを有していた
The spun-dyed yarn was knitted into a tube and the pigment content was evaluated between single fibers by checking the hue unevenness and absorbance, and it was found that the pigment was uniformly dispersed and the high concentration polyethylene solution was uniform in both cases. . Further, there was little variation in the strength and elongation of the drawn fibers depending on the spinning time, and the single fiber denier was almost constant.

比較例1〜2 比較例1として、実施例1のポリエチレンを濃度7tJ
iL%Cどなるようにデカリンとともに混線溶解機に入
れ、170℃で直接高濃度ポリエチレン溶液を作製しよ
うとしたが、溶解時に粘度がきわめて高くなり途中で撹
拌不能で濃度斑の大きい溶液となった。
Comparative Examples 1 to 2 As Comparative Example 1, the polyethylene of Example 1 was used at a concentration of 7 tJ.
I tried to directly prepare a high concentration polyethylene solution at 170°C by putting iL%C together with decalin in a crosstalk dissolver, but the viscosity became extremely high during dissolution and the solution became unstirable midway through, resulting in a solution with large concentration irregularities.

比較例2として、実施例1の26重量%ポリエチレン溶
液を加熱溶解する場合に90℃で行なつたところ、溶解
するのに長時間かかりかつ混線機の撹拌棒に巻きついた
ポリマーが冷却されて白い固体になり濃度斑を起してい
ることが判明した。
As Comparative Example 2, when heating and dissolving the 26% polyethylene solution of Example 1 at 90°C, it took a long time to dissolve and the polymer wrapped around the stirring rod of the mixer was cooled. It turned out to be a white solid with uneven density.

参考例1 実施例2の5重量%ポリエチレン溶液を冷却する場合に
70℃にして行なったが、相分離で生成する溶剤の鰍が
少なく濃度42重量%まで濃縮するのはかなり困難であ
った。
Reference Example 1 The 5% by weight polyethylene solution of Example 2 was cooled to 70°C, but it was quite difficult to concentrate it to a concentration of 42% by weight due to the small amount of solvent produced during phase separation.

特許出願人 株式会社 クラレ 代理人弁理士本多 堅Patent applicant: Kuraray Co., Ltd. Representative Patent Attorney Ken Honda

Claims (3)

【特許請求の範囲】[Claims] (1)重量平均分子量40万以上のポリオレフィンを、
相分離温度(Ts)が80℃以上である溶剤に、c、=
 s、y x 1け4ト±1.4(ただしC4はポリオ
レフィン濃度で重量%、Myは重量平均分子量)が成立
するように添加してT8+10℃〜溶剤沸点−20℃の
溶液温度で撹拌混合したのち、15℃以上にして溶剤の
Ts未満の温度に冷却して6〜60重量%のポリオレフ
ィン濃度に濃縮し、ついでふたたび前記溶液温度の範囲
で加熱溶解することを特徴とするポリオレフィン繊維用
原液の調製法。
(1) Polyolefin with a weight average molecular weight of 400,000 or more,
In a solvent whose phase separation temperature (Ts) is 80°C or higher, c, =
Add so that s, y After that, the stock solution for polyolefin fibers is characterized in that it is cooled to a temperature of 15° C. or higher and lower than the Ts of the solvent, concentrated to a polyolefin concentration of 6 to 60% by weight, and then heated and dissolved again in the solution temperature range. Preparation method.
(2)冷却温度(t’C)が、t=Ts ’8−3V6
−±10(ただしC2は濃縮後のポリオレフィン濃度で
重量%)を満足することを特徴とする前項記載のポリオ
レフィン繊維用原液の調製法。
(2) Cooling temperature (t'C) is t=Ts '8-3V6
-±10 (where C2 is the polyolefin concentration after concentration, weight %).
(3)濃縮後のポリオレフィン濃度が10〜40重量%
である第1項または第2項記載のポリオレフィン繊維用
原液の調製法。
(3) Polyolefin concentration after concentration is 10 to 40% by weight
A method for preparing a stock solution for polyolefin fibers according to item 1 or 2.
JP9594283A 1983-05-30 1983-05-30 Preparation of stock solution for polyolefin yarn Pending JPS59223307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9594283A JPS59223307A (en) 1983-05-30 1983-05-30 Preparation of stock solution for polyolefin yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9594283A JPS59223307A (en) 1983-05-30 1983-05-30 Preparation of stock solution for polyolefin yarn

Publications (1)

Publication Number Publication Date
JPS59223307A true JPS59223307A (en) 1984-12-15

Family

ID=14151317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9594283A Pending JPS59223307A (en) 1983-05-30 1983-05-30 Preparation of stock solution for polyolefin yarn

Country Status (1)

Country Link
JP (1) JPS59223307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252312A (en) * 1985-05-01 1986-11-10 Mitsui Petrochem Ind Ltd Production of drawn material of ultrahigh-molecular weight polyethylene
US4784820A (en) * 1986-08-11 1988-11-15 Allied-Signal Inc. Preparation of solution of high molecular weight polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252312A (en) * 1985-05-01 1986-11-10 Mitsui Petrochem Ind Ltd Production of drawn material of ultrahigh-molecular weight polyethylene
US4784820A (en) * 1986-08-11 1988-11-15 Allied-Signal Inc. Preparation of solution of high molecular weight polymers

Similar Documents

Publication Publication Date Title
JP4210285B2 (en) Method for producing cellulose fiber
JP4004501B2 (en) Solution containing cellulose dissolved in N-methylmorpholine-N-oxide and high-strength lyocell fiber using the same
AU713310B2 (en) Device for holding and discharging a homogeneous cellulose suspension
JP5144641B2 (en) High molecular weight poly (α-olefin) solutions and articles made therefrom
KR20130041333A (en) Method for preparing spinning solution of ultra-high molecular weight polyethylene fiber
ITMI952339A1 (en) PROCEDURE FOR RECYCLING WASTE BASED ON A MULTIPLE COMPONENT POLYMER BLEND
WO2010035834A1 (en) Easily dyeable meta-form wholly aromatic polyamide fiber
US5584919A (en) Pelletized pre-dope granules of cellulose and tertiary amine oxide, spinning solution, of cellulose and process for making them
EP0777767B1 (en) Process for making cellulose extrudates
US4166091A (en) Production of plexifilament strands
JPS59223307A (en) Preparation of stock solution for polyolefin yarn
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
CN107435171A (en) A kind of preparation method of cross-linked structure orientation filling enhancing chemical fibre
US4810448A (en) Processes for the production of dry-spun polyacrylonitrile profiled fibres and filaments
JPS6034614A (en) Preparation of spinning dope for high-tenacity fiber
JP2013133569A (en) Spun yarn of spun-dyed meta-type wholly aromatic polyamide fiber
US5804120A (en) Process for making cellulose extrudates
JPH08507328A (en) Method for preparing polyketone fiber
US4427613A (en) Continuous process for the production of filaments or fibers from difficultly soluble synthetic polymers
WO2022185683A1 (en) Spun-dyed meta-type wholly aromatic polyamide fiber and method for production thereof
JPS61143439A (en) Continuous preparation of high molecular weight polymer stock solution
JPH0357963B2 (en)
JPS6173743A (en) Method for continuously preparing stock solution of high-molecular polyolefin
JPS60146008A (en) Preparation of spinning stock solution of high-molecular weight polyolefin
JPH0357964B2 (en)