JPH0467300B2 - - Google Patents

Info

Publication number
JPH0467300B2
JPH0467300B2 JP62254139A JP25413987A JPH0467300B2 JP H0467300 B2 JPH0467300 B2 JP H0467300B2 JP 62254139 A JP62254139 A JP 62254139A JP 25413987 A JP25413987 A JP 25413987A JP H0467300 B2 JPH0467300 B2 JP H0467300B2
Authority
JP
Japan
Prior art keywords
terminal
electrode
lead terminal
positive
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254139A
Other languages
Japanese (ja)
Other versions
JPH0197371A (en
Inventor
Hiroaki Aihara
Kazutoshi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP62254139A priority Critical patent/JPH0197371A/en
Publication of JPH0197371A publication Critical patent/JPH0197371A/en
Publication of JPH0467300B2 publication Critical patent/JPH0467300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型化、薄型化指向のポータブル電
子機器の電源として用いるものであり、特に今後
磁気カードに代わるICカード等の電源として注
目されている。ICカードは厚さ0.76mmが規格化さ
れているため電池の厚さは0.5mm以下とする事が
必要であり、更に高エネルギーで長期信頼性を有
し、 第2図に示すようにIC回路基板の電極と確実
な、しかも信頼性の高い電気的なリードをとる必
要があり第2図aにはIC回路基板の電極として
差し込み型、第2図bにはハンダ付け型の例を示
す。以上のように平板型電池としては、リード端
子付が要求される。しかし極薄の平板型電池の端
子板には20〜30μの箔状のものが使用されている
ため、コイン型電池の例で見られるようなリード
端子を電池にレーザー溶接や電気抵抗溶接を用い
て外付けすることが不可能であり、電池一体の電
気リード端子付極薄型平板電池が要求される。 本発明はこのリード端子付極薄型平板電池を得
る製造方法に関するものである。 〔発明の概要〕 この発明は、ICカード等に用いられるリード
端子付平板型リチウム電池を製造する工程におい
て、リード端子部の製造工程で、正極負極の電気
的な接触、いわゆるシヨートを防止し、又製造中
に突出したリード端子部が破損しやすく作業性向
上で問題化されるため、完成電池の突出した電極
リード端子部を含めた縦横寸法よりも又、封止工
程(ヒートシール)での封口材はみ出し量よりも
あらかじめ大き目の端子板寸法に加工し、この端
子板外径を工程毎のガイドに使用し、最終工程で
周辺端部の不要な部分を打ち抜くことにより電極
端子板と一体化した電池外径よりも突出したリー
ド端子部を有した平板型リチウム電池の製造方法
である。 〔従来の技術〕 従来、リード端子部を有した平板型電池は第3
図a,bに示すように電池内部から封口部へ露出
させて形成していた。例えば公開実用昭和58−
173164に示されている。一方、封口材及び封口技
術が進歩した現在、第1図a,bに示すように集
電体を兼用化した外装端子板とリード端子板を一
体化した信頼性の高い平板型リチウム電池が主流
となつた。この電池の製造方法は予め完成電池の
寸法形状に打ち抜かれた正負の電極端子板を用い
て製造組み立てられていた。 〔発明が解決しようとする問題点〕 しかし、突出したリード端子板をベースにして
製造組立する場合、突出したリード端子板に必要
な発電要素を挿入し、他極の端子板を載置すると
多少の位置ズレにより電極端子板間でシヨートし
たり、又、突出したリード端子部が軟弱なため、
製造工程中破損し易い。一方、最終工程で電極端
子板と封口材をヒートシールすると封口材が電極
端子板外径よりもはみ出し、外径不良となるため
はみ出し部を除去する工程を必要としていた。 しかし、この工程は封口材のはみ出しを有して
いるため位置決めが複雑で特殊な治具等を用い
て、封口材はみ出し部を除去していたため量産的
な製造工程には不向きである。又、製品として正
負端子板の組み合わせ位置ずれがそのまま突出し
たリード端子部の位置ずれとなり、製品の歩留り
を低下させる欠点を有していた。 そこで本発明は従来のこのような欠点を除去す
る製造方法を目的とするものである。 〔問題点を解決するための手段〕 上記問題点を解決するために、本発明は外径形
状寸法の大きい電極端子板(本発明の例では正極
端子板)を突出した電極リード端子部を含めた電
池外形寸法よりも、又、封止工程での封口材はみ
出し量よりも大き目の端子板寸法に予め加工して
ある電極端子板を用いた。一方の端子板(本発明
例では負極端子板)に突出した電極リード端子を
有している場合は対向する端子板周辺部のその箇
所に予め逃げ(欠損部)を設けた形状にすること
により前記欠点を防止出来る製造方法である。 〔作用〕 上記のような寸法形状の電極端子板を用いて製
造することにより、 (1) 一方の端子板に突出した電極リード端子を有
している場合、対向する端子板周辺部の箇所に
予め逃げが設けてあるためシヨート防止が出来
る。 (2) 上記(1)の理由で突出した電極リード端子が対
向した端子板の欠損部で保護されているため、
製造工程中での突出した電極リード端子部が破
損防止される。 (3) 一方の端子板寸法形状が、組立最終工程での
ヒートシール時の封口材はみ出し量よりも大き
目の寸法であるため、ヒートシール時に端子板
寸法よりも封口材のはみ出しが防止出来、製造
工程中のガイドが容易となり、特にヒートシー
ル後の電池周辺部の不要な部分を打ち抜く複雑
な工程が簡易化されると同時に、突出したリー
ド端子の位置ずれ量が1/2となつた。 〔実施例〕 以下にこの発明の実施例を図面に基づいて説明
する。第1図bにおいて、負極端子板1に負極活
物質であるリチウムシート2を圧着し、その上に
電気的絶縁シートであるセパレーター3を載置す
る。 次に正極合剤4である正極活物質、例えば
MnO2を有機性のバインダーと導電材であるGrな
どで混練し、シート化したものを高温乾燥し、所
定の寸法に切断したものをセパレーターの上に載
置し電解液を注入する。 次に正極端子板5を口の字形に成形した電気的
絶縁性を有し、金属と熱接着性を有する高分子樹
脂材のフイルムである封口材6を介して載置さ
せ、高分子フイルム封口材と正負極端子板を加圧
しながら加熱し接着一体化、所謂ヒートシートす
ることにより完成電池とする。ここで負極端子板
は第4図aに記したリード端子となる突出部10
を有したもの、正極端子極は第4図bに記した欠
損部、11を有したものを用い、第4図cに記し
た如く、突出した部分と欠損した部分を接触させ
ないように設計され、治具を用いて組み合わせら
れる。又、突出部は正極端子板と同一面上か同一
面より少々内側にセツトされるように設計するこ
とにより、工程上での電気的シヨート及び、リー
ド端子部の破損を防止している。ヒートシール
後、打ち抜き型のガイドにこの一体化した半完成
電池をセツトし、電極端子板の不要な周縁部を打
ち抜き型で成形加工することにより所定の形状第
1図aのような電極リード端子部12を形成さ
せ、完成させる。正極端子板の寸法はヒートシー
ル後の封口材のはみ出し量を考慮し、はみ出し量
よりも大き目の寸法に設計しておくことにより打
ち抜き型のガイドが容易にとれるように工夫して
ある。又、他の実施例として、第5図に正極端子
板のみにリード端子部を設けた場合、第6図に負
極端子板のみにリード端子部を設けた場合を記
し、その他応用例として種々形状が考えられる。 〔発明の効果〕 この発明は以上説明したように、所定の寸法形
状に加工した電極端子板を組み合わせ、ヒートシ
ール加工後に電極端子板の不要な周縁部を打ち抜
き型で成形加工することにより、所定の形状のリ
ード端子付平板型電池を、下記の理由で安定して
製造出来る。 (1) 正負電極の一方に予め他方のリード端子部の
逃げ部(欠損部)を設けているため、 (a) 正負リード端子部の加工工程中の電気的シ
ヨート防止 (b) リード端子の加工工程中の破損防止 (2) 加工工程中の電池ガイドが確実に確保されて
いるため、あらゆる形状のリード端子付平板型
電池が製造可能である。 一方、第1図のように正負端子板に長さlの段
差を設けた理由は、電池周縁部での電気リード性
を有するものに接触させた場合のシヨート防止で
あり、製造加工能力から1mm以下が可能である。 又、仕上げ工程で型を用いて打ち抜き、正極の
リード端子部を形成させるため正負極のリード端
子間距離のばらつきが表1に示すように1/2にな
つた。 【表】
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is used as a power source for portable electronic devices that are oriented toward miniaturization and thinning.In particular, the present invention will attract attention as a power source for IC cards, etc., which will replace magnetic cards. ing. Since IC cards are standardized to have a thickness of 0.76 mm, the thickness of the battery needs to be 0.5 mm or less. Furthermore, it has high energy and long-term reliability, and the IC circuit as shown in Figure 2. It is necessary to establish reliable and highly reliable electrical leads to the electrodes on the circuit board, and Figure 2a shows an example of a plug-in type as an electrode for an IC circuit board, and Figure 2b shows an example of a soldering type. As described above, flat plate batteries are required to have lead terminals. However, since the terminal plates of ultra-thin flat plate batteries are made of foil with a thickness of 20 to 30 μm, laser welding or electric resistance welding is used to attach the lead terminals to the battery, as is the case with coin batteries. Therefore, an ultra-thin flat plate battery with an integrated electrical lead terminal is required. The present invention relates to a manufacturing method for obtaining this ultra-thin flat plate battery with lead terminals. [Summary of the Invention] This invention prevents electrical contact between positive and negative electrodes, so-called shorting, in the manufacturing process of lead terminal parts in the manufacturing process of flat plate lithium batteries with lead terminals used in IC cards, etc. In addition, protruding lead terminals are easily damaged during manufacturing, which poses a problem in improving workability, so the length and width of the completed battery, including the protruding electrode lead terminals, are also more important during the sealing process (heat sealing). The terminal board is processed in advance to a size larger than the amount of protrusion of the sealing material, and this terminal board outer diameter is used as a guide in each process, and in the final process, unnecessary parts of the peripheral edges are punched out to integrate with the electrode terminal board. This is a method for manufacturing a flat plate type lithium battery having a lead terminal portion that protrudes beyond the outer diameter of the battery. [Prior art] Conventionally, flat plate batteries with lead terminals
As shown in Figures a and b, it was formed so as to be exposed from the inside of the battery to the sealing part. For example, public use in Showa 58-
Shown in 173164. On the other hand, as sealing materials and sealing technology have advanced, highly reliable flat-plate lithium batteries that integrate an exterior terminal plate that also serves as a current collector and a lead terminal plate are now mainstream, as shown in Figure 1 a and b. It became. This battery manufacturing method involves manufacturing and assembling the battery using positive and negative electrode terminal plates punched in advance to the dimensions and shape of the completed battery. [Problems to be Solved by the Invention] However, when manufacturing and assembling based on a protruding lead terminal plate, inserting the necessary power generation element into the protruding lead terminal plate and placing the terminal plate of the other pole will cause some problems. The position of the lead terminal may be misaligned, causing it to shoot between the electrode terminal plates, or the protruding lead terminal may be weak.
Easily damaged during the manufacturing process. On the other hand, when the electrode terminal plate and the sealing material are heat-sealed in the final step, the sealing material protrudes beyond the outer diameter of the electrode terminal plate, resulting in a defective outer diameter, which requires a step to remove the protruding portion. However, this process is not suitable for mass-production manufacturing processes because the sealing material protrudes, making positioning complicated and requiring special jigs to remove the protruding portion of the sealing material. Furthermore, as a product, misalignment in the combination of the positive and negative terminal plates directly results in misalignment of the protruding lead terminal portions, resulting in a drawback that the yield of the product is reduced. Therefore, the object of the present invention is to provide a manufacturing method that eliminates these conventional drawbacks. [Means for Solving the Problems] In order to solve the above problems, the present invention includes an electrode lead terminal portion that protrudes from an electrode terminal plate (in the example of the present invention, a positive electrode terminal plate) having a large outer diameter shape. An electrode terminal plate was used that had been processed in advance to have terminal plate dimensions larger than the external dimensions of the battery and the amount of protrusion of the sealing material during the sealing process. If one terminal plate (the negative terminal plate in the present invention) has a protruding electrode lead terminal, it is possible to create a shape in which a relief (missing part) is provided in advance at that location on the periphery of the opposing terminal plate. This is a manufacturing method that can prevent the above drawbacks. [Function] By manufacturing using electrode terminal boards with the dimensions and shapes described above, (1) If one terminal board has a protruding electrode lead terminal, the area around the opposing terminal board can be A relief is provided in advance to prevent shortcuts. (2) Because the protruding electrode lead terminal is protected by the defective part of the opposing terminal board due to the reason (1) above,
The protruding electrode lead terminal portion is prevented from being damaged during the manufacturing process. (3) Since the dimensions and shape of one terminal board are larger than the amount of sealing material that protrudes during heat sealing in the final assembly process, it is possible to prevent the sealing material from protruding more than the terminal board dimensions during heat sealing, and manufacturing It has become easier to guide during the process, and in particular the complicated process of punching out unnecessary parts around the battery after heat sealing has been simplified, and at the same time, the amount of misalignment of the protruding lead terminals has been halved. [Example] Examples of the present invention will be described below based on the drawings. In FIG. 1b, a lithium sheet 2, which is a negative electrode active material, is pressure-bonded to a negative electrode terminal plate 1, and a separator 3, which is an electrically insulating sheet, is placed thereon. Next, the positive electrode active material which is the positive electrode mixture 4, e.g.
MnO 2 is kneaded with an organic binder and a conductive material such as Gr, and the sheet is dried at high temperature.The sheet is cut into predetermined sizes and placed on a separator, and an electrolyte is injected into the sheet. Next, the positive electrode terminal plate 5 is placed through a sealing material 6, which is a film made of a polymeric resin material that is shaped into a square shape and has electrical insulation properties and has heat adhesive properties with metals. The material and the positive and negative terminal plates are heated under pressure and bonded together, so-called a heat sheet, to form a completed battery. Here, the negative terminal plate is a protrusion 10 which becomes a lead terminal as shown in FIG. 4a.
The positive terminal is designed to have the defective part 11 shown in Fig. 4b, and the protruding part and the defective part are not brought into contact as shown in Fig. 4c. , can be combined using a jig. Furthermore, by designing the protruding portion to be set on the same plane as the positive electrode terminal plate or slightly inside the same plane, damage to the electrical shoot and the lead terminal portion during the process is prevented. After heat-sealing, this integrated semi-finished battery is set in the guide of a punching die, and the unnecessary peripheral part of the electrode terminal plate is formed with the punching die to form an electrode lead terminal in a predetermined shape as shown in Figure 1a. Part 12 is formed and completed. The dimensions of the positive electrode terminal plate are designed to be larger than the amount of protrusion of the sealing material after heat sealing, so that the guide for the punching die can be easily removed. In addition, as other examples, Fig. 5 shows a case where a lead terminal part is provided only on the positive terminal plate, and Fig. 6 shows a case where a lead terminal part is provided only on the negative terminal plate, and as other application examples, various shapes are shown. is possible. [Effects of the Invention] As explained above, the present invention combines electrode terminal plates processed into a predetermined size and shape, and after heat-sealing, the unnecessary periphery of the electrode terminal plate is formed using a punching die, thereby forming a predetermined shape. A flat plate battery with lead terminals having the shape of can be stably manufactured for the following reasons. (1) Since one of the positive and negative electrodes has a relief part (defective part) for the other lead terminal part in advance, (a) prevention of electrical shoots during the process of machining the positive and negative lead terminal parts, and (b) ease of machining the lead terminals. Preventing damage during the process (2) Since the battery guide is securely secured during the processing process, flat batteries with lead terminals of any shape can be manufactured. On the other hand, the reason for providing a step of length l on the positive and negative terminal boards as shown in Figure 1 is to prevent shortening when the peripheral edge of the battery comes into contact with something that has electrical lead properties. The following is possible: In addition, in the finishing process, a die was used to punch out the positive electrode lead terminal portion, so the variation in the distance between the positive and negative electrode lead terminals was reduced to 1/2 as shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正負極リード端子部を有した本発明の
平板型リチウム電池で、aは平面図、bは縦断面
図、第2図はリード端子付平板型電池とIC回路
基板電極と電気的リード方法の平面図で、aは差
し込み型、bはハンダ付け型、第3図は従来のリ
ード端子付平板型リチウム電池で、aは平面図、
bは縦断面図、第4図aは突出したリード端子部
を有した負極端子板の平面図、第4図bは欠損部
を有した正極端子板の平面図、第4図cは正負端
子板を組み合わせ、ヒートシールして一体化させ
た半完成電池の平面図、第5図は正極リード端子
部を有した本発明電池の平面図、第6図は負極リ
ード端子部を有した本発明の平板型リチウム電池
の平面図である。 1……負極端子板、5……正極端子板、6……
高分子フイルム封口材、7……負極集電体、8…
…正極集電体、9……合成樹脂フイルム、10…
…突出部、11……欠損部、12……リード端子
部。
Figure 1 shows a flat plate type lithium battery of the present invention having positive and negative electrode lead terminals, a is a plan view, b is a vertical cross-sectional view, and Figure 2 is a flat plate type battery with lead terminals, IC circuit board electrodes, and electrical connections. A is a plan view of the lead method, a is a plug-in type, b is a soldering type, and Figure 3 is a conventional flat plate type lithium battery with lead terminals; a is a plan view;
4b is a longitudinal sectional view, FIG. 4a is a plan view of a negative terminal plate with a protruding lead terminal portion, FIG. 4b is a plan view of a positive terminal plate with a defective portion, and FIG. 4c is a positive and negative terminal A plan view of a semi-finished battery in which plates are assembled and integrated by heat sealing, FIG. 5 is a plan view of a battery of the present invention having a positive electrode lead terminal portion, and FIG. 6 is a plan view of a battery of the present invention having a negative electrode lead terminal portion. FIG. 2 is a plan view of a flat plate type lithium battery. 1... Negative terminal plate, 5... Positive terminal plate, 6...
Polymer film sealing material, 7... Negative electrode current collector, 8...
...Positive electrode current collector, 9...Synthetic resin film, 10...
...protruding part, 11... missing part, 12... lead terminal part.

Claims (1)

【特許請求の範囲】 1 所定の輪郭形状に形成された1対の外装体を
兼用化したシート状金属端子板の間に積層状の発
電要素を保有せしめるとともに、前記1対のシー
ト状金属端子板の周辺端部に環状絶縁シール材と
してヒートシール性と金属との接着性を有した高
分子フイルム封口材を有する平板型リチウム電池
において、一方の電極端子板の外径寸法を突出し
た電極リード端子部を含めた外径寸法よりも、か
つ封口工程での封口材はみ出し量よりも大き目の
端子板寸法にした電極端子板であつて、一方の電
極端子板の電極リード端子部に対応する位置にか
ならず欠損部を有する電極端子板を用いて組立製
造することにより、最終工程でその周辺端部の不
要なる部分を打ち抜くことにより規定の寸法形状
にしたことを特徴とする電池外径よりも突出した
正負両極のリード端子部又は一方のリード端子部
を有する平板型リチウム電池の製造方法。 2 正負両極の突出したリード端子部あるいは一
方の突出したリード端子部が正負両極端子板ある
いは一方の端子板と一体になつていることを特徴
とする特許請求の範囲第1項記載の平板型リチウ
ム電池の製造方法。 3 リード端子付平板型リチウム電池の正負極端
子板の周辺部において、正極端子板と負極端子板
のズレ量1を1mm以下にしたことを特徴とする特
許請求の範囲第2項記載のリード端子付平板型リ
チウム電池の製造方法。
[Scope of Claims] 1. A laminated power generating element is held between a pair of sheet metal terminal plates which are formed into a predetermined outline shape and which also serve as an exterior body, and the power generation element is held between the pair of sheet metal terminal plates which are formed into a predetermined contour shape and which also serve as an exterior body. In a flat plate lithium battery that has a polymer film sealing material with heat sealability and adhesion to metal as an annular insulating sealant at the peripheral end, an electrode lead terminal part with the outer diameter of one electrode terminal plate protruding. The electrode terminal plate has dimensions larger than the outer diameter including the outer diameter and the amount of protrusion of the sealing material during the sealing process, and the electrode terminal plate must be located at a position corresponding to the electrode lead terminal part of one electrode terminal plate. By assembling and manufacturing using an electrode terminal plate with a defective part, the unnecessary part of the peripheral edge is punched out in the final process to obtain a specified size and shape. A method for manufacturing a flat plate lithium battery having both lead terminal portions or one lead terminal portion. 2. The flat plate type lithium according to claim 1, wherein the protruding lead terminal portions of both the positive and negative electrodes or one protruding lead terminal portion are integrated with the positive and negative electrode terminal plates or one terminal plate. How to manufacture batteries. 3. The lead terminal according to claim 2, characterized in that in the periphery of the positive and negative terminal plates of a flat plate type lithium battery with a lead terminal, the amount of deviation 1 between the positive terminal plate and the negative terminal plate is 1 mm or less. A method for manufacturing a flat plate type lithium battery.
JP62254139A 1987-10-08 1987-10-08 Manufacture of flat litium battery with lead terminal Granted JPH0197371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254139A JPH0197371A (en) 1987-10-08 1987-10-08 Manufacture of flat litium battery with lead terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254139A JPH0197371A (en) 1987-10-08 1987-10-08 Manufacture of flat litium battery with lead terminal

Publications (2)

Publication Number Publication Date
JPH0197371A JPH0197371A (en) 1989-04-14
JPH0467300B2 true JPH0467300B2 (en) 1992-10-27

Family

ID=17260760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254139A Granted JPH0197371A (en) 1987-10-08 1987-10-08 Manufacture of flat litium battery with lead terminal

Country Status (1)

Country Link
JP (1) JPH0197371A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536391A (en) * 1991-01-23 1993-02-12 Seiko Electronic Components Ltd Manufacture of flat type battery
JP4654472B2 (en) * 1999-08-04 2011-03-23 ソニー株式会社 A method for producing a non-aqueous secondary battery.
JP2001345090A (en) * 2000-05-31 2001-12-14 Yuasa Corp Sealed-type battery
JP2002042778A (en) * 2000-07-27 2002-02-08 Gs-Melcotec Co Ltd Battery manufacturing method and battery
JP4752267B2 (en) * 2004-12-27 2011-08-17 日産自動車株式会社 Electrode terminal holding plate for battery
JP2007242312A (en) * 2006-03-07 2007-09-20 Matsushita Electric Ind Co Ltd Sheet shape solid battery, and its manufacturing method

Also Published As

Publication number Publication date
JPH0197371A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
JP3696559B2 (en) battery
EP1760804B1 (en) No-welding contact type secondary battery
CN213601987U (en) Electricity core subassembly and battery
JP2007201382A (en) Power accumulation device
US20170256773A1 (en) Conductive connecting plate for a lithium battery and a method for forming the same
JPH0467300B2 (en)
CN211265619U (en) Button cell
US20180019501A1 (en) Laminate-type power storage element and method of manufacturing the same
US6771486B2 (en) Storage cell for surface mounting
KR101132146B1 (en) Prismatic Battery of Excellent Adherence
JP2017134962A (en) Method for manufacturing laminate type power storage device, and laminate type power storage device
WO2007069559A1 (en) Capacitor
JP2007189188A5 (en)
JP4923986B2 (en) battery
KR100900570B1 (en) Terminal for coin-type cell and method for manufacturing the same
JP7227840B2 (en) Method for manufacturing flat battery and printed circuit board
CN211507746U (en) Battery pack and battery box assembly
CN114649627B (en) Power storage module and method for manufacturing same
JP2007242312A (en) Sheet shape solid battery, and its manufacturing method
JP2972968B2 (en) Laminated cell and method of manufacturing the same
CN213273977U (en) Electronic control module of electronic detonator
JP2012227418A (en) Electrochemical device
JPH0739167Y2 (en) Thin battery
JPH02165614A (en) Flat power supply device
JPH04137583A (en) Printed circuit board