JPH0336929B2 - - Google Patents

Info

Publication number
JPH0336929B2
JPH0336929B2 JP61193945A JP19394586A JPH0336929B2 JP H0336929 B2 JPH0336929 B2 JP H0336929B2 JP 61193945 A JP61193945 A JP 61193945A JP 19394586 A JP19394586 A JP 19394586A JP H0336929 B2 JPH0336929 B2 JP H0336929B2
Authority
JP
Japan
Prior art keywords
molecular weight
ultra
high molecular
weight polyethylene
paraffin wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61193945A
Other languages
Japanese (ja)
Other versions
JPS6350516A (en
Inventor
Harumi Watanabe
Kisoo Moriguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19394586A priority Critical patent/JPS6350516A/en
Publication of JPS6350516A publication Critical patent/JPS6350516A/en
Publication of JPH0336929B2 publication Critical patent/JPH0336929B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、超高分子量ポリエチレンを用いて高
弾性率、高強度を有し、かつより品質の安定した
繊維、フイルム等延伸物を製造する方法に関す
る。 〔従来の技術とその問題点〕 超高分子量ポリエチレンを溶媒に溶かした後紡
糸、延伸することにより、高強度高弾性の延伸物
が得られることはよく知られている。例えば特開
昭55−107506号公報、特開昭56−15408号公報あ
るいは、特開昭58−5228号公報の如く、超高分子
量ポリエチレンを濃度2〜10重量%程度の稀薄溶
液とした後紡糸し、高倍率に延伸する方法が提案
されている。これらの技術においては、使用する
ポリマー溶液が均一であることが極めて重要であ
り、そのために溶液の均一調整法として種々の提
案がなされている(特公昭60−22010、特開昭59
−23123、特開昭59−223307、特開昭60−40133な
ど)。 これらの方法を用いて、均一溶液の調整を行つ
ても、これらの方法に使用される溶媒はいずれも
室温において液体であることから、以下に述べる
如く種々の問題点を有している。すなわち、上記
提案された方法を用いて均一溶液を調整したのち
紡糸する場合、ポリマー溶液が冷却されゲル状物
質を形成する際に、多量の溶媒が遊離し、特にそ
の紡糸条件において、ドラフトを掛けて巻取るな
どの操作は、溶媒の回収の意味からもほとんど行
なわれない状況であつた。又いつたん巻取られた
ゲル状物質はまだかなりの溶媒を含んでいるた
め、巻取テンシヨンの変動、湿潤ゲルの融着、巻
取後の時間経過による溶剤脱離差による品質の変
動又は延伸に用いられるゲル状物の幅及び厚さ方
向に著しい不均一性を生じてしまう結果となる。 一方、常温固体で高温において超高分子量ポリ
エチレンと均一系を形成しうる物質を用いて溶融
押出後延伸する方法が種々提案されている。例え
ば、特開昭59−130313号公報、特開昭60−198220
号公報、60−240432号公報、61−8323号公報など
である。これらの提案では先述の常温で液体の溶
媒を用いた場合の問題点については全く触れてい
ない。又、これらの方法において、超高分子量ポ
リエチレンを均一に混合する方法としては、二軸
の混練機を用いる方法、又はあらかじめヘンシエ
ルミキサー、V−ブレンダー等で混合する方法、
更に混合後単軸又は多軸押出機で溶融混練して造
粒する方法などが提案されているが、これらの方
法においては高度の混練度でかつ2度ものせん断
下に置かれることによりポリマーの変質又は分子
量低下を生じる危険性を有していたり、不均一な
為高度に延伸出来ないなどの問題を有している。
例えば特定のパラフインワツクスを用いた特開昭
59−130313号公報においては、その均一性が充分
でない為、超高分子量ポリエチレンの量が15重量
部未満では、実施出来ない(引例 明細書 比較
例3)等の結果が報告されている。また別の方法
として超高分子量ポリエチレンの量が10重量部を
越えて実施する場合、混合物を高温下に保持し充
分膨潤化させた後バンバリーミキサー等の混練機
で加熱混練して均一混合物を得る方法が記されて
いる(特開昭60−198220号公報、明細書2ページ
右下20行〜3ページ左上4行)。しかしながらこ
の方法を用いても、超高分子量ポリエチレンの融
点以上の温度にて保持される為、溶融したポリマ
ー粒子が膨潤する前に互いに融着して大きなかた
まりを形成して、充分均一な膨潤をしていない溶
融固体と粘度の低い添加剤溶融液との混合物にな
つてしまうなど、常温固体の物質を利用して高温
にて均一な融液を得るのに有効な方法は未だ報告
されていない状況であつた。 〔発明が解決しようとする問題点〕 本発明者らは、超高分子量ポリエチレンを用い
て高強力高弾性率を有する延伸物を製造する方法
を鋭意研究した結果、超高分子量ポリエチレンを
高濃度においても均一性に優れた溶液を調製出来
ること、更にはその溶液を紡糸した後延伸ある迄
の間、その取扱いが容易で、溶剤含有量が変動す
ることなく高い品質を保つことが、連続して品質
の安定した高強度高弾性率の延伸物を製造するた
めに必須な条件であると考え、研究を重ねた。 〔問題点解決の手段〕 すなわち超高分子量ポリエチレンを溶かす溶剤
として、室温で固体でありかつ該超高分子量ポリ
エチレンとの相溶性に優れているパラフインワツ
クスを用いることが紡糸後の未延伸糸の取扱いが
容易で、かつ巻取り等による溶剤含有量の変動が
ほとんどないなど連続して品質の安定した延伸物
を製造する上で、特に優れていること、パラフイ
ンワツクスに対して、均一にかつ速やかに超高分
子量ポリエチレンを相溶させる方法が従来知られ
ていないことなどの点についてその最適な方法と
して、予め加熱溶融させたパラフインワツクスと
該パラフインワツクスと相溶性を有する液状有機
化合物中に分散させるかまたは湿潤させた超高分
子量ポリエチレンとを混合することによつて得ら
れた融液が非常に均一であることを見出した。 更にこの方法で調製した超高分子量ポリエチレ
ンを含むパラフインワツクス融液を用いて特定条
件下で紡糸した後加熱延伸することにより、高強
度、高弾性率を有し、かつ長期間に亘つて製造す
る場合にも、品質の安定した延伸物が得られるこ
とを見出した。 すなわち本発明は、超高分子量ポリエチレン延
伸物の製造方法において、予め加熱溶融されたパ
ラフインワツクスと、該パラフインワツクスと相
溶性のある液状有機化合物により、湿潤又は分散
された重量平均分子量1×106以上の超高分子量
ポリエチレンとを、混合することによつて得られ
たパラフインワツクス融液を押出し、少なくとも
1以上のドラフトをかけた後冷却固化させ、延伸
温度が60〜140℃で少なくとも8倍を越える延伸
比にて延伸することを特徴とする超高分子量ポリ
エチレン延伸物の製造方法を提供する。 本発明に用いられる超高分子量ポリエチレンと
してはエチレンあるいは、エチレンと少量の他の
α−オレフイン、例えばプロピレン、ブテン−
1、4−メチルペンテン−1、ヘキセン−1等と
を、いわゆるチーグラー重合等遷移金属触媒を用
いて重合することにより得られるポリエチレンの
中で、重量平均分子量が1×106以上のものが用
いられる。重量平均分子量が1×106未満のもの
は溶解は容易であるが、延伸しても、充分に高い
性能を得ることは難しい。又その上限については
特に規定はないが、その重量平均分子量が1×
107を越えるものについては、実用的な融液を得
ることは難しい傾向にある。 本発明に用いるパラフインワツクスとしては常
温で固形であり、飽和脂肪族炭化水素化合物を主
体とした融点が40ないし120℃、好ましくは45な
いし70℃で、かつ分子量が2000以下、好ましくは
1000以下のものであり、具体的には、ドコサン、
トリコサン、テトラコサン等の炭素数22以上のn
−アルカンあるいはそれらを主成分とする低級n
−アルカン混合物、石油から分離精製されたパラ
フインワツクス、エチレンあるいはエチレンと他
のαオレフインとを共重合して得られる低分子量
重合体である中低圧ポリエチレンワツクス、高圧
法ポリエチレンワツクス、あるいは中低圧ポリエ
チレン、高圧法ポリエチレンを熱減成等により分
子量を低下させたワツクス及びそれらワツクスの
酸化物あるいはマレイン酸変性物等の酸化ワツク
ス、マレイン酸変性ワツクス等が挙げられる。融
点が40℃未満のものあるいは液状パラフイン混合
物を用いた場合、本発明による紡糸巻取工程での
各種変動要因の解決が期待出来ないばかりか、押
出機を利用した製造において種々の問題を生じ
る。一方融点が120℃を越え、且つ分子量が2000
を超えるものを用いても、高倍率に延伸出来ない
ばかりか、更に延伸前又は延伸後において過剰の
パラフインワツクスを抽出することも出来ない。 本発明における超高分子量ポリエチレンとパラ
フインワツクスとの混合比は3対97ないし30対70
の範囲、好ましくは5対95ないし20対80の範囲で
ある。超高分子量ポリエチレンが3重量%未満に
おいてはその融液を紡糸した後得られたストラン
ドが脆く延伸に適さない。又、超高分子量ポリエ
チレンが30重量%を超える範囲では、パラフイン
ワツクス融液の粘度が非常に高く、その後の成形
性及び延伸性に乏しくなる。 本発明に用いられる該パラフインワツクスと相
溶性を有する液状有機化合物としては、該超高分
子量ポリエチレンを分散又は湿潤させることが可
能であれば特に限定されないが、該加熱パラフイ
ンワツクス中にすみやかに超高分子量ポリエチレ
ンを分散させ、かつ超高分子量ポリエチレン粒子
内に該加熱パラフインワツクスを浸透させる為に
は自ずから特定の溶解パラメーター範囲及び粘度
範囲にある有機化合物に限定される。好ましくは
溶解パラメーターの範囲が7.3〜9.3であり、かつ
20℃での粘度が3c.p以下であることが好ましい。
例えばn−ヘキサン、n−ヘプタン、n−オクタ
ン、n−ノナン及びn−デカン等の脂肪族炭化水
素化合物、及びトルエン、キシレン、ベチルベン
ゼン、シクロヘキシルベンゼン、ドデシルベンゼ
ン等の芳香族炭化水素化合物及びその水素化誘導
体、ハロゲン誘導体等が挙げられる。これらは任
意の割合で2種類以上混合して用いてもよい。こ
こでいう溶解パラメーターとは、単位体積当りの
蒸発エネルギーの平方根で定義されるものであ
り、蒸発エネルギーをΔE〔cal/mole〕、その物
質の分子容をV〔c.c.〕で表わすとすれば、溶解パ
ラメーターδは下式で表わされる。 δ=(ΔE/V)1/2 本発明における加熱溶融されたパラフインワツ
クスの温度としては、混合後の系内が該超高分子
量ポリエチレンの融点以上に保持出来る温度であ
れば特に限定はないが、好ましくは140℃以上該
超高分子量ポリエチレン及びパラフインワツクス
の分解温度以下、更に好ましくは150℃以上270℃
以下の範囲である。該パラフインワツクスの温度
が140℃未満の場合、該超高分子量ポリエチレン
の分散又は湿潤液の該加熱パラフインワツクスへ
の浸透が不充分でかつ該超高分子量ポリエチレン
の膨潤が不充分であり巨視的にも均一融液は得ら
れない。従つてこのまま紡糸延伸を行つても本発
明による安定した品質を有する高性能延伸物は得
られない。一方該分解温度を越える温度では、該
超高分子量ポリエチレンの分子量が低下するか、
パラフインワツクスとともに変質してしまい、や
はり延伸後、安定した高い性能を有する延伸物が
得られない。 本発明における該加熱溶融したパラフインワツ
クスと該液状有機化合物中に分散又は湿潤した該
超高分子量ポリエチレンとを混合して融液を作る
方法としては、加熱溶融したパラフインワツクス
を撹拌した中へ該分散又は湿潤状態の超高分子量
ポリエチレンを加える方法、あるいは該分散又は
湿潤状態の超高分子量ポリエチレンを撹拌した中
へ加熱溶融したパラフインワツクスを加える方
法、及び加熱溶融パラフインワツクスと該分散又
は湿潤状態の超高分子量ポリエチレンを同時に接
触せしめた後加熱混練可能な装置に供給する方法
などがあげられるが、特に限定されるものではな
い。 又超高分子量ポリエチレンの濃度が高いパラフ
インワツクス融液の調製においては、あらかじめ
該液状有機化合物に分散又は湿潤状態の超高分子
量ポリエチレンを該液状有機化合物の沸点以下に
加温せしめた後、該加熱溶融させたパラフインワ
ツクスと混合する方法、あるいはこのようにして
調製した混合物を押出機に通す方法なども利用出
来る。 本発明において該液状有機化合物に超高分子量
ポリエチレンを分散又は湿潤する方法としては超
高分子量ポリエチレンとそれと等量ないし約3倍
量の該液状有機化合物とを混合できれば特に限定
されないが、好ましくは該超高分子量ポリエチレ
ンが沈降しない状態で分散又は湿潤されているこ
とが望ましい。そのために粘度改良剤を加えた
り、超音波振動を加えながら混合する方法も用い
られる。 本発明の方法を用いて該パラフインワツクスと
該超高分子量ポリエチレンを混合することによつ
て、広い濃度範囲にわたつて超高分子量ポリエチ
レンの均一なパラフインワツクス融液を調整出来
かつ極めて品質の安定した高性能の延伸物が得ら
れる要因の1つは、溶融した超高分子量ポリエチ
レン粒子が互いに融着する前に充分膨潤させ、膨
潤後均一に分散することにより、均一融液を形成
するものと考えられる。そのためには該超高分子
量ポリエチレンを分散又は湿潤させる液状有機化
合物は、加熱されたパラフインワツクスと相溶性
を有することが必要であり、又混合後すみやかに
該超高分子量ポリエチレンをその融点を越える温
度に昇温させるのに充分であり、かつ該超高分子
量ポリエチレンが該パラフインワツクスにて充分
膨潤しうるのに充分な温度に該パラフインワツク
スが加熱されていることが重要である。 本発明においては該超高分子量ポリエチレンを
含む加熱パラフインワツクスを押出す際、少なく
とも1以上好ましくは5以上のドラフトをかけた
後冷却固化させることが重要である。ドラフトを
かけて紡糸することにより、ドラフトをかけない
場合に比較して高強度、高弾性率を有する延伸物
が得られる。本発明で言うドラフト比とは紡口出
口の速度と巻取速度の比で定義される。 本発明における冷却固化した超高分子量ポリエ
チレンを含むパラフインワツクス未延伸物の延伸
方法としては、あらかじめn−ヘプタン等の溶剤
を用いてパラフインワツクスを抽出した後、延伸
する方法、あるいはそのまま熱媒中で延伸する方
法のいずれの方法も可能であり、その延伸温度と
しては通常60℃以上140℃未満、好ましくは90℃
以上超高分子量ポリエチレンの融点未満の範囲で
ある。60℃未満では高度に延伸することが出来
ず、又140℃以上では延伸されても高強度高弾性
率を有する延伸物は得られない。 本発明における延伸時の熱媒としては空気、水
蒸気、不活性ガス、溶媒のいずれを用いてもよ
く、延伸に用いる未延伸物の性状により任意に選
択できる。パラフインワツクスを含んだ未延伸物
を用いて延伸する場合には、延伸時に過剰のパラ
フインワツクスを同時に抽出除去出来る溶媒と熱
媒として用いることが好ましく、具体的にはn−
デカン、デカリンなどが好ましい。 本発明における延伸時の延伸倍率としては少な
くとも8倍を越える条件にて延伸されることが好
ましい。延伸倍率が上記未満では最も高いドラフ
ト比にて冷却固化させて得た未延伸物を用いても
高強力高弾性率を有する延伸物は得られない。 本発明において用いられる超高分子量ポリエチ
レンワツクスには本発明の目的を損わない範囲
で、安定剤、顔料、染料、滑剤及び少量の無機充
填剤等の通常ポリオレフインに添加して使用され
る各種添加剤で延伸を大きく阻害しないものを配
合して用いてもよい。 〔発明の効果〕 本発明の超高分子量ポリエチレンを含むパラフ
インワツクス融液を用いて高強度高弾性率を有す
る延伸物の製造方法は、これ迄の方法を用いて延
伸物を得る場合に比較して、特に高性能化の可能
な超高分子量ポリエチレンの低濃度領域から比較
的高濃度領域迄の広い範囲において、品質が極め
て安定でかつ、原材料の損失が極めて少なく生産
効率が高いばかりか、極めて短時間でかつポリマ
ーの劣化を生じないで安定した連続運転可能な、
より有効な製造方法である。本発明の方法を用い
て製造される超高分子量ポリエチレンの延伸物
は、品質の極めて安定した高性能延伸物であり、
海洋資材、レジヤー用途、補強材等幅広い分野で
利用出来、産業上極めて有用な製品となる。 〔実施例〕 次に実施例を挙げて、本発明を更に具体的に説
明するが、本発明はこれらの実施例に何んら制約
されるものではない。 実施例 1 超高分子量ポリエチレン(サンフアイン−U
UH900、重量平均分子量3.3×106)を最終的な濃
度が5重量%になるように秤量し、室温で超高分
子量ポリエチレンの重量に対して2倍量のn−ヘ
プタンを加えた後充分に撹拌しスラリー化した超
高分子量ポリエチレン懸濁液を得た。一方別容器
に所定量のパラフインワツクス(融点52〜54℃、
分子量350)を190℃に加熱溶融させ、この中にパ
ラフインワツクスの重量に対して0.2%のジ・タ
ーシヤルブチル・パラクレゾールを添加しておい
た。この融液を撹拌しながら、あらかじめ調製し
た超高分子量ポリエチレンスラリーを沈降しない
ように注意しながら、すみやかにこの融液に加え
た。その際容器内温度が190℃を保つように引続
き加熱した。注入後超高分子量ポリエチレン粒子
は熱パラフインワツクスを吸収して急激に膨潤
し、撹拌棒に沿つて融液が盛り上がる、いわゆる
『ワイゼンベルク効果』が認められた。この時点
で撹拌をやめ、5分間放置したところ、極めて均
一な超高分子量ポリエチレンを含むパラフイン融
液が生成した。融液はn−ヘプタンの蒸発の為、
かなりの気泡を含んでいたが、脱気処理後170℃
に加熱された紡糸筒(ノズル径1.0mmφ)より水
中に押出し、ドラフト比5の条件で巻取り連続し
たストランドを得た。紡糸中糸切れは全く起らな
かつた。得られたストランドを2つに分け、一方
はそのまま130℃に加熱されたn−デカン中で延
伸し、もう一方はあらかじめn−ヘキサンを用い
てストランドからパラフインワツクスを抽出し乾
燥したキセロゲルを得、入口温度120℃出口温度
135℃に設定された加熱筒を用いて延伸した。得
られた延伸物を東洋ボールドウイン社製テンシロ
ンを用いて、試料長100mm、引張速度100mm/min
の条件でその強伸度特性を評価した。得られたS
−S曲線よりJIS L1013に従つて引張強度、初期
弾性率を算出した。その結果を表1に示す。又得
られた未延伸物の品質変動を評価する為に直径50
mmのボビンに300mの未延伸糸を巻取り、室温に
2日間放置した後、そのボビンの最上層、中間層
及びボビンに接している層の3点を抽出して、先
と同様に130℃に加熱したn−デカン中にて延伸
した。得られた延伸物を先と同様に評価した結果
を表1に示した。この結果ボビンに巻取つた未延
伸糸にはほとんど品質の変動は認められなかつ
た。 実施例 2 実施例1と同様のポリエチレンを用いて、最終
的な濃度が8重量%になるように秤量し、室温で
超高分子量ポリエチレンの重量に対して2倍量の
n−デカンを加えた後、充分に撹拌し超高分子量
ポリエチレンスラリーを得た。一方別の容器内
で、所定量のパラフインワツクス(融点69℃ 分
子量460)を200℃に加熱溶融させ、パラフインワ
ツクスの重量に対して0.2%のジターシヤルブチ
ル・パラクレゾールを加え、撹拌しながら200℃
に保温した。この中に先に調製した超高分子量ポ
リエチレンスラリーを加え実施例1と同様にして
均一な超高分子量ポリエチレンを含むパラフイン
ワツクス融液を得た。実施例1と同様に脱気処理
後、180℃に加熱された紡糸筒(ノズル径1mmφ)
より水中に押出し、その際紡口出口速度に対して
巻取速度をそれぞれ1倍、5倍、15倍と変化させ
巻取つた。それぞれ延伸切れすることなく巻取る
ことが出来た。 得られた未延伸糸はn−ヘキサンを用いてパラ
フインワツクスを抽出した後、入口温度120℃出
口温度135℃に設定された加熱筒を用いて延伸し
た。得られた延伸物を実施例1と同様に評価した
結果を表1に示す。 実施例 3 実施例1と同様のポリエチレンを用いて、最終
的な濃度が20重量%になるように秤量し、100℃
に加熱された超高分子量ポリエチレンの重量に対
して等量のn−デカンを加えた後、充分に撹拌し
超高分子量ポリエチレンスラリーを作成した。一
方撹拌装置を有する容器中に所定量のパラフイン
ワツクス(融点42〜44℃ 分子量300)を220℃に
加熱溶融させ実施例1と同様な方法でパラフイン
ワツクス融液を得た。この融液は非常に粘度が高
いため、あらかじめ180℃に設定したスクリユー
式単軸押出機に供給して、紡口径2mmφのダイス
より水中に押出し、未延伸物を得た。その際、実
施例2と同様にドラフト率をそれぞれ5、10、30
倍と変化させ巻取つた。これらの未延伸物を用い
て、130℃に加熱されたn−デカン中で延伸し、
種々の延伸比の延伸物を得た。これを実施例1と
同様に評価した結果を表2に示す。 比較例 1 実施例2と同様のポリエチレン10gとパラフイ
ンワツクス(融点52〜54℃ 分子量350)190gを
同時に容器に入れ、パラフインワツクスを溶融さ
せた後、撹拌しながら200℃迄急激に加熱し、そ
の温度に保ちながら撹拌を続けた。しかしなが
ら、設定した温度に到達後20分間経過した後も、
超高分子量ポリエチレンの溶融した固まりと所定
の濃度より希薄な溶液との2相に分離したままで
極めて不均一であつた。その後更に60分間撹拌を
続けたが均一な融液は得られなかつた。この融液
を180℃に設定された単軸押出機に供給して押出、
紡糸した。しかしストランドが非常に脆く、連続
して巻取ることが出来なかつた。 比較例 2 実施例1と同様のポリエチレンを用いて、最終
的な濃度が5重量%になるように秤量し、室温で
超高分子量ポリエチレンの重量に対して2倍量の
デカリンを加え、更にこのポリマーの重量に対し
て0.2%のジ・ターシヤルブチル・パラクレゾー
ルを添加し、該ポリエチレン粒子が充分湿潤する
ようにかきまぜた。一方、別の容器中に所定量の
デカリン沸騰するまで加熱し、この熱デカリンを
先にデカリンにて湿潤させておいたポリエチレン
粒子の入つた容器中に素早く注入しつつ撹拌を行
つた。ポリエチレンは会合することなく熱デカリ
ンを吸収して膨潤し、5分間放置したのち、粘調
な均一溶液が得られた。この溶液をあらかじめ
150℃に加熱された紡糸筒を用いて水中に押出し、
デカリンを多量に含んだゲル状繊維を得た。しか
し紡糸中かなりのデカリンが冷却槽、巻取ボビン
上ににじみ出しドラフトをかけて巻取ることがで
きなかつた。そのゲル状物からn−ヘキサンを用
いてデカリンを抽出し乾燥した後、入口温度120
℃、出口温度135℃に設定した加熱筒を用いて延
伸し延伸物を得た。得られた延伸物を実施例1と
同様に評価した結果を表2に示す。又実施例1と
同様に未延伸物の品質変動を評価する為に直径50
mmのボビンに300mの未延伸糸を巻取り、水中に
2日間放置した。巻取られた未延伸物からそのボ
ビンの最外層、中間層、及びボビンに接している
最内層の3点を選び、n−ヘキサンを用いてデカ
リンを抽出した後乾燥し先と同様の延伸温度にて
延伸し、得られた延伸物の性能を評価した。その
結果を表2に示す。この結果からボビンに巻取ら
れた未延伸物にはその延伸倍率及び延伸後の性能
にかなりの差が認められ、又延伸中では湿潤した
未延伸物同士が融着しているものが認められ、し
ばしば延伸を中断しなければならなかつた。 比較例 3 実施例1と同様の超高分子量ポリエチレンを用
いて、この超高分子量ポリエチレンとパラフイン
ワツクス(融点42〜44℃ 分子量300)とを20:
80の混合比にてヘンシエルミキサーを用いて混合
し200℃に設定したスクリユー式単軸押出機に供
給し、溶融混練を行つた。次いで紡口径2mmφの
ダイスより水中に押出し未延伸物を得た。その際
ドラフト比をそれぞれ5、10、30倍と変化させ巻
取つた。これらの未延伸物を用いて、130℃に加
熱されたn−デカン中で延伸し、延伸物を得た。
これを実施例1と同様に評価した結果を表3に示
す。本発明のパラフインワツクスと超高分子量ポ
リエチレンとの融液調製法を使用しないで、実施
した場合長期間の運転においてしばしば延伸切れ
を生じ、又最終到達強度も延伸倍率が低い為に本
発明の実施例に比較して低いことがわかる。 比較例 4 超高分子量ポリエチレンとパラフインワツクス
との混合比率を8:92に変更した以外は比較例3
と同様にヘンシエルミキサーで混合したのちスク
リユー式単軸押出機を用いて溶融混練したとこ
ろ、未溶融のポリエチレンを含むゲル状物が多
く、連続して溶融物を引取ることが困難であつ
た。その一部について比較例3と同様にして延伸
しようとしてみたが、未延伸糸がもろく、まつた
く連続して延伸することができなかつた。 比較例 5 (低温湿潤温度の決定) 実施例1で用いた超高分子量ポリエチレンを用
いて、これを各10gと実施例1で用いたパラフイ
ンワツクス各100gとを混合し、80、90、100、
110、120及び130℃の各処理温度で15分撹拌を行
ない、超高分子量ポリエチレン中に浸透したパラ
フインワツクスの量を求めようとしたが、130℃
の条件でも、超高分子量ポリエチレン粉末はほと
んど膨潤せず、その表面のみ溶け出すだけであ
り、低温湿潤温度は決定できなかつた。 (超高分子量ポリエチレン融液の調製) 前記超高分子量ポリエチレン8gとパラフイン
ワツクス92gとをガラスビーカーに投入後、撹拌
下に該ポリエチレンの融点より低い130℃の温度
まで加温し約30分撹拌を続けたところ、いわゆる
“ままこ”の状態となつた。引続き温度を200℃に
まで昇温させ、撹拌を続けたが、均一溶液となら
ず、希薄な融液部分とポリエチレンの溶融した固
まりが認められた。 この融液を用いて実施例1と同様にして押出そ
うとしたが、ぶつぎれとなり、連続して押出すこ
とができなかつた。 比較例 6 特開昭59−232123号公報の、実施例などに記載
された方法に従つて、実施例1と同様のポリエチ
レンを用いて、デカリンを溶剤として用いた場合
の低温湿潤処理温度を測定したところ、その温度
は108℃であつた。 実施例1と同様のポリエチレンを最終溶液濃度
が5重量%となるようにデカリンと混合し、撹拌
下に系の温度を110℃まで加温し、その温度にて
10分間保持して該ポリエチレン粉末の湿潤化を行
なつた。系全体の粘度が高くなるのを確認後、更
に160℃まで昇温し撹拌を続けたところ、粘調な
均一溶液が得られた。この溶液を予め150℃に加
熱された紡糸管を用いて水中に押出し、デカリン
を多量に含んだゲル状繊維を得た。しかし、紡糸
中かなりのデカリンが冷却槽、巻取ボビン上にに
じみ出しドラフトをかけて巻取ることができなか
つた。 そのあと、比較例2と同様にして延伸物を得
た。これを実施例1と同様にして評価したとこ
ろ、比較例2に記したと同様の、延伸中断の現象
を生じ、また、表2に示したとほぼ同様の劣つた
物性となつた。
[Industrial Application Field] The present invention relates to a method for producing drawn products such as fibers and films that have high elastic modulus, high strength, and more stable quality using ultra-high molecular weight polyethylene. [Prior art and its problems] It is well known that a drawn product with high strength and high elasticity can be obtained by dissolving ultra-high molecular weight polyethylene in a solvent, then spinning and drawing it. For example, as in JP-A-55-107506, JP-A-56-15408, or JP-A-58-5228, ultra-high molecular weight polyethylene is made into a dilute solution with a concentration of about 2 to 10% by weight and then spun. However, a method of stretching to a high magnification has been proposed. In these technologies, it is extremely important that the polymer solution used is uniform, and for this purpose various proposals have been made as methods for adjusting the uniformity of the solution (Japanese Patent Publication No. 60-22010, Japanese Patent Application Laid-open No. 59/1999).
-23123, JP-A-59-223307, JP-A-60-40133, etc.). Even if a homogeneous solution is prepared using these methods, since the solvents used in these methods are all liquid at room temperature, there are various problems as described below. That is, when a homogeneous solution is prepared using the method proposed above and then spun, a large amount of solvent is liberated when the polymer solution is cooled and forms a gel-like substance. Operations such as winding up and winding were rarely performed in order to recover the solvent. In addition, since the gel-like material that has been wound up still contains a considerable amount of solvent, there may be fluctuations in the winding tension, fusion of the wet gel, quality fluctuations due to differences in solvent desorption over time after winding, or stretching. This results in significant non-uniformity in the width and thickness directions of the gel-like material used in the process. On the other hand, various methods have been proposed in which materials are melt-extruded and then stretched using materials that are solid at room temperature and can form a homogeneous system with ultra-high molecular weight polyethylene at high temperatures. For example, JP-A-59-130313, JP-A-60-198220
No. 60-240432, No. 61-8323, etc. These proposals do not mention at all the above-mentioned problems when using a liquid solvent at room temperature. In addition, in these methods, methods for uniformly mixing ultra-high molecular weight polyethylene include a method using a twin-screw kneader, a method of mixing in advance with a Henschel mixer, a V-blender, etc.
Furthermore, methods have been proposed in which the mixture is melt-kneaded and granulated using a single-screw or multi-screw extruder; There are problems such as there is a risk of deterioration or molecular weight reduction, and the inability to stretch to a high degree due to non-uniformity.
For example, JP-A-Sho using a specific paraffin wax.
No. 59-130313 reports results such as that it cannot be carried out if the amount of ultra-high molecular weight polyethylene is less than 15 parts by weight because the uniformity is not sufficient (Reference, Specification, Comparative Example 3). Alternatively, if the amount of ultra-high molecular weight polyethylene exceeds 10 parts by weight, the mixture is kept at high temperature to sufficiently swell, and then heated and kneaded using a kneading machine such as a Banbury mixer to obtain a homogeneous mixture. The method is described (Japanese Unexamined Patent Publication No. 198220/1983, page 2, bottom right, line 20 to page 3, top left, line 4). However, even with this method, since the temperature is kept above the melting point of ultra-high molecular weight polyethylene, the molten polymer particles fuse with each other and form a large mass before swelling, allowing for sufficiently uniform swelling. An effective method for obtaining a uniform melt at high temperatures using a substance that is solid at room temperature has not yet been reported, as the result is a mixture of a molten solid that has not been added and a melt of additives with low viscosity. It was hot due to the situation. [Problems to be Solved by the Invention] As a result of intensive research into a method for producing a drawn product having high strength and high modulus using ultra-high molecular weight polyethylene, the present inventors have found that ultra-high molecular weight polyethylene can be used at high concentrations. It is possible to prepare a solution with excellent uniformity, and furthermore, it is easy to handle and maintains high quality without fluctuations in solvent content from spinning to stretching. We believe that this is an essential condition for producing drawn products with stable quality, high strength, and high modulus of elasticity, and have conducted repeated research. [Means for solving the problem] In other words, using paraffin wax, which is solid at room temperature and has excellent compatibility with the ultra-high molecular weight polyethylene, as a solvent for dissolving the ultra-high molecular weight polyethylene, will reduce the undrawn yarn after spinning. It is easy to handle and is particularly excellent in producing stretched products with stable quality continuously, with almost no fluctuation in solvent content due to winding, etc. Since there is no known method for rapidly dissolving ultra-high molecular weight polyethylene, the optimal method is to mix paraffin wax that has been heated and melted in advance and a liquid organic compound that is compatible with the paraffin wax. It has been found that the melt obtained by mixing ultra high molecular weight polyethylene dispersed or wetted with polyethylene is very homogeneous. Furthermore, by spinning a paraffin wax melt containing ultra-high molecular weight polyethylene prepared using this method under specific conditions and then heating and stretching, it has high strength and high modulus of elasticity, and can be produced for a long period of time. It has been found that a stretched product with stable quality can be obtained even when That is, the present invention provides a method for producing a stretched ultra-high molecular weight polyethylene product, in which paraffin wax that has been heated and melted in advance and a liquid organic compound that is compatible with the paraffin wax are used to wet or disperse a weight average molecular weight 1× A paraffin wax melt obtained by mixing ultra-high molecular weight polyethylene of 10 6 or more is extruded, cooled and solidified after applying at least one draft, and stretched at a stretching temperature of 60 to 140°C. Provided is a method for producing a stretched ultra-high molecular weight polyethylene product characterized by stretching at a stretching ratio of more than 8 times. The ultra-high molecular weight polyethylene used in the present invention is ethylene or ethylene and a small amount of other α-olefins, such as propylene, butene, etc.
Among polyethylenes obtained by polymerizing 1,4-methylpentene-1, hexene-1, etc. using a transition metal catalyst such as Ziegler polymerization, those with a weight average molecular weight of 1 x 10 6 or more are used. It will be done. Those having a weight average molecular weight of less than 1×10 6 are easily dissolved, but it is difficult to obtain sufficiently high performance even when stretched. There is no particular regulation regarding the upper limit, but if the weight average molecular weight is 1×
For those exceeding 107 , it tends to be difficult to obtain a practical melt. The paraffin wax used in the present invention is solid at room temperature, mainly contains saturated aliphatic hydrocarbon compounds, has a melting point of 40 to 120°C, preferably 45 to 70°C, and has a molecular weight of 2000 or less, preferably
1000 or less, specifically, Dokosan,
n with carbon number of 22 or more such as tricosane and tetracosane
-Alkanes or lower n containing them as main components
- Alkane mixture, paraffin wax separated and purified from petroleum, medium-low pressure polyethylene wax which is a low molecular weight polymer obtained by copolymerizing ethylene or ethylene with other α-olefins, high-pressure polyethylene wax, or medium-low pressure polyethylene wax, Examples include waxes obtained by reducing the molecular weight of low-pressure polyethylene and high-pressure polyethylene by thermal degradation, oxidized waxes such as oxides or maleic acid-modified products of these waxes, and maleic acid-modified waxes. If a material with a melting point of less than 40° C. or a liquid paraffin mixture is used, not only is it not possible to solve various fluctuation factors in the spinning and winding process of the present invention, but various problems arise in production using an extruder. On the other hand, the melting point exceeds 120℃ and the molecular weight is 2000
Even if more than 20% of the paraffin wax is used, it is not only impossible to stretch to a high magnification, but also it is not possible to extract excess paraffin wax before or after stretching. The mixing ratio of ultra-high molecular weight polyethylene and paraffin wax in the present invention is 3:97 to 30:70.
preferably in the range of 5:95 to 20:80. When the amount of ultra-high molecular weight polyethylene is less than 3% by weight, the strand obtained after spinning the melt becomes brittle and unsuitable for drawing. Furthermore, if the ultra-high molecular weight polyethylene exceeds 30% by weight, the viscosity of the paraffin wax melt will be extremely high, resulting in poor moldability and stretchability. The liquid organic compound that is compatible with the paraffin wax used in the present invention is not particularly limited as long as it can disperse or wet the ultra-high molecular weight polyethylene; In order to disperse the ultra-high molecular weight polyethylene and to penetrate the heated paraffin wax into the ultra-high molecular weight polyethylene particles, organic compounds are naturally limited to specific solubility parameter ranges and viscosity ranges. Preferably the solubility parameter ranges from 7.3 to 9.3, and
Preferably, the viscosity at 20°C is 3 c.p or less.
For example, aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-octane, n-nonane, and n-decane, and aromatic hydrocarbon compounds such as toluene, xylene, betylbenzene, cyclohexylbenzene, dodecylbenzene, and their hydrogen. derivatives, halogen derivatives, etc. Two or more of these may be used as a mixture in any proportion. The solubility parameter here is defined as the square root of the evaporation energy per unit volume, and if the evaporation energy is expressed as ΔE [cal/mole] and the molecular volume of the substance is expressed as V [cc], then The solubility parameter δ is expressed by the following formula. δ = (ΔE/V) 1/2 The temperature of the heated and melted paraffin wax in the present invention is not particularly limited as long as the temperature in the system after mixing can be maintained at a temperature equal to or higher than the melting point of the ultra-high molecular weight polyethylene. but preferably 140°C or higher and lower than the decomposition temperature of the ultra-high molecular weight polyethylene and paraffin wax, more preferably 150°C or higher and 270°C
The range is as follows. If the temperature of the paraffin wax is less than 140°C, the dispersion of the ultra-high molecular weight polyethylene or the penetration of the wetting liquid into the heated paraffin wax is insufficient, and the swelling of the ultra-high molecular weight polyethylene is insufficient, resulting in macroscopic problems. Therefore, a uniform melt cannot be obtained. Therefore, even if spinning and drawing is carried out as is, the high-performance drawn product with stable quality according to the present invention cannot be obtained. On the other hand, at temperatures exceeding the decomposition temperature, the molecular weight of the ultra-high molecular weight polyethylene decreases, or
The quality changes together with the paraffin wax, and after stretching, a stretched product with stable and high performance cannot be obtained. In the present invention, the method of preparing a melt by mixing the heated and melted paraffin wax and the ultra-high molecular weight polyethylene dispersed or wetted in the liquid organic compound is to mix the heated and melted paraffin wax into a stirred medium. A method of adding the ultra-high molecular weight polyethylene in the dispersed or wet state, or a method of adding heated and melted paraffin wax into the stirred ultra-high molecular weight polyethylene in the dispersed or wet state, and a method of adding the heated and melted paraffin wax and the dispersion or Examples include a method of bringing wet ultra-high molecular weight polyethylene into contact at the same time and then supplying the mixture to an apparatus capable of heating and kneading, but the method is not particularly limited. In addition, in the preparation of a paraffin wax melt containing a high concentration of ultra-high molecular weight polyethylene, the ultra-high molecular weight polyethylene dispersed or wetted in the liquid organic compound is heated to below the boiling point of the liquid organic compound, and then the ultra-high molecular weight polyethylene is heated to below the boiling point of the liquid organic compound. It is also possible to use a method in which the mixture is mixed with heated and melted paraffin wax, or a method in which the mixture thus prepared is passed through an extruder. In the present invention, the method for dispersing or wetting the ultra-high molecular weight polyethylene in the liquid organic compound is not particularly limited as long as it is possible to mix the ultra-high molecular weight polyethylene and the liquid organic compound in an amount equal to or about three times the amount of the ultra-high molecular weight polyethylene. It is desirable that the ultra-high molecular weight polyethylene is dispersed or wetted without settling. For this purpose, a method of adding a viscosity improver or mixing while applying ultrasonic vibration is also used. By mixing the paraffin wax and the ultra-high molecular weight polyethylene using the method of the present invention, it is possible to prepare a uniform paraffin wax melt of ultra-high molecular weight polyethylene over a wide concentration range and with extremely high quality. One of the factors that makes it possible to obtain a stable, high-performance drawn product is that the molten ultra-high molecular weight polyethylene particles are sufficiently swollen before they are fused together, and then uniformly dispersed after swelling to form a uniform melt. it is conceivable that. For this purpose, the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene must be compatible with the heated paraffin wax, and the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene must be compatible with the heated paraffin wax, and the liquid organic compound that disperses or wets the ultra-high molecular weight polyethylene must be able to quickly dissolve the ultra-high molecular weight polyethylene beyond its melting point after mixing. It is important that the paraffin wax is heated to a temperature sufficient to raise the temperature and to allow the ultra high molecular weight polyethylene to swell sufficiently in the paraffin wax. In the present invention, when extruding the heated paraffin wax containing the ultra-high molecular weight polyethylene, it is important to apply at least one or more drafts, preferably five or more drafts, and then cool and solidify it. By spinning with a draft, a drawn product having higher strength and higher modulus of elasticity can be obtained compared to when no draft is applied. The draft ratio in the present invention is defined as the ratio between the speed at the exit of the spinneret and the winding speed. In the present invention, the unstretched paraffin wax containing cooled and solidified ultra-high molecular weight polyethylene can be stretched by extracting the paraffin wax in advance using a solvent such as n-heptane and then stretching it, or by directly stretching the unstretched paraffin wax using a heating medium. Any of the methods of stretching in
The above range is below the melting point of ultra-high molecular weight polyethylene. At temperatures below 60°C, it is impossible to draw to a high degree, and at temperatures above 140°C, even if drawn, a drawn product with high strength and high modulus cannot be obtained. The heating medium during stretching in the present invention may be air, steam, inert gas, or solvent, and can be arbitrarily selected depending on the properties of the unstretched material used for stretching. When stretching an unstretched product containing paraffin wax, it is preferable to use a solvent and a heating medium that can simultaneously extract and remove excess paraffin wax during stretching.
Decane, decalin, etc. are preferred. The stretching ratio during stretching in the present invention is preferably at least 8 times. If the stretching ratio is less than the above range, even if an unstretched product obtained by cooling and solidifying at the highest draft ratio is used, a drawn product having high strength and high elastic modulus cannot be obtained. The ultra-high molecular weight polyethylene wax used in the present invention contains various kinds of stabilizers, pigments, dyes, lubricants, and small amounts of inorganic fillers that are usually added to polyolefins, to the extent that the purpose of the present invention is not impaired. Additives that do not significantly inhibit stretching may be used. [Effects of the Invention] The method for producing a drawn product having high strength and high modulus of elasticity using the paraffin wax melt containing ultra-high molecular weight polyethylene of the present invention is superior to the method for producing a drawn product using conventional methods. In particular, in a wide range from low concentration range to relatively high concentration range of ultra-high molecular weight polyethylene, which can improve performance, not only is the quality extremely stable and the loss of raw materials is extremely low, but production efficiency is high. Stable continuous operation is possible in an extremely short period of time and without polymer deterioration.
This is a more effective manufacturing method. The drawn product of ultra-high molecular weight polyethylene produced using the method of the present invention is a high-performance drawn product with extremely stable quality.
It can be used in a wide range of fields such as marine materials, leisure applications, and reinforcement materials, making it an extremely useful product in industry. [Examples] Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 Ultra-high molecular weight polyethylene (Sanhuain-U)
UH900, weight average molecular weight 3.3 × 10 6 ) was weighed so that the final concentration was 5% by weight, and after adding twice the amount of n-heptane to the weight of ultra-high molecular weight polyethylene at room temperature, An ultra-high molecular weight polyethylene suspension was obtained by stirring and slurrying. On the other hand, in a separate container, put the specified amount of paraffin wax (melting point 52-54℃,
(molecular weight 350) was heated and melted at 190°C, and 0.2% of di-tert-butyl para-cresol was added to the weight of the paraffin wax. While stirring this melt, a previously prepared ultra-high molecular weight polyethylene slurry was quickly added to the melt while being careful not to settle. At that time, heating was continued to maintain the temperature inside the container at 190°C. After injection, the ultra-high molecular weight polyethylene particles absorbed the hot paraffin wax and swelled rapidly, causing the melt to swell along the stirring rod, a so-called ``Weisenberg effect.'' At this point, stirring was stopped and the mixture was allowed to stand for 5 minutes, producing an extremely uniform paraffin melt containing ultra-high molecular weight polyethylene. The melt is due to the evaporation of n-heptane,
It contained quite a lot of air bubbles, but after degassing the temperature was 170℃.
The strand was extruded into water through a spinning tube (nozzle diameter: 1.0 mmφ) heated to 500 mL, and wound at a draft ratio of 5 to obtain a continuous strand. No yarn breakage occurred during spinning. The obtained strand was divided into two parts, one was directly stretched in n-decane heated to 130°C, and the other was extracted from the paraffin wax using n-hexane in advance to obtain a dry xerogel. , inlet temperature 120℃ outlet temperature
Stretching was performed using a heating tube set at 135°C. The obtained stretched product was stretched using Tensilon manufactured by Toyo Baldwin Co., Ltd., with a sample length of 100 mm and a tensile speed of 100 mm/min.
Its strength and elongation properties were evaluated under the following conditions. Obtained S
The tensile strength and initial elastic modulus were calculated from the -S curve according to JIS L1013. The results are shown in Table 1. In addition, in order to evaluate the quality variation of the obtained unstretched material,
After winding 300 m of undrawn yarn onto a mm bobbin and leaving it at room temperature for 2 days, extract the three points of the bobbin: the top layer, the middle layer, and the layer in contact with the bobbin. The film was stretched in n-decane heated to . The obtained stretched product was evaluated in the same manner as above, and the results are shown in Table 1. As a result, almost no variation in quality was observed in the undrawn yarn wound on the bobbin. Example 2 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 8% by weight, and twice the amount of n-decane was added to the weight of the ultra-high molecular weight polyethylene at room temperature. After that, the mixture was sufficiently stirred to obtain an ultra-high molecular weight polyethylene slurry. Meanwhile, in another container, heat and melt a predetermined amount of paraffin wax (melting point 69°C, molecular weight 460) at 200°C, add 0.2% ditertiary butyl paracresol based on the weight of the paraffin wax, and stir. while 200℃
It was kept warm. The previously prepared ultra-high molecular weight polyethylene slurry was added to this mixture in the same manner as in Example 1 to obtain a paraffin wax melt containing uniform ultra-high molecular weight polyethylene. After degassing in the same manner as in Example 1, the spinning tube was heated to 180°C (nozzle diameter 1 mmφ).
The material was extruded into water, and the winding speed was changed to 1, 5, and 15 times the spinneret exit speed. Each film was able to be wound up without stretching. After extracting the paraffin wax from the obtained undrawn yarn using n-hexane, it was drawn using a heating cylinder set at an inlet temperature of 120°C and an outlet temperature of 135°C. The obtained stretched product was evaluated in the same manner as in Example 1, and the results are shown in Table 1. Example 3 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 20% by weight, and heated at 100°C.
After adding an equal amount of n-decane to the weight of the heated ultra-high molecular weight polyethylene, the mixture was sufficiently stirred to prepare an ultra-high molecular weight polyethylene slurry. On the other hand, a predetermined amount of paraffin wax (melting point: 42-44°C, molecular weight: 300) was heated and melted at 220°C in a container equipped with a stirring device to obtain a paraffin wax melt in the same manner as in Example 1. Since this melt had a very high viscosity, it was supplied to a screw-type single-screw extruder preset at 180°C and extruded into water through a die with a spinneret diameter of 2 mm to obtain an unstretched product. At that time, as in Example 2, the draft rates were set to 5, 10, and 30, respectively.
I changed it twice and rolled it up. These unstretched products were stretched in n-decane heated to 130°C,
Stretched products with various stretching ratios were obtained. This was evaluated in the same manner as in Example 1, and the results are shown in Table 2. Comparative Example 1 10 g of the same polyethylene as in Example 2 and 190 g of paraffin wax (melting point 52-54°C, molecular weight 350) were placed in a container at the same time, and after melting the paraffin wax, the mixture was rapidly heated to 200°C while stirring. , stirring was continued while maintaining the temperature. However, even after 20 minutes have passed after reaching the set temperature,
It remained separated into two phases: a molten mass of ultra-high molecular weight polyethylene and a solution diluted from a predetermined concentration, and was extremely non-uniform. After that, stirring was continued for an additional 60 minutes, but a uniform melt could not be obtained. This melt is supplied to a single screw extruder set at 180℃ and extruded.
spun. However, the strand was extremely brittle and could not be wound continuously. Comparative Example 2 Using the same polyethylene as in Example 1, it was weighed so that the final concentration was 5% by weight, and twice the amount of decalin was added to the weight of the ultra-high molecular weight polyethylene at room temperature. 0.2% di-tert-butyl para-cresol based on the weight of the polymer was added and stirred to thoroughly wet the polyethylene particles. On the other hand, a predetermined amount of decalin was heated in another container until it boiled, and the heated decalin was quickly poured into a container containing polyethylene particles that had been wetted with decalin while stirring. The polyethylene absorbed the hot decalin and swelled without association, and after standing for 5 minutes, a viscous homogeneous solution was obtained. Add this solution in advance
Extruded into water using a spinning tube heated to 150℃,
A gel-like fiber containing a large amount of decalin was obtained. However, during spinning, a considerable amount of decalin oozed out onto the cooling tank and winding bobbin, making it impossible to wind the fiber by applying a draft. After extracting decalin from the gel using n-hexane and drying, the inlet temperature was 120°C.
℃ and a heating cylinder set at an outlet temperature of 135°C to obtain a stretched product. The obtained stretched product was evaluated in the same manner as in Example 1, and the results are shown in Table 2. In addition, as in Example 1, in order to evaluate the quality variation of the unstretched material,
A 300 m long undrawn yarn was wound around a mm bobbin and left in water for 2 days. From the wound unstretched material, select three points: the outermost layer of the bobbin, the middle layer, and the innermost layer in contact with the bobbin, extract decalin using n-hexane, then dry and stretch at the same temperature as before. The performance of the obtained stretched product was evaluated. The results are shown in Table 2. These results show that there are considerable differences in the draw ratio and performance after stretching of the undrawn material wound around the bobbin, and that the wet undrawn material fuses with each other during stretching. , often had to interrupt the stretching. Comparative Example 3 Using the same ultra-high molecular weight polyethylene as in Example 1, this ultra-high molecular weight polyethylene and paraffin wax (melting point 42-44°C, molecular weight 300) were mixed at 20:
The mixture was mixed using a Henschel mixer at a mixing ratio of 80° C., and then supplied to a screw type single screw extruder set at 200° C. for melt kneading. Then, it was extruded into water through a die with a spinneret diameter of 2 mm to obtain an unstretched product. At that time, the draft ratio was changed to 5, 10, and 30 times, respectively. These unstretched products were stretched in n-decane heated to 130°C to obtain stretched products.
This was evaluated in the same manner as in Example 1, and the results are shown in Table 3. If carried out without using the method of preparing a melt of paraffin wax and ultra-high molecular weight polyethylene of the present invention, stretching breakage often occurs during long-term operation, and the final strength achieved is also lower than that of the present invention because the stretching ratio is low. It can be seen that this is lower than in the example. Comparative Example 4 Comparative Example 3 except that the mixing ratio of ultra-high molecular weight polyethylene and paraffin wax was changed to 8:92
Similarly, when the mixture was mixed using a Henschel mixer and then melt-kneaded using a screw-type single-screw extruder, there was a lot of gel-like material containing unmelted polyethylene, and it was difficult to remove the melt continuously. . An attempt was made to draw a part of the yarn in the same manner as in Comparative Example 3, but the undrawn yarn was brittle and could not be drawn continuously. Comparative Example 5 (Determination of Low Wetting Temperature) Using the ultra-high molecular weight polyethylene used in Example 1, 10 g of each and 100 g of each of the paraffin waxes used in Example 1 were mixed, and 80, 90, 100 ,
I attempted to determine the amount of paraffin wax that had penetrated into ultra-high molecular weight polyethylene by stirring for 15 minutes at each treatment temperature of 110, 120, and 130°C, but at 130°C.
Even under these conditions, the ultra-high molecular weight polyethylene powder hardly swelled and only melted on its surface, making it impossible to determine the low-temperature wetting temperature. (Preparation of ultra-high molecular weight polyethylene melt) After putting 8 g of the ultra-high molecular weight polyethylene and 92 g of paraffin wax into a glass beaker, the mixture was heated to a temperature of 130°C, which is lower than the melting point of the polyethylene, and stirred for about 30 minutes. As I continued to do this, I ended up in what is known as a "stank" state. Subsequently, the temperature was raised to 200°C and stirring was continued, but a homogeneous solution was not obtained, and a dilute melt portion and a mass of molten polyethylene were observed. An attempt was made to extrude this melt in the same manner as in Example 1, but it broke into pieces and could not be extruded continuously. Comparative Example 6 According to the method described in the Examples of JP-A No. 59-232123, the same polyethylene as in Example 1 was used to measure the low-temperature wet treatment temperature when decalin was used as a solvent. The temperature was 108℃. The same polyethylene as in Example 1 was mixed with decalin so that the final solution concentration was 5% by weight, and the temperature of the system was heated to 110°C while stirring, and at that temperature.
The polyethylene powder was kept moist for 10 minutes. After confirming that the viscosity of the entire system had increased, the temperature was further raised to 160°C and stirring was continued, resulting in a viscous homogeneous solution. This solution was extruded into water using a spinning tube preheated to 150°C to obtain gel-like fibers containing a large amount of decalin. However, during spinning, a considerable amount of decalin oozed out onto the cooling tank and the winding bobbin, making it impossible to wind it by applying a draft. Thereafter, a stretched product was obtained in the same manner as in Comparative Example 2. When this was evaluated in the same manner as in Example 1, the same phenomenon of interruption of stretching as described in Comparative Example 2 occurred, and the same poor physical properties as shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 4 実施例1と同様のポリエチレンを用いて、予め
最終ポリマー濃度が12wt%になるように秤量し、
該ポリエチレンと重量にして等量のn−デカンを
加えた後、100℃に加温して充分に撹拌した。該
ポリエチレン粉末がわずかに膨潤したポリエチレ
ンを含むスラリーを得た。 一方、撹拌装置を有する容器中で所定量のパラ
フインワツクス(融点42〜44℃分子量300)を200
℃で加熱溶融させ撹拌し、この中へ前記ポリエチ
レンスラリーをすばやく投入した。なお該パラフ
インワツクスには予め重量にして0.2%のジ・タ
ーシヤリブチル・パラクレゾールを添加しておい
た。 しばらくすると均一な超高分子量ポリエチレン
のパラフインワツクス融液が得られた。 この融液を用いて200℃の温度で紡糸筒より押
出し、その際紡口出口速度に対して巻取速度をそ
れぞれ1倍、5倍、10倍と変化させ巻取つた。糸
切れすることなく安定に巻取ることができた。 得られた未延伸糸はn−ヘキサンを用いてパラ
フインワツクスを抽出した後、入口温度120℃出
口温度135℃に設定された加熱筒を用いて延伸し
た。得られた延伸物を実施例1と同様にして評価
した結果を表4に示す。
[Table] Example 4 Using the same polyethylene as in Example 1, it was weighed in advance so that the final polymer concentration was 12 wt%.
After adding n-decane in an amount equal to the weight of the polyethylene, the mixture was heated to 100°C and thoroughly stirred. A slurry containing polyethylene in which the polyethylene powder was slightly swollen was obtained. Meanwhile, in a container equipped with a stirring device, add a predetermined amount of paraffin wax (melting point 42-44℃, molecular weight 300) to 200℃.
The mixture was heated and melted at ℃ and stirred, and the polyethylene slurry was quickly poured into the mixture. Note that 0.2% by weight of di-tertiary butyl para-cresol was added to the paraffin wax in advance. After a while, a uniform paraffin wax melt of ultra-high molecular weight polyethylene was obtained. This melt was extruded from a spinning tube at a temperature of 200°C, and the winding speed was changed to 1, 5, and 10 times the spinneret exit speed. The thread could be wound stably without breaking. After extracting the paraffin wax from the obtained undrawn yarn using n-hexane, it was drawn using a heating cylinder set at an inlet temperature of 120°C and an outlet temperature of 135°C. The obtained stretched product was evaluated in the same manner as in Example 1, and the results are shown in Table 4.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 予め加熱溶融された常温で固体であるパラフ
インワツクスと、該パラフインワツクスと相溶性
のある液状有機化合物により湿潤又は分散され
た、重量平均分子量1×106以上の超高分子量ポ
リエチレンとを、パラフインワツクスと超高分子
量ポリエチレンとの混合比率が重量比で97対3か
ら70対30の範囲で混合することによつて得られた
パラフインワツクス融液を押出し、少なくとも1
以上のドラフトをかけた後、冷却固定させ、延伸
温度が60〜140℃で少なくとも8倍を超える延伸
比にて延伸することを特徴とする超高分子量ポリ
エチレン延伸物の製造方法。
1 Paraffin wax that is solid at room temperature that has been heated and melted in advance, and ultra-high molecular weight polyethylene with a weight average molecular weight of 1 x 10 6 or more that has been wetted or dispersed with a liquid organic compound that is compatible with the paraffin wax. , a paraffin wax melt obtained by mixing paraffin wax and ultra-high molecular weight polyethylene in a weight ratio of 97:3 to 70:30 is extruded, and at least 1
A method for producing a stretched ultra-high molecular weight polyethylene product, which comprises cooling and fixing after drafting as described above, and stretching at a stretching temperature of 60 to 140°C and a stretching ratio of at least 8 times.
JP19394586A 1986-08-21 1986-08-21 Production of drawn ultrahigh-molecular weight polyethylene Granted JPS6350516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19394586A JPS6350516A (en) 1986-08-21 1986-08-21 Production of drawn ultrahigh-molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19394586A JPS6350516A (en) 1986-08-21 1986-08-21 Production of drawn ultrahigh-molecular weight polyethylene

Publications (2)

Publication Number Publication Date
JPS6350516A JPS6350516A (en) 1988-03-03
JPH0336929B2 true JPH0336929B2 (en) 1991-06-04

Family

ID=16316365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19394586A Granted JPS6350516A (en) 1986-08-21 1986-08-21 Production of drawn ultrahigh-molecular weight polyethylene

Country Status (1)

Country Link
JP (1) JPS6350516A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898312A (en) * 2003-12-24 2007-01-17 戈尔太平洋有限公司 Polymeric plastics material and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187614A (en) * 1983-04-07 1984-10-24 Mitsui Petrochem Ind Ltd Drawn polyethylene material having ultrahigh molecular weight
JPS59232123A (en) * 1983-06-16 1984-12-26 Agency Of Ind Science & Technol Production of solution of super-molecular weight polyethylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187614A (en) * 1983-04-07 1984-10-24 Mitsui Petrochem Ind Ltd Drawn polyethylene material having ultrahigh molecular weight
JPS59232123A (en) * 1983-06-16 1984-12-26 Agency Of Ind Science & Technol Production of solution of super-molecular weight polyethylene

Also Published As

Publication number Publication date
JPS6350516A (en) 1988-03-03

Similar Documents

Publication Publication Date Title
US4612148A (en) Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
JPH06102846B2 (en) Method for producing ultra-high molecular weight polyethylene stretched product
WO2008055405A1 (en) A process for producing fiber of ultra high molecular weight polyethylene
EP0168923A2 (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
JP6590824B2 (en) High strength and high modulus ultra high molecular weight polyethylene fiber
JP2017507216A5 (en)
JPH0240763B2 (en)
JPS59130313A (en) Manufacture of drawn ultra-high-molecular-weight polyethylene
JPH0246053B2 (en) CHOKOBUNSHIRYOHORIECHIRENYOEKINOSEIZOHOHO
JPH0336929B2 (en)
JPH0379173B2 (en)
JPH046740B2 (en)
JPS59168116A (en) Production of drawn polyethylene
JPS618323A (en) Manufacture of super high molecular polyethylene stretched product
JPH0240764B2 (en)
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS60232927A (en) Manufacture of orientated polyethylene
JPH0379174B2 (en)
JP2992323B2 (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPH0482909A (en) Production of high-molecular weight polyolefin fiber
JP2553129B2 (en) Polyvinyl alcohol fiber with good fatigue resistance
JP2781201B2 (en) Cement admixture
JPH05140816A (en) Production of drawn high-molecular weight polyolefin
JPS6173743A (en) Method for continuously preparing stock solution of high-molecular polyolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees