JPH046668B2 - - Google Patents

Info

Publication number
JPH046668B2
JPH046668B2 JP21013386A JP21013386A JPH046668B2 JP H046668 B2 JPH046668 B2 JP H046668B2 JP 21013386 A JP21013386 A JP 21013386A JP 21013386 A JP21013386 A JP 21013386A JP H046668 B2 JPH046668 B2 JP H046668B2
Authority
JP
Japan
Prior art keywords
feldspar
weight
ceramic raw
kaolin
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21013386A
Other languages
Japanese (ja)
Other versions
JPS6364951A (en
Inventor
Kunio Kimura
Hiroshi Tateyama
Kazuhiko Jinnai
Hideharu Hirosue
Osamu Ishibashi
Kinue Tsunematsu
Satoshi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21013386A priority Critical patent/JPS6364951A/en
Publication of JPS6364951A publication Critical patent/JPS6364951A/en
Publication of JPH046668B2 publication Critical patent/JPH046668B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、陶磁器原料中に含有される長石をカ
オリン鉱物に変化せしめ、それと共に陶磁器原料
中の各種含鉄鉱物等の不純物は溶出除去し耐火度
が大なる陶磁器原料を得る方法に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention converts feldspar contained in ceramic raw materials into kaolin mineral, and at the same time, impurities such as various iron-containing minerals in the ceramic raw materials are eluted and removed to improve fire resistance. The present invention relates to a method for obtaining ceramic raw materials with a high degree of strength.

陶磁器原料の中でも低品位のものには長石、菱
鉄鉱、褐鉄鉱、方解石等が含まれており、長石や
方解石等を含む陶土は耐火度が低くそのままでは
利用出来ない。又菱鉄鉱、褐鉄鉱を含むものは着
色の問題があり、出来る限りこれら含鉄鉱物の含
有が少ないものが望ましい。
Among ceramic raw materials, low-grade materials include feldspar, siderite, limonite, and calcite, and china clay containing feldspar, calcite, etc. has a low fire resistance and cannot be used as is. Also, those containing siderite and limonite have the problem of coloring, so it is desirable to have as little content of these iron-containing minerals as possible.

〈従来の技術及びその問題点〉 上記観点から陶磁器原料の精製は各種方法がな
されており、例えば特公昭47−49425号公報で示
される酸処理による方法や、特公昭52−40915号
公報で示される磁気分離による方法がある。しか
るにこの両者ともに陶磁器原料中の長石の除去は
全く出来ない上に前者たる酸処理方では高濃度の
酸を用いる為に含鉄鉱物や方解石は分解除去出来
る反面、陶磁器原料中に含まれている有用鉱物た
るセリサイトやカオリン鉱物の分解も起きるとい
う欠点があり、又後者たる磁気分離法では褐鉄鉱
は帯磁率が小な為に十分な除去はなされず、方解
石は全く分離除去出来ないという欠点があつた。
<Prior art and its problems> From the above point of view, various methods have been used to purify ceramic raw materials. There is a method using magnetic separation. However, both methods cannot remove feldspar from ceramic raw materials at all, and the former acid treatment method uses highly concentrated acid, which can decompose and remove iron-containing minerals and calcite. It has the disadvantage that the minerals sericite and kaolin minerals decompose, and in the latter method, magnetic separation, limonite cannot be removed sufficiently because its magnetic susceptibility is small, and calcite cannot be separated and removed at all. Ta.

一方、上記の問題点を解決する一方法として本
発明者等は先に特願昭60−041660号にて示した陶
石の熱水処理による精製法を開発した。この陶石
の熱水処理による精製法は、長石を含む陶石に対
して、該陶石の少なくとも50重量%の0.1〜1%
希塩酸溶液を加え、密閉容器中150℃以上の温度
で1昼夜以上加熱処理を行い長石をカオリン鉱物
に変化させる方法、並びに各種の不純物を含む陶
石に対して、該陶石の少なくとも50重量%の1〜
2%希塩酸溶液を加え、密閉容器中150℃以上の
温度で1昼夜加熱処理し、菱鉄鉱、褐鉄鉱、方解
石等を分解せしめ、次いでろ過後上記希塩酸溶液
と同量の0.1〜1%希塩酸溶液を加え、密閉容器
中150℃以上の温度で1昼夜以上加熱処理を行い
長石をカオリン鉱物に変化させる方法である。し
かし、含鉄鉱物を分解除去する事と長石からカオ
リン鉱物に変化させる事は同時に出来ない、長石
からカオリン鉱物に変化させるのに長時間を要す
るなどの欠点がある事を確認した。
On the other hand, as a method for solving the above-mentioned problems, the present inventors have developed a method for purifying pottery stone using hot water treatment, which was previously disclosed in Japanese Patent Application No. 60-041660. This method of refining pottery stone by hot water treatment requires 0.1 to 1% of at least 50% by weight of pottery stone containing feldspar.
A method of converting feldspar into kaolin mineral by adding a dilute hydrochloric acid solution and heat-treating it in a closed container at a temperature of 150°C or more for one day or night, and for pottery stone containing various impurities, at least 50% by weight of the pottery stone. 1~
Add a 2% diluted hydrochloric acid solution and heat-treat for one day and night at a temperature of 150°C or higher in a closed container to decompose siderite, limonite, calcite, etc. Then, after filtering, add 0.1 to 1% diluted hydrochloric acid solution in the same amount as the above diluted hydrochloric acid solution. In addition, the feldspar is converted into kaolin mineral by heat treatment in a closed container at a temperature of 150°C or more for more than one day and night. However, it has been confirmed that there are drawbacks, such as the fact that it is not possible to decompose and remove iron-containing minerals and convert feldspar to kaolin mineral at the same time, and that it takes a long time to change feldspar to kaolin mineral.

〈発明が解決しようとする問題点〉 本発明では陶磁器原料の有用成分たるセリサイ
ト、カオリン等の粘土鉱物を減少せしめる事な
く、長石を短時間でカオリン鉱物に変化させ、同
時にその他の含鉄鉱物や方解石等の不純物は溶出
除去しようとするものである。
<Problems to be solved by the invention> The present invention converts feldspar into kaolin mineral in a short time without reducing clay minerals such as sericite and kaolin, which are useful components of ceramic raw materials, and at the same time converts feldspar into kaolin mineral and other iron-containing minerals. Impurities such as calcite are to be removed by elution.

〈問題点を解決する為の手段〉 本発明では上述の目的達成の為に次の様な手段
を採用する。
<Means for solving the problems> The present invention employs the following means to achieve the above-mentioned object.

即ち、長石を含む陶磁器原料に対して、該陶磁
器原料の少なくとも50重量%の0.1〜1重量%希
塩酸溶液と、該陶磁器原料の1〜10重量%の塩化
アルミニウムを加え、密閉容器中150℃以上の温
度で1昼夜以上加熱処理を行い、菱鉄鉱、褐鉄
鉱、方解石等は溶出除去せしめ、長石はカオリン
鉱物に変化させることを特徴とする陶磁器原料の
精製法である。
That is, to a ceramic raw material containing feldspar, a 0.1 to 1% dilute hydrochloric acid solution of at least 50% by weight of the ceramic raw material and 1 to 10% by weight of aluminum chloride of the ceramic raw material are added, and the mixture is heated at 150°C or higher in a closed container. This is a method for refining ceramic raw materials, which is characterized by heat treatment for more than one day and night at a temperature of 100 ml to remove siderite, limonite, calcite, etc., and convert feldspar into kaolin mineral.

〈実施例及び作用〉 以下、実施例を示し、本発明を詳述する。<Examples and effects> EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 長石を含む熊本県天草町産の陶石を74μm以下
に粉砕した陶土(石英43.5、長石22.9、カオリン
4.4、セリサイト21.2、その他8.0各重量%)に、
0.5重量%塩酸溶液を陶土の10倍量加え、更に塩
化アルミニウムを陶土の10重量%加え、テフロン
コーテイングステンレス鋼製容器中に密閉し、
200℃で5日間保持し、次いで冷却、ろ過、水洗、
乾燥後、X線回折法により長石及びカオリンの定
量を行つた。その結果、長石2.0重量%、カオリ
ン17.1重量%であり、上記原料と比較した場合、
長石が殆どなくなり、カオリンが大幅に増加して
いる事が確かめられた。また、処前前後の陶土の
耐火度を測定したところ、処理前はSK15+であ
つたものが処理後はSK26となつていた。更に、
化学分析により処理前後の陶土中のFe2O3量を測
定したところ、処理前は0.77重量%であつたもの
が処理後は0.35重量%となつていた。尚、塩化ア
ルミニウムを添加せずに処理時間を5、10、20日
間と変化させ、上記と同じ処理条件で処理した場
合、処理後の鉱物組成並びに耐火度となる日数
は、10日間以上であつた。この場合、Fe2O3量の
減少はなかつた。
Example 1 Pottery clay made by crushing pottery stone from Amakusa Town, Kumamoto Prefecture containing feldspar to 74 μm or less (quartz 43.5, feldspar 22.9, kaolin
4.4, sericite 21.2, others 8.0% by weight),
Add 0.5% by weight hydrochloric acid solution 10 times the amount of china clay, then add aluminum chloride at 10% by weight of china clay, and seal in a Teflon-coated stainless steel container.
Hold at 200℃ for 5 days, then cool, filter, wash with water,
After drying, feldspar and kaolin were determined by X-ray diffraction. As a result, the content was 2.0% by weight of feldspar and 17.1% by weight of kaolin, and when compared with the above raw materials,
It was confirmed that most of the feldspar had disappeared and that kaolin had increased significantly. In addition, when we measured the fire resistance of the china clay before and after treatment, it was SK15+ before treatment, but it was SK26 after treatment. Furthermore,
When the amount of Fe 2 O 3 in the clay before and after treatment was measured by chemical analysis, it was 0.77% by weight before treatment, but it was 0.35% by weight after treatment. In addition, if the treatment time is changed to 5, 10, or 20 days without adding aluminum chloride, and the treatment is performed under the same treatment conditions as above, the mineral composition and fire resistance after treatment will be reached in 10 days or more. Ta. In this case, there was no decrease in the amount of Fe 2 O 3 .

この結果、含鉄鉱物を溶出除去する事と長石か
らカオリン鉱物に変化させる事が同時に出来、さ
らに、本発明者等が先に特願昭60−041660号にて
示した陶石の熱水処理による精製法に比べ、短時
間で長石からカオリン鉱物に変化させる事が出来
る事が確認された。
As a result, iron-containing minerals can be eluted and removed and feldspar can be changed into kaolin minerals at the same time.Furthermore, the hot water treatment of pottery stone as previously shown by the present inventors in Japanese Patent Application No. 60-041660 can be carried out. It has been confirmed that it is possible to transform feldspar into kaolin mineral in a shorter time compared to the refining method.

また、上記陶土を用い、塩酸濃度を0、0.1、
0.2、0.5、1、2重量%と変化させ、塩酸添加量
を陶土の0.5、1、2、5、10倍量加え、塩化ア
ルミニウムを添加せずに、処理温度を180℃、処
理日数を5日間として上記と同様の操作を行つ
た。その結果、塩酸濃度が0重量%(水だけ)で
は添加量に関係なく、処理前後の鉱物含有割合
は、ほぼ同じであつた。塩酸濃度0.1〜1重量%
では、長石の含有割合が減少し、カオリンの含有
割合が増加する事が確かめられた。また、その添
加量が多いほど長石含有割合の減少率、カオリン
含有割合の増加率が大きくなる事が確かめられ
た。塩酸濃度が2重量%では、その添加量が2倍
量以下の場合に長石の含有割合が減少し、カオリ
ンの含有割合が増加するがその程度は小さい事が
確かめられた。これらの結果から、塩酸濃度は
0.1〜1重量%、その添加量は陶土の0.5倍(50重
量%)以上とすべきであると言える。また、0.5
重量%塩酸を陶土の10倍量加えた場合が最も長石
の含有割合が減少し、カオリンの含有割合が増加
した。
In addition, using the above china clay, the concentration of hydrochloric acid was 0, 0.1,
The amount of hydrochloric acid added was changed to 0.2, 0.5, 1, and 2% by weight, and the amount of hydrochloric acid added was 0.5, 1, 2, 5, and 10 times that of china clay, and the treatment temperature was 180℃ and the number of treatment days was 5 without adding aluminum chloride. The same operation as above was performed for days. As a result, when the hydrochloric acid concentration was 0% by weight (only water), the mineral content ratio before and after treatment was almost the same regardless of the amount added. Hydrochloric acid concentration 0.1-1% by weight
It was confirmed that the content ratio of feldspar decreased and the content ratio of kaolin increased. It was also confirmed that the larger the amount added, the greater the rate of decrease in the feldspar content rate and the greater the rate of increase in the kaolin content rate. It was confirmed that when the hydrochloric acid concentration was 2% by weight, the content of feldspar decreased and the content of kaolin increased, but to a small extent when the amount added was less than twice the amount. From these results, the hydrochloric acid concentration is
It can be said that the amount added should be 0.1 to 1% by weight, or more than 0.5 times (50% by weight) that of china clay. Also, 0.5
When 10 times the weight of hydrochloric acid was added to china clay, the content of feldspar decreased the most and the content of kaolin increased.

次いで、上記と同様の操作に於いて、塩化アル
ミニウムの添加量を各種変化させた場合について
の各種データを第1図及び第2図に示す。即ち塩
化アルミニウムを陶土の1、2、5、10、20重量
%加えた場合、塩化アルミニウム添加量の変化に
伴うX線回路折法により求めた鉱物含有割合の変
化を第1図に、又塩化アルミニウム添加量と
Fe3O3量との関係を第2図にそれぞれグラフにて
示す。
Next, FIGS. 1 and 2 show various data obtained when the amount of aluminum chloride added was varied in the same operation as above. That is, when aluminum chloride was added at 1, 2, 5, 10, and 20% by weight to the china clay, Figure 1 shows the changes in the mineral content ratio determined by the X-ray circuit folding method as the amount of aluminum chloride added was changed. Aluminum addition amount and
The relationship with the amount of Fe 3 O 3 is shown graphically in Figure 2.

以上の実施例の結果から陶磁器原料中に含有さ
れる長石をカオリン鉱物に変化させる処理に際
し、処理温度は180℃以上で、添加する塩化アル
ミニウムは1%以上なければ処理時間の短縮効果
はないが、10%以上となればセリサイトが減少す
るので1〜10%が好ましいという事が判る。
From the results of the above examples, when processing to convert feldspar contained in ceramic raw materials into kaolin mineral, the processing temperature must be 180°C or higher and the aluminum chloride added must be 1% or higher to have the effect of shortening the processing time. , it can be seen that 1 to 10% is preferable because sericite decreases if it exceeds 10%.

次に含鉄鉱物を除去する場合には、処理温度は
150℃以上で、塩化アルミニウムは添加量が多い
ほど除去効果があるが、上記のように10%以上と
なればセリサイトが減少するので1〜10%とすべ
きである。
Next, when removing iron-containing minerals, the processing temperature is
At 150° C. or higher, the greater the amount of aluminum chloride added, the more effective it is at removing it, but as mentioned above, if it exceeds 10%, sericite will decrease, so the amount should be 1 to 10%.

〈発明の効果〉 以上述べて来た如く、本発明方法によれば陶磁
器原料中に含まれる長石をカオリン鉱物に変化さ
せる事が出来る為に、全体として長石含有率を減
少し、粘土含有率を高め耐火度を向上せしめるも
のであり、又同時に含鉄鉱物や方解石等の不純物
も除去する事が出来るので長石や含鉄鉱物等の不
純物を含む陶磁器原料を良質のものとなす方法と
して優れたものである。
<Effects of the Invention> As described above, according to the method of the present invention, since the feldspar contained in ceramic raw materials can be changed into kaolin mineral, the feldspar content can be reduced as a whole, and the clay content can be reduced. It is an excellent method for making ceramic raw materials containing impurities such as feldspar and iron-containing minerals into high-quality ones, as it increases the fire resistance and can also remove impurities such as ferrous minerals and calcite. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に於ける塩化アルミニウム
添加量と鉱物含有割合との関係を示すグラフ、第
2図は塩化アルミニウム添加量とFe2O3量との関
係を示すグラフ。
FIG. 1 is a graph showing the relationship between the amount of aluminum chloride added and the mineral content ratio in the method of the present invention, and FIG. 2 is a graph showing the relationship between the amount of aluminum chloride added and the amount of Fe 2 O 3 .

Claims (1)

【特許請求の範囲】[Claims] 1 長石を含む陶磁器原料に対して、該陶磁器原
料の少なくとも50重量%の0.1〜1重量%希塩酸
溶液と、該陶磁器原料の1〜10重量%の塩化アル
ミニウムを加え、密閉容器中150℃以上の温度で
1昼夜以上加熱処理を行い、菱鉄鉱、褐鉄鉱、方
解石等は溶出除去せしめ、長石はカオリン鉱物に
変化させることを特徴とする陶磁器原料の精製
法。
1 Add a 0.1 to 1% dilute hydrochloric acid solution containing at least 50% by weight of the ceramic raw material and 1 to 10% by weight of aluminum chloride to the ceramic raw material containing feldspar, and heat the mixture at 150°C or higher in a closed container. A method for refining ceramic raw materials, which is characterized by performing heat treatment at a temperature for more than one day and night to elute and remove siderite, limonite, calcite, etc., and convert feldspar into kaolin mineral.
JP21013386A 1986-09-05 1986-09-05 Purification of ceramic raw material Granted JPS6364951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21013386A JPS6364951A (en) 1986-09-05 1986-09-05 Purification of ceramic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21013386A JPS6364951A (en) 1986-09-05 1986-09-05 Purification of ceramic raw material

Publications (2)

Publication Number Publication Date
JPS6364951A JPS6364951A (en) 1988-03-23
JPH046668B2 true JPH046668B2 (en) 1992-02-06

Family

ID=16584331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21013386A Granted JPS6364951A (en) 1986-09-05 1986-09-05 Purification of ceramic raw material

Country Status (1)

Country Link
JP (1) JPS6364951A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432206B2 (en) * 2020-04-16 2024-02-16 丸美陶料株式会社 Ceramic manufacturing method, ceramic manufacturing granules and their manufacturing method

Also Published As

Publication number Publication date
JPS6364951A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
CA1173255A (en) Process for reducing the iron content of iron-, silicon- and aluminum-containing raw materials and for producing ferric oxids, optionally along with an alumina concentrate
Herbillon et al. Heterogeneity in silicon‐iron mixed hydroxides
US4024087A (en) Method of preparing coagulant for purification of water from mechanical admixtures
KR980700440A (en) METHOD FOR PRODUCING IRON FEEDSTOCK
JPH046668B2 (en)
US1785464A (en) Process of preparing pure alumina
Haldane Determination of free iron oxide in soils
Orugba et al. Application of the shrinking core models to hydrochloric acid dissolution of alumina from clay
JPS6313950B2 (en)
Groudev et al. Bioleaching of bauxites by wild and laboratory-bred microbial strains
US2238103A (en) Process of treating aluminous material to produce alumina
Amalia et al. Synthesis of a high-purity zircon powder with variations of HCI concentration and heating temperature
RU2087425C1 (en) Method of preparing the reagent for water treatment
RU2763715C1 (en) Method for processing titanium-magnetite ore waste
EP0731057A1 (en) Method for improving thermal stability of sepiolite
US1824807A (en) Removal of impurities from sand, clay, and the like materials
JPS5950031A (en) Method for purifying iron oxide powder
JP2005060209A (en) Method of refining high purity quartz
Hassan et al. Distribution and influence of iron phases on the physico-chemical properties of phyllosilicates
RU2017690C1 (en) Process for benefication of vein quartz
JPH02204318A (en) Method for refining silicon carbide powder
JPS6052087B2 (en) Manufacturing method of zeolitic composition
JPS62127485A (en) Method for recovering iron oxide from waste liquor produced by pickling of steel with hydrochloric acid
Ustaer et al. The separation of alunite in alunitic kaolin by selective flocculation
SU857288A1 (en) Method of purifying sulfate zinc solutions from copper

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term