JPH0336930B2 - - Google Patents
Info
- Publication number
- JPH0336930B2 JPH0336930B2 JP8952484A JP8952484A JPH0336930B2 JP H0336930 B2 JPH0336930 B2 JP H0336930B2 JP 8952484 A JP8952484 A JP 8952484A JP 8952484 A JP8952484 A JP 8952484A JP H0336930 B2 JPH0336930 B2 JP H0336930B2
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- polyethylene
- stretched
- melt
- paraffin wax
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- -1 Polyethylene Polymers 0.000 claims description 45
- 239000004698 Polyethylene Substances 0.000 claims description 44
- 229920000573 polyethylene Polymers 0.000 claims description 44
- 239000012188 paraffin wax Substances 0.000 claims description 32
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 235000019809 paraffin wax Nutrition 0.000 description 31
- 235000019271 petrolatum Nutrition 0.000 description 31
- 239000000047 product Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 20
- 238000001125 extrusion Methods 0.000 description 15
- 239000001993 wax Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000000155 melt Substances 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- 238000002074 melt spinning Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 3
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- HOWGUJZVBDQJKV-UHFFFAOYSA-N docosane Chemical compound CCCCCCCCCCCCCCCCCCCCCC HOWGUJZVBDQJKV-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 description 2
- FIGVVZUWCLSUEI-UHFFFAOYSA-N tricosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCC FIGVVZUWCLSUEI-UHFFFAOYSA-N 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920006240 drawn fiber Polymers 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- YDLYQMBWCWFRAI-UHFFFAOYSA-N n-Hexatriacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC YDLYQMBWCWFRAI-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OLTHARGIAFTREU-UHFFFAOYSA-N triacontane Natural products CCCCCCCCCCCCCCCCCCCCC(C)CCCCCCCC OLTHARGIAFTREU-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
Description
〔産業上の利用分野〕
本発明は、ポリエチレンの溶融押出延伸方法に
関する。更に詳しくは高弾性率、高強度を有する
ポリエチレンの延伸物の製造法に関する。
〔従来技術〕
ポリエチレンやポリプロピレン等の結晶性熱可
塑性樹脂を高度に延伸し、配向結晶化させること
により、高弾性率化及び高強度化できることは良
く知られている。しかしながら通常のポリエチレ
ン溶融押出延伸方法により延伸できる延伸倍率は
せいぜい20〜30倍程度であり、それ以上の延伸倍
率ではいわゆる延伸切れを起こしてそれ以上延伸
することはできない。高弾性率の延伸物を製造す
る方法として、例えば結晶性ポリマーを特定の結
晶構造になるような条件下で熱処理して、特定の
条件下で延伸する方法(特公昭57−37454号公報)
が提案されているが、そこに具体的に開示された
方法によると、所望の結晶構造を有するようにす
るには、熱処理する際に充分温度および時間を管
理する必要があること、また延伸する際にも、通
常毎分10〜20cm程度、あるいは精々毎分30〜150
cmの比較的低い延伸速度で延伸を行うことが必要
であること等からして、工程管理上煩雑であり生
産性にも劣り工業化するには難点があつた。
〔発明が解決しようとする問題点〕
そこで本発明者らは、ポリエチレンの延伸性を
改良して、高弾性率、高強度を有するポリエチレ
ンの延伸物を得る方法について種々検討した結
果、ポリエチレンに特定のパラフイン系ワツクス
を配合した組成物を用いることにより、本発明の
目的を達成することができ、先に特願昭58−
38273号として出願した。その後更に検討した結
果、スクリユー押出機のダイの温度を210℃未満
にしても、スクリユー押出機のダイ内での滞留時
間を増すことによつても、即ち溶融樹脂の押出速
度を下げることによつても、ポリエチレンとパラ
フイン系ワツクスとをスクリユー押出機で安定に
連続押出成形できることが分かり、本発明を完成
するに至つた。
〔問題点を解決するための手段〕
すなわち本発明は、極限粘度〔η〕が1.5/
g以上5/g未満のポリエチレン(A):15ないし
97重量%と融点が40ないし120℃で且つ分子量が
2000以下のパラフイン系ワツクス(B):85ないし3
重量%との混合物を190ないし280℃の温度で溶融
混練し、前記混合物の融点以上210℃未満のダイ
より未延伸物を押出し、次いで少なくとも20倍以
上の延伸比で延伸することを特徴とする高弾性率
及び高強度を有するポリエチレンの延伸物の製造
法を提供するものである。
〔作用〕
本発明の方法に用いるポリエチレン(A)とは、デ
カリン溶媒135℃における極限粘度〔η〕が1.5
/g以上5.0/g未満、好ましくは2.0/g
以上5.0/g未満の範囲のものである。〔η〕が
5/g以上のものは、後述のパラフイン系ワツ
クス(B)の添加量が少ない場合は、延伸性を改良で
きない場合がある。またポリエチレン(A)の密度は
とくに限定はされないが、好ましくは0.920g/
cm3以上、さらに好ましくは0.930ないし0.970g/
cm3の範囲のものがより高弾性率、高強度の延伸物
となるので好ましい。前述範囲のポリエチレン(A)
は、エチレンの単独重合体に限らず、エチレンと
少量の他のα−オレフイン、例えばプロピレン、
1−ブテン、1−ヘキセン、4−メチル−1−ペ
ンテン、1−オクテン、1−デセン等との共重合
体、あるいは酢酸ビニル、塩化ビニル、アクリル
酸等のビニル化合物との共重合体であつてもよ
い。
本発明の方法に用いるパラフイン系ワツクス(B)
とは、融点が40ないし120℃、好ましくは45ない
し110℃で且つ分子量が2000以下、好ましくは
1000以下、特に好ましくは800以下のパラフイン
系ワツクスである。融点が40℃未満のものあるい
は液状パラフインを用いるとポリエチレン(A)とス
クリユーとが共回りを起こして均一な溶融紡糸が
出来ない。一方融点が120℃を越え、且つ分子量
が2000を越えるものを用いても20倍程度の延伸倍
率では高弾性率、高引張強度の延伸物が得られ
ず、又更に延伸比を上げて高弾性率の延伸物を得
ようとしても25倍以上には延伸出来ず結果として
高弾性率の延伸物を得ることは出来ないし、更に
後述の如く延伸物から過剰のパラフイン系ワツク
スを抽出することも出来ない。また分子量が800
以下のものを用いると20倍を越える延伸比でも充
分高弾性率の延伸物が得られるが、分子量が800
〜2000のパラフイン系ワツクスを用いる場合は20
倍、好ましくは25倍以上の延伸比で延伸すること
が好ましい。
本発明における融点は、ASTMD3417により
示差走査型熱量計(DSC)により測定した値で
ある。また分子量はGPC法(ゲル・パーミエー
シヨン・クロマトグラフイー)により次の条件で
測定して得た重量平均分子量()である。
装 置:ウオーターズ社製 150C型
カラム:東洋曹達社製 TSK GMH−6(6mmφ
×600mm)
溶 媒:オルソジクロルベンゼン(ODCB)
温 度:135℃
流 量:1.0ml/min
注入濃度:30mg/20ml ODCB(注入量400μ)
尚、東洋曹達社製およびプレツシヤー・ケミカ
ル社製の標準ポリスチレンを用いてユニバーサル
法によりカラム溶出体積は較正した。
又、本発明における密度はASTMD1505によ
り測定した値である。
本発明の方法に用いるパラフイン系ワツクス(B)
は前記範囲の融点及び分子量を有するものであれ
ば、とくに炭素と水素のみからなる化合物には限
定されず、少量の酸素、その他の元素を含んでい
てもよい。
前記パラフイン系ワツクス(B)としては、飽和脂
肪族炭化水素化合物を主体とするもので、具体的
にはドコサン、トリコサン、テトラコサン、トリ
アコンタン等の炭素数22以上のn−アルカンある
いはこれらを主成分とした低級n−アルカン等と
の混合物、石油から分離精製された所謂パラフイ
ンワツクス、エチレンあるいはエチレンと他のα
−オレフインとを共重合して得られる低分子量重
合体である中・低圧法ポリエチレンワツクス、高
圧法ポリエチレンワツクス、エチレン共重合ワツ
クスあるいは中・低圧法ポリエチレン、高圧法ポ
リエチレン等のポリエチレンを熱減成等により分
子量を低下させたワツクス及びそれらのワツクス
の酸化物あるいはマレイン酸変性物等の酸化ワツ
クス、マレイン酸変性ワツクス等が挙げられる。
本発明に用いる前記パラフイン系ワツクス(B)の
融点及び分子量範囲に入る他の炭化水素化合物と
して例えばナフタリン、ジメチルナフタリン等の
芳香族炭化水素化合物があるが、これらのものは
パラフイン系ワツクスと異なりポリエチレン(A)と
の相溶性が劣り、本発明の方法に用いるとポリエ
チレン(A)への芳香族炭化水素の分散むらが生じ、
均一延伸あるいは高延伸倍率の達成が困難であ
る。
ポリエチレン(A)とパラフイン系ワツクス(B)等と
の相溶性を調べる方法としては、具体的には高倍
率走査型電子顕微鏡による未延伸糸の断面の観察
法が例示出来る。すなわち、ポリエチレン(A)とパ
ラフイン系ワツクス(B)等との等量ブレンド物を溶
融混練後溶融紡糸する。次いで得られた未延伸原
糸をその長手方向に直交するようにミクロトーム
等の鋭利な刃で切断する。当該断面と同様の処理
により切り出した断面をさらにヘキサンあるいは
ヘプタン等の無極性溶剤に少なくとも1時間以上
室温で浸漬して、パラフイン系ワツクス(B)等を抽
出除去した抽出処理断面を少なくとも3000倍以上
の倍率で走査型電子顕微鏡にて比較観察する。本
発明のパラフイン系ワツクス(B)はポリエチレン(A)
に対して相溶性が良好であるため、0.1μ以上の陥
没は殆ど観察されず、パラフイン系ワツクス(B)の
代わりにナフタリンを用いた場合は分散不良を起
こし、0.1μ以上の陥没が無数に観察される。
本発明の方法は前記ポリエチレン(A):15ないし
97重量%、好ましくは50ないし85重量%と前記パ
ラフイン系ワツクス(B):85ないし3重量%、好ま
しくは50ないし15重量%とからなる混合物を190
ないし280℃、好ましくは190ないし250℃の温度
で溶融混練し、前記混合物の融点以上210℃未満、
好ましくは前記混合物の融点+10℃以上210℃未
満のダイより未延伸物を押出し、次いで少なくと
も20倍、好ましくは25倍以上の延伸比で延伸する
方法である。
パラフイン系ワツクス(B)の量が3重量%未満で
はポリエチレンの延伸性が改良されず20倍以上の
延伸ができず、一方85重量%を越えると溶融粘度
が低くなり過ぎて溶融混練が困難であり、また未
延伸物の延伸性が劣り、延伸時にブツ切れを起こ
し20倍以上の延伸ができない。
前記混合物の溶融混練及び押出しには、通常の
単軸あるいは多軸のスクリユー押出機を用いて行
うのが、連続押出しができるので好ましい。溶融
混練時スクリユー押出機及びダイの温度がそれぞ
れ190℃未満及び混合物の融点未満の温度では混
合物の溶融粘度が高く溶融押出しが困難である。
尚ポリエチレン(A)とパラフイン系ワツクス(B)と
の混合はヘンシエルミキサー、V−ブレンダー、
タンブラーブレンダー等により混合したものを直
接溶融混練して押出してもよいし、予め混合後更
に単軸あるいは多軸押出機、ニーダー、バンバリ
ーミキサー等で溶融混練して造粒あるいは粉砕し
ておいてもよい。
ダイより未延伸物を押出した後は、一旦冷却固
化を行うが、冷却は水冷、空冷のいずれの方法で
もよい。また未延伸物が冷却固化する迄の間に、
溶融物にドラフトをかけてもよい。
冷却固化した未延伸物を延伸する際の温度は通
常60℃ないし混合物の融点+20℃未満の範囲内で
あり、60℃未満では20倍以上の延伸比が達成でき
ず、一方混合物の融点+20℃を越えるとポリエチ
レン(A)が軟化し、延伸はされるものの、高弾性率
の延伸物が得られない虞れがある。
上記延伸時の熱媒は空気、水蒸気、溶媒のいず
れを用いても高弾性率、高強度の延伸物が得られ
るが、熱媒として前記パラフイン系ワツクス(B)を
溶出あるいは滲出除去することができる溶媒で沸
点が混合物の融点以上、具体的には例えばデカリ
ン、デカン、灯油を用いると延伸時に過剰のパラ
フイン系ワツクス(B)を抽出除去あるいは滲出した
該ワツクス(B)の除去ができ、延伸時の延伸むらの
低減が可能となるので好ましい。また該ワツクス
が除去あるいは低減した延伸物を得るには、前記
方法に限らず、未延伸物をヘキサン、ヘプタン等
の溶剤で処理後延伸する方法、延伸物をヘキサ
ン、ヘプタン等の溶剤で処理する方法も採り得、
そのような処理を行うことにより、更に高弾性
率、高強度の延伸物が得られる。
前記雰囲気下での延伸比が20倍未満では高弾性
率化、高強度化の程度が少なく、また延伸物に原
糸の白化が随伴するため、外観を損う例が多い。
尚延伸比は、最終延伸比が25倍以上になればよ
く、1段延伸でも2段延伸以上の多段延伸でもよ
い。
また延伸の際の最終延伸速度はとくに限定はさ
れないが、生産性から3m/min以上、好ましく
は5m/min以上の速度がよい。
本発明に用いるポリエチレン(A)には、耐熱安定
剤、耐候安定剤、顔料、染料、無機充填剤等通常
ポリオレフインに添加することが出来る添加剤を
本発明の目的を損わない範囲で添加しておいても
よい。
〔発明の効果〕
本発明の方法により得られるポリエチレンの延
伸物は、従来ポリエチレンの延伸物では得られな
い高引張強度を有し、且つ高弾性率であるので、
モノフイラメント、テープ等の従来の延伸糸の分
野に加えて高弾性率、高強度繊維の分野への利用
が可能となり、軽量性が要求される各種補強材に
使用できる。またパラフイン系ワツクスを配合す
ることにより、従来のポリエチレン単独の延伸物
に比べて白化を生じる延伸比が高くなるので、よ
り外観が優れた延伸物が得られる利点がある。さ
らには、超高延伸による結晶配列の高度な整列な
らびに過剰のパラフイン系ワツクス(B)を抽出する
ことにより副次的に生成する微孔を利用した選択
膜、エレクトレツト等の機能材料への適性にも優
れている。
〔実施例〕
次に実施例を挙げて本発明を更に具体的に説明
するが、本発明の要旨を越えない限りそれらの実
施例に制約されるものではない。
実験例 1
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=69
℃、分子量=460)との80:20ブレンド物を次の
条件下で溶融紡糸延伸を行つた。上記ポリエチレ
ンの粒状ペレツトとパラフインワツクスの粉砕品
とを混合後、20mmφ、L/D=20のスクリユー押
出機を用い、樹脂温度200℃で溶融混練を行つた。
次いで該溶融物をオリフイス径が2mmでダイ温度
を170℃で設定したダイより押し出し、エアーギ
ヤツプ:20cmで室温の空気中にて固化させた。こ
の際、溶融樹脂の押出速度は10.0cm/minであ
り、巻き取り速度が10.0cm/minになる様に引き
落としを行つた。即ちドラフト比を1とした。こ
こで、ドラフト比とは、溶融樹脂の巻き取り速度
と押出速度との比として定義した。引き続き二対
のコデツトロールを用いてn−デカンを熱媒とし
た延伸槽(槽内温度=120℃、槽の長さ=40cm)
で延伸を行つた。
延伸に際しては、第1ゴデツトロールの回転速
度を0.5m/minとして、第2ゴデツトロールお
よび第3ゴデツトロールの回転速度を適宜変更す
ることにより延伸比の異なる繊維を得た。延伸
は、第2ゴデツトロールで予め延伸比8.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツト
ロールで所定の延伸比迄行つた。但し、延伸比は
ゴデツトロールの回転比より計算して求めた。各
延伸比における動的弾性率、引張弾性率、引張強
度および破断点伸度を表1に示す。尚、動的弾性
率は動的粘弾性測定装置Vibron DDV−型
(東洋ボールドウイン社製)を用いて振動数110Hz
で室温(23℃)にて測定した。また、引張弾性
率、引張強度および破断点伸度はインストロン万
能試験機1123型(インストロン社製)を用いて室
温(23℃)にて測定した。このとき、クランプ間
の試料長は100mmで引張速度100mm/分とした。但
し、引張弾性率は2%歪における応力を用いて計
算した。計算に必要な繊維断面積は、ポリエチレ
ンの密度を0.96g/cm3として繊維の重量と長さを
測定して求めた。
[Industrial Field of Application] The present invention relates to a method for melt extrusion and stretching of polyethylene. More specifically, the present invention relates to a method for producing a stretched polyethylene product having high elastic modulus and high strength. [Prior Art] It is well known that a crystalline thermoplastic resin such as polyethylene or polypropylene can be highly stretched and oriented and crystallized to have a high elastic modulus and high strength. However, the stretching ratio that can be stretched by the usual polyethylene melt extrusion stretching method is about 20 to 30 times at most, and if the stretching ratio is higher than that, so-called stretch breakage occurs and further stretching cannot be performed. As a method for producing a stretched product with a high elastic modulus, for example, a method in which a crystalline polymer is heat treated under conditions to form a specific crystal structure and then stretched under specific conditions (Japanese Patent Publication No. 37454/1983)
However, according to the method specifically disclosed therein, in order to obtain the desired crystal structure, it is necessary to sufficiently control the temperature and time during heat treatment, and also that stretching is necessary. In most cases, it is usually about 10 to 20 cm per minute, or at most 30 to 150 cm per minute.
Since it is necessary to draw at a relatively low drawing speed of 1 cm, it is complicated in terms of process control and has poor productivity, making it difficult to commercialize. [Problems to be Solved by the Invention] Therefore, the present inventors have investigated various methods for improving the drawability of polyethylene to obtain a drawn polyethylene product having a high modulus of elasticity and high strength. The object of the present invention can be achieved by using a composition containing paraffin wax of
Filed as No. 38273. As a result of further investigation, we found that even if the die temperature of the screw extruder was lowered to below 210℃, the residence time in the die of the screw extruder could be increased, that is, the extrusion speed of the molten resin could be lowered. However, it was found that polyethylene and paraffin wax could be stably and continuously extruded using a screw extruder, leading to the completion of the present invention. [Means for solving the problem] In other words, the present invention has an intrinsic viscosity [η] of 1.5/
Polyethylene (A) of g or more and less than 5/g: 15 or more
97% by weight, a melting point of 40 to 120℃, and a molecular weight of
Paraffin wax (B) below 2000: 85 to 3
% by weight is melt-kneaded at a temperature of 190 to 280°C, the unstretched material is extruded through a die at a temperature higher than the melting point of the mixture and lower than 210°C, and then stretched at a stretching ratio of at least 20 times or more. The present invention provides a method for producing a stretched polyethylene product having high elastic modulus and high strength. [Function] The polyethylene (A) used in the method of the present invention has an intrinsic viscosity [η] of 1.5 at 135°C as a decalin solvent.
/g or more and less than 5.0/g, preferably 2.0/g
It is in the range of 5.0/g or more. If [η] is 5/g or more, the stretchability may not be improved if the amount of paraffin wax (B) described below is small. The density of polyethylene (A) is not particularly limited, but is preferably 0.920g/
cm 3 or more, more preferably 0.930 to 0.970 g/
A range of cm 3 is preferable because it results in a stretched product with a higher modulus of elasticity and higher strength. Polyethylene (A) within the above range
is not limited to ethylene homopolymers, but also ethylene and small amounts of other α-olefins, such as propylene,
Copolymers with 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, etc., or copolymers with vinyl compounds such as vinyl acetate, vinyl chloride, acrylic acid, etc. It's okay. Paraffin wax (B) used in the method of the present invention
means a melting point of 40 to 120°C, preferably 45 to 110°C, and a molecular weight of 2000 or less, preferably
It is a paraffin wax with a weight of 1000 or less, particularly preferably 800 or less. If a material with a melting point of less than 40°C or liquid paraffin is used, the polyethylene (A) and the screw will rotate together, making uniform melt spinning impossible. On the other hand, even if a material with a melting point exceeding 120°C and a molecular weight exceeding 2000 is used, a stretched product with high elastic modulus and high tensile strength cannot be obtained at a stretching ratio of about 20 times, and even if the stretching ratio is further increased, a stretched product with high elasticity Even if you try to obtain a stretched product with a high elastic modulus, you cannot stretch it more than 25 times, and as a result, you cannot obtain a stretched product with a high elastic modulus.Furthermore, as will be described later, it is not possible to extract excess paraffin wax from the stretched product. do not have. Also, the molecular weight is 800
If the following is used, a stretched product with a sufficiently high elastic modulus can be obtained even at a stretching ratio exceeding 20 times, but the molecular weight is 800
~2000 when using paraffin wax
It is preferable to stretch at a stretching ratio of 25 times or more, preferably 25 times or more. The melting point in the present invention is a value measured using a differential scanning calorimeter (DSC) according to ASTM D3417. Moreover, the molecular weight is the weight average molecular weight ( ) obtained by measuring by GPC method (gel permeation chromatography) under the following conditions. Equipment: Waters Co., Ltd. 150C type column: Toyo Soda Co., Ltd. TSK GMH-6 (6 mmφ
x 600 mm) Solvent: Orthodichlorobenzene (ODCB) Temperature: 135°C Flow rate: 1.0 ml/min Injection concentration: 30 mg/20 ml ODCB (injection amount 400 μ) Standards manufactured by Toyo Soda Co., Ltd. and Pressure Chemical Co., Ltd. Column elution volumes were calibrated by the universal method using polystyrene. Further, the density in the present invention is a value measured according to ASTM D1505. Paraffin wax (B) used in the method of the present invention
is not particularly limited to a compound consisting only of carbon and hydrogen, as long as it has a melting point and molecular weight within the above range, and may contain a small amount of oxygen or other elements. The paraffinic wax (B) is mainly composed of saturated aliphatic hydrocarbon compounds, specifically, n-alkanes having 22 or more carbon atoms such as docosane, tricosane, tetracosane, triacontane, etc., or n-alkanes containing these as main components. mixtures with lower n-alkanes etc., so-called paraffin waxes separated and refined from petroleum, ethylene or ethylene and other alpha
- Heat-reduced polyethylene such as medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax, medium/low pressure polyethylene, high pressure polyethylene, etc., which are low molecular weight polymers obtained by copolymerizing with olefin. Examples include waxes whose molecular weight has been lowered by chemical composition, oxidized waxes such as oxides or maleic acid-modified products of these waxes, and maleic acid-modified waxes. Other hydrocarbon compounds that fall within the melting point and molecular weight range of the paraffinic wax (B) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene, but unlike the paraffinic wax, polyethylene The compatibility with (A) is poor, and when used in the method of the present invention, aromatic hydrocarbons will be unevenly dispersed in polyethylene (A).
It is difficult to achieve uniform stretching or high stretching ratios. A specific example of a method for examining the compatibility between polyethylene (A) and paraffin wax (B) is the observation of a cross section of an undrawn yarn using a high-magnification scanning electron microscope. That is, a blend of equal amounts of polyethylene (A) and paraffin wax (B), etc. is melt-kneaded and then melt-spun. Next, the obtained undrawn yarn is cut perpendicularly to its longitudinal direction with a sharp blade such as a microtome. A cross section cut out using the same process as the cross section is further immersed in a non-polar solvent such as hexane or heptane at room temperature for at least 1 hour to extract and remove paraffin wax (B), etc. The extracted cross section is at least 3000 times more Comparative observation is made using a scanning electron microscope at a magnification of . The paraffin wax (B) of the present invention is polyethylene (A)
Because it has good compatibility with wax, almost no depressions of 0.1μ or more are observed, and when naphthalene is used instead of paraffin wax (B), poor dispersion occurs, resulting in countless depressions of 0.1μ or more. be observed. The method of the present invention uses the polyethylene (A): 15 to
A mixture consisting of 97% by weight, preferably 50 to 85% by weight and the paraffin wax (B): 85 to 3% by weight, preferably 50 to 15% by weight,
melt-kneading at a temperature of from 190 to 280°C, preferably from 190 to 250°C, above the melting point of the mixture and below 210°C,
Preferably, the unstretched material is extruded through a die at a temperature higher than the melting point of the mixture +10°C and lower than 210°C, and then stretched at a stretching ratio of at least 20 times, preferably 25 times or more. If the amount of paraffin wax (B) is less than 3% by weight, the stretchability of polyethylene will not be improved and stretching of 20 times or more will not be possible, while if it exceeds 85% by weight, the melt viscosity will be too low and melt-kneading will be difficult. Also, the stretchability of unstretched products is poor, causing breakage during stretching, making it impossible to stretch 20 times or more. It is preferable to melt-knead and extrude the mixture using a conventional single-screw or multi-screw extruder because continuous extrusion can be performed. If the temperatures of the screw extruder and die during melt-kneading are lower than 190° C. and lower than the melting point of the mixture, the melt viscosity of the mixture will be high and melt extrusion will be difficult. The polyethylene (A) and paraffin wax (B) can be mixed using a Henschel mixer, V-blender,
The mixture may be directly melt-kneaded using a tumbler blender or the like and then extruded, or it may be pre-mixed and then melt-kneaded using a single-screw or multi-screw extruder, kneader, Banbury mixer, etc. and then granulated or pulverized. good. After extruding the unstretched material from the die, it is once cooled and solidified, and cooling may be performed by either water cooling or air cooling. In addition, until the unstretched material cools and solidifies,
The melt may be drafted. The temperature when stretching the cooled and solidified unstretched material is usually within the range of 60°C to less than the melting point of the mixture + 20°C, and if it is less than 60°C, a stretching ratio of 20 times or more cannot be achieved; If it exceeds this range, the polyethylene (A) will be softened, and although it can be stretched, there is a risk that a stretched product with a high elastic modulus will not be obtained. A stretched product with high elastic modulus and high strength can be obtained by using air, water vapor, or a solvent as a heating medium during the above-mentioned stretching process. If a solvent with a boiling point higher than the melting point of the mixture, for example, decalin, decane, or kerosene, is used, excess paraffin wax (B) can be extracted or removed during stretching, or exuded wax (B) can be removed during stretching. This is preferable because it makes it possible to reduce unevenness during stretching. Further, in order to obtain a stretched product in which the wax has been removed or reduced, the method is not limited to the above-mentioned method, but a method in which an unstretched product is treated with a solvent such as hexane or heptane, and then stretched, or a stretched product is treated with a solvent such as hexane or heptane, etc. Methods can also be adopted,
By performing such treatment, a stretched product with even higher elastic modulus and higher strength can be obtained. If the stretching ratio in the above atmosphere is less than 20 times, the degree of increase in the modulus of elasticity and strength is small, and the drawn product is often accompanied by whitening of the raw yarn, which often impairs the appearance.
The stretching ratio may be as long as the final stretching ratio is 25 times or more, and may be one-stage stretching or multi-stage stretching of two or more stages. Further, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity, a speed of 3 m/min or more, preferably 5 m/min or more is preferable. Additives that can be normally added to polyolefins, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, may be added to the polyethylene (A) used in the present invention to the extent that the purpose of the present invention is not impaired. You can leave it there. [Effects of the Invention] The drawn polyethylene product obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn polyethylene products.
In addition to the field of conventional drawn yarns such as monofilaments and tapes, it can be used in the field of high-modulus, high-strength fibers, and can be used in various reinforcing materials that require lightness. Furthermore, by blending a paraffin wax, the stretching ratio at which whitening occurs is higher than in conventional stretched products made of polyethylene alone, so there is the advantage that stretched products with better appearance can be obtained. Furthermore, it is suitable for functional materials such as selective membranes and electrets that utilize the highly aligned crystalline arrangement achieved by ultra-high stretching and the micropores that are generated as a by-product by extracting excess paraffin wax (B). It is also excellent. [Examples] Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded. Experimental example 1 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 69
℃, molecular weight = 460) was melt-spun and drawn under the following conditions. After mixing the polyethylene granular pellets and the pulverized paraffin wax, they were melt-kneaded at a resin temperature of 200° C. using a screw extruder with a diameter of 20 mm and L/D=20.
The melt was then extruded through a die with an orifice diameter of 2 mm and a die temperature set at 170°C, and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 10.0 cm/min, and the withdrawal was performed so that the winding speed was 10.0 cm/min. That is, the draft ratio was set to 1. Here, the draft ratio was defined as the ratio between the winding speed of the molten resin and the extrusion speed. Subsequently, using two pairs of codetrols, a stretching tank was applied using n-decane as a heating medium (tank temperature = 120°C, tank length = 40cm).
Stretching was performed using During stretching, the rotational speed of the first godetroll was set at 0.5 m/min, and the rotational speeds of the second and third godetrolls were appropriately changed to obtain fibers with different drawing ratios. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. However, the stretching ratio was calculated from the rotation ratio of the godet roll. Table 1 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio. The dynamic elastic modulus was measured using a dynamic viscoelasticity measuring device Vibron DDV-type (manufactured by Toyo Baldwin) at a frequency of 110 Hz.
Measured at room temperature (23°C). Further, the tensile modulus, tensile strength, and elongation at break were measured at room temperature (23° C.) using an Instron universal testing machine model 1123 (manufactured by Instron). At this time, the sample length between the clamps was 100 mm, and the tensile speed was 100 mm/min. However, the tensile modulus was calculated using stress at 2% strain. The fiber cross-sectional area required for calculation was determined by measuring the weight and length of the fiber, assuming the density of polyethylene as 0.96 g/cm 3 .
【表】
実験例 2
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=69
℃、分子量=460)との80:20ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は10.0
cm/minであり、巻き取り速度が20.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を2とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表2に示す。[Table] Experimental example 2 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 69
℃, molecular weight = 460) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 10.0
cm/min, and the withdrawal was performed so that the winding speed was 20.0 cm/min. That is, the draft ratio was set to 2. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 2 shows the tensile strength and elongation at break.
【表】
実験例 3
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=69
℃、分子量=460)との80:20ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は10.0
cm/minであり、巻き取り速度が50.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を5とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表3に示す。[Table] Experimental example 3 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 69
℃, molecular weight = 460) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin is 10.0
cm/min, and the withdrawal was made so that the winding speed was 50.0 cm/min. That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 3 shows the tensile strength and elongation at break.
【表】
実験例 4
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=52
℃、分子量=340)との80:20ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は10.0
cm/minであり、巻き取り速度が10.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を1とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表4に示す。[Table] Experimental example 4 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 52
℃, molecular weight = 340) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin is 10.0
cm/min, and the withdrawal was performed so that the winding speed was 10.0 cm/min. That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 4 shows the tensile strength and elongation at break.
【表】
実験例 5
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=52
℃、分子量=340)との70:30ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は10.0
cm/minであり、巻き取り速度が10.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を1とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表5に示す。[Table] Experimental example 5 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 52
℃, molecular weight = 340) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 10.0
cm/min, and the withdrawal was performed so that the winding speed was 10.0 cm/min. That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 5 shows the tensile strength and elongation at break.
【表】
実験例 6
ポリエチレン(〔μ〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=52
℃、分子量=340)との70:30ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は10.0
cm/minであり、巻き取り速度が20.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を2とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表6に示す。[Table] Experimental example 6 Polyethylene ([μ] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 52
℃, molecular weight = 340) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin is 10.0
cm/min, and the withdrawal was performed so that the winding speed was 20.0 cm/min. That is, the draft ratio was set to 2. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 6 shows the tensile strength and elongation at break.
【表】
比較例 1
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)を実験例1と同一条件下で溶融紡
糸延伸を行つた。但し、オリフイス径が2mmとダ
イより溶融物を押出し、エアーギヤツプ:20cmで
室温の空気中にて固化させた。この際、溶融樹脂
の押出速度は10.0cm/minであり、巻き取り速度
が10.0cm/minになる様に引き落としを行つた。
即ち、ドラフト比を1とした。延伸は、第2ゴデ
ツトロールで予め延伸比3.0倍に延伸した後、引
き続き2段目の延伸を第3ゴデツトロールで所定
の延伸比迄行つた。各延伸比における動的弾性
率、引張弾性率、引張強度および破断点伸度を表
7に示す。実験例1〜6の結果と較べると、パラ
フインワツクスを添加しない本結果は、高延伸比
を達成できておらず、高弾性率、高強度の延伸物
が得られないことが分る。[Table] Comparative example 1 Polyethylene ([η] = 2.47/g, density =
0.964 g/cm 3 ) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 2 mm and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 10.0 cm/min, and the withdrawal was performed so that the winding speed was 10.0 cm/min.
That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 3.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 7 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio. Comparing the results of Experimental Examples 1 to 6, it can be seen that in the present results without adding paraffin wax, a high stretching ratio could not be achieved and a stretched product with high elastic modulus and high strength could not be obtained.
【表】
比較例 2
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=52
℃、分子量=340)との70:30ブレンド物を実験
例1と同一条件下で溶融紡糸延伸を行つた。但
し、オリフイス径が2mmのダイ温度を100℃に設
定したダイより押し出し、エアーギヤツプ:20cm
で室温の空気中にて固化させた。この際、溶融樹
脂の押出速度6.0cm/minであり、巻き取り速度
が6.0cm/minになる様にストランドの巻き取り
を行つた。しかしながら、ストランドを連続的に
巻き取ることができなかつた。又、得られたスト
ランドは脆く、連続的なストランドが得られたと
しても延伸に耐え得るものではなかつた。
比較例 3
ポリエチレン(〔η〕=2.47/g、密度=
0.964g/cm3)とパラフインワツクス(融点=64
℃、分子量460)との5:95ブレンド物を実験例
1と同一条件下で溶融紡糸延伸を行つた。しかし
ながら、混合物がスクリユー押出機内で共回りを
するため均一な溶融ストランドが得られず、均一
な延伸繊維を得ることができなかつた。[Table] Comparative example 2 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 52
℃, molecular weight = 340) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, extrusion is performed through a die with an orifice diameter of 2 mm and a die temperature set to 100℃, and the air gap is 20 cm.
It was solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the strand was wound up so that the winding speed was 6.0 cm/min. However, it was not possible to wind the strands continuously. Furthermore, the obtained strands were brittle and could not withstand stretching even if continuous strands were obtained. Comparative example 3 Polyethylene ([η] = 2.47/g, density =
0.964g/cm 3 ) and paraffin wax (melting point = 64
℃, molecular weight 460) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, since the mixture co-rotates within the screw extruder, uniform molten strands cannot be obtained, and uniform drawn fibers cannot be obtained.
Claims (1)
満のポリエチレン(A):15ないし97重量%と融点が
40ないし120℃で且つ分子量が2000以下のパラフ
イン系ワツクス(B):85ないし3重量%との混合物
を190ないし280℃の温度で溶融混練し、前記混合
物の融点以上210℃未満のダイより未延伸物を押
出し、次いで少なくとも20倍以上の延伸比で延伸
することを特徴とするポリエチレンの延伸物の製
造法。[Scope of Claims] 1. Polyethylene (A) having an intrinsic viscosity [η] of 1.5/g or more and less than 5.0/g: 15 to 97% by weight and a melting point of
A mixture with 85 to 3% by weight of paraffin wax (B) having a molecular weight of 2000 or less is melt-kneaded at a temperature of 190 to 280°C, and then heated through a die at a temperature above the melting point of the mixture and below 210°C. 1. A method for producing a stretched polyethylene product, which comprises extruding the stretched product and then stretching it at a stretching ratio of at least 20 times or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8952484A JPS60232927A (en) | 1984-05-07 | 1984-05-07 | Manufacture of orientated polyethylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8952484A JPS60232927A (en) | 1984-05-07 | 1984-05-07 | Manufacture of orientated polyethylene |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60232927A JPS60232927A (en) | 1985-11-19 |
JPH0336930B2 true JPH0336930B2 (en) | 1991-06-04 |
Family
ID=13973190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8952484A Granted JPS60232927A (en) | 1984-05-07 | 1984-05-07 | Manufacture of orientated polyethylene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60232927A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8701219A (en) * | 1987-05-22 | 1988-12-16 | Stamicarbon | METHOD FOR PREPARING AN ULTRA-STRETCHABLE POLYMER MATERIAL, ULTRA-STRETCHABLE POLYMER MATERIAL, AND METHOD FOR MANUFACTURING ARTICLES |
EP0528048A4 (en) * | 1991-03-05 | 1994-03-18 | Ube Nitto Kasei Co | Composite fiber having porous sheath part. |
WO1993009277A1 (en) * | 1991-10-31 | 1993-05-13 | Ube-Nitto Kasei Co., Ltd. | Porous fiber and method of making thereof |
-
1984
- 1984-05-07 JP JP8952484A patent/JPS60232927A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60232927A (en) | 1985-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0115192B1 (en) | Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene | |
EP0168923B1 (en) | Process for producing stretched article of ultrahigh-molecular weight polyethylene | |
JPH0240763B2 (en) | ||
EP0686390A2 (en) | Novel compositions for dental floss | |
JPS648083B2 (en) | ||
US5252394A (en) | Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same | |
JPH0379173B2 (en) | ||
JPH036246B2 (en) | ||
JPH0240764B2 (en) | ||
JPH0336930B2 (en) | ||
JPH0417132B2 (en) | ||
JPH0430904B2 (en) | ||
JPH07238416A (en) | Production of high-strength polyethylene fiber | |
JPH0379174B2 (en) | ||
JPH0226915A (en) | Production of ultra-high-molecular weight polyolefin fiber | |
JPH0729372B2 (en) | Stretched tape made of ultra high molecular weight polyethylene | |
JPH0551683B2 (en) | ||
JP2992323B2 (en) | Molecularly oriented molded body of high-molecular weight polyethylene | |
JPH01280013A (en) | Production of ultra-high-molecular weight polyolefin drawn product | |
CA1216118A (en) | Process for producing stretched articles of ultrahigh- molecular-weight polyethylene | |
JPH05140816A (en) | Production of drawn high-molecular weight polyolefin | |
JPH03279413A (en) | Molecularly oriented molded body of high-molecular weight polyethylene | |
JPH11279832A (en) | Polypropylene resin composition for fiber and fiber | |
JPH0482909A (en) | Production of high-molecular weight polyolefin fiber | |
JPH0336929B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |