JPH02204318A - Method for refining silicon carbide powder - Google Patents

Method for refining silicon carbide powder

Info

Publication number
JPH02204318A
JPH02204318A JP1023042A JP2304289A JPH02204318A JP H02204318 A JPH02204318 A JP H02204318A JP 1023042 A JP1023042 A JP 1023042A JP 2304289 A JP2304289 A JP 2304289A JP H02204318 A JPH02204318 A JP H02204318A
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
carbide powder
acid
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1023042A
Other languages
Japanese (ja)
Other versions
JP2798684B2 (en
Inventor
Toshikazu Amino
俊和 網野
Susumu Akiyama
晋 秋山
Hidetoshi Yamauchi
山内 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1023042A priority Critical patent/JP2798684B2/en
Publication of JPH02204318A publication Critical patent/JPH02204318A/en
Application granted granted Critical
Publication of JP2798684B2 publication Critical patent/JP2798684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To easily produce the high-purity silicon carbide powder from inexpensive silicon carbide by crushing the silicon carbide, recrystallizing the crushed material by heating and removing the remaining impurities by pickling. CONSTITUTION:The inexpensive silicon carbide contg. impurities is precrushed into the powder having <=100mu average grain diameter, and the powder is heated at 1500-2200 deg.C in a nonoxidizing atmosphere. Consequently, the powder is recrystallized, and the metallic impurities such as iron, Ca and Cr other than Si are moved to the surface from between the crystals in the powder. The heat-treated powder is cleaned with an inorg. acid such as hydrochloric acid, nitric acid, hydrofluoric acid and a mixture of hydrochloric acid and nitric acid to remove the impurities such as iron, Ca and Cr other than Si. By this method, the high-purity silicon carbide powder is easily and inexpensively obtained, and the powder is effectively utilized as the material for a liner tube in a diffusion furnace for producing semiconductors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭化珪素粉末の精製方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for refining silicon carbide powder.

〔従来の技術〕[Conventional technology]

近年、半導体製造用拡散炉におけるライナーチューブの
構成材料として、強度及び熱伝導性に優れた炭化珪素焼
結体が利用されている。又、炭化珪素焼結体内に鉄、カ
ルシニウム及びクロム等の不純物が残存していると、そ
の不純物濃度に相応して、半導体ウェハ内へ不純物が拡
散してウェハが汚染されるため、高純度のものが要求さ
れる。
In recent years, silicon carbide sintered bodies with excellent strength and thermal conductivity have been used as constituent materials for liner tubes in diffusion furnaces for semiconductor manufacturing. Additionally, if impurities such as iron, calcium, and chromium remain in the silicon carbide sintered body, the impurities will diffuse into the semiconductor wafer and contaminate the wafer, depending on the impurity concentration. things are required.

そこで、高い純度が要求される焼結体を製造する場合に
は、高純度の炭化珪素粉末を使用する必要がある。
Therefore, when producing a sintered body that requires high purity, it is necessary to use high purity silicon carbide powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、SiH4,5iC14及び CH3SiCl3等を出発原料として、気相反応法によ
って製造された炭化珪素粉末は高純度であるものの、高
価であるという問題があり、安価な炭化珪素粉末には多
量の金属不純物が含まれていて、それを除去するには、
オートクレーブ等を使用して、高温高圧下で強酸によっ
て処理した後、洗浄処理を行う必要が生じ、高価な設備
が必要となる。
However, although silicon carbide powder produced by a gas phase reaction method using SiH4,5iC14 and CH3SiCl3 as starting materials has high purity, it is expensive, and cheap silicon carbide powder contains a large amount of metal impurities. and to remove it, use
After treatment with a strong acid under high temperature and pressure using an autoclave or the like, it becomes necessary to perform a cleaning treatment, which requires expensive equipment.

この発明は上記の事情を考慮してなされたものであって
、その目的は多くの不純物が残存する安価な炭化珪素粉
末から大半の不純物を除去してそ濃度を大幅に低減させ
ることができ、極めて簡単かつ安価に高純度化すること
が可能な炭化珪素粉末の精製方法を徒供することにある
This invention was made in consideration of the above circumstances, and its purpose is to be able to remove most of the impurities from inexpensive silicon carbide powder in which many impurities remain, and to significantly reduce the concentration thereof. The object of the present invention is to provide a method for refining silicon carbide powder that can be highly purified extremely easily and inexpensively.

〔課題を解決するための手段及び作用〕上記の目的を達
成するために、この発明では、予め粉砕された炭化珪素
粉末を加熱して再結晶化した後、その炭化珪素粉末に残
存する不純物を酸洗浄によって除去するようにしている
。原料が粉砕されていないと、炭化珪素粉末粒子内に閉
じ込められた不純物の割合が多くなるからである。前記
加熱温度は1500℃以上で、かつ2200℃未満であ
ることが望ましい、加熱温度が2200℃以上であると
、粉末の粒成長が生じ、成形、焼結が困難になるからで
ある。又、加熱温度が1500℃未満であると、炭化珪
素粉末の再結晶が進行せず、不純物が粉末表面まで移動
しにくいからである。又、炭化珪素粉末の平均粒径は1
00μm以下であることが望ましく、10μ−以下であ
れば、より一層好ましい、加熱処理は、NZ、Ar、H
e、Co、真空等の一つ又は二つ以上の組合せの非酸化
性雰囲気が好ましい。
[Means and operations for solving the problem] In order to achieve the above object, in this invention, after heating and recrystallizing silicon carbide powder that has been crushed in advance, impurities remaining in the silicon carbide powder are removed. It is removed by acid cleaning. This is because if the raw material is not pulverized, the proportion of impurities trapped within the silicon carbide powder particles will increase. The heating temperature is desirably 1500° C. or higher and lower than 2200° C., because if the heating temperature is 2200° C. or higher, grain growth of the powder will occur, making molding and sintering difficult. Moreover, if the heating temperature is less than 1500° C., recrystallization of the silicon carbide powder will not proceed and impurities will be difficult to move to the powder surface. Also, the average particle size of silicon carbide powder is 1
00 μm or less, and even more preferably 10 μm or less.
A non-oxidizing atmosphere such as one or a combination of two or more of e, Co, vacuum, etc. is preferred.

そして、前記の加熱処理によれば、鉄,カルシュウム及
びクロム等のシリコン以外の金属不純物が炭化珪素粉末
内部における結晶間から表面へ向って移動する。そこで
、前記不純物を溶解する無機酸を使用して粉末の洗浄を
行えば、精製された高純度の炭化珪素粉末が得られる。
According to the heat treatment, metal impurities other than silicon, such as iron, calcium, and chromium, move from between the crystals inside the silicon carbide powder toward the surface. Therefore, if the powder is washed using an inorganic acid that dissolves the impurities, a highly purified silicon carbide powder can be obtained.

次に、この発明について詳細に説明する。Next, this invention will be explained in detail.

市販の安価な炭化珪素粉末はインゴットから粉砕された
後、粉砕時に混入した不純物が酸洗浄によって除去され
たものである。しかしながら、この炭化珪素粉末は鉄、
カルシニウム及びクロム等の不純物を数10pμmから
数100pp+nオーダーで含んでいる。その炭化珪素
粉末を再結晶化するために常圧で加熱する場合、加熱温
度は1500℃以上かつ2200℃未満の範囲に設定さ
れる。前記加熱温度が1500℃未満であると、炭化珪
素粉末の再結晶化が進行せず、不純物原子が炭化珪素粉
末内部の結晶格子内に閉じ込められたままになって、酸
洗浄では除去できなくなる。又、加熱温度が2200℃
以上であると、炭化珪素粉末の比表面積が大幅に減少し
、又、炭化珪素の昇華が激しく進む、よって、上記の温
度範囲が望ましい。
Commercially available, inexpensive silicon carbide powder is obtained by pulverizing an ingot and then removing impurities mixed in during pulverization by acid washing. However, this silicon carbide powder is iron,
It contains impurities such as calcium and chromium on the order of several 10 ppm to several 100 pp+n. When heating the silicon carbide powder under normal pressure to recrystallize it, the heating temperature is set in a range of 1500°C or more and less than 2200°C. If the heating temperature is less than 1500° C., recrystallization of the silicon carbide powder does not proceed, impurity atoms remain trapped in the crystal lattice inside the silicon carbide powder, and cannot be removed by acid washing. Also, the heating temperature is 2200℃
If the temperature is above, the specific surface area of the silicon carbide powder will be significantly reduced, and the sublimation of silicon carbide will proceed rapidly, so the above temperature range is desirable.

洗浄用の酸としては、塩酸、硝酸及び弗酸を単独で使用
でき、かつ各々の酸を1対lの体積割合で混合した3種
類の混酸(HCl +HNO3、HF+HNO3、HC
l+HF)も使用できる。特に、塩酸及び硝酸を含む混
酸を使用することが望ましい。その理由は塩酸が安価で
あり、しかも塩酸に対する不純物の溶解度が高いためで
ある。
As cleaning acids, hydrochloric acid, nitric acid, and hydrofluoric acid can be used alone, and three types of mixed acids (HCl + HNO3, HF + HNO3, HC
l+HF) can also be used. In particular, it is desirable to use a mixed acid containing hydrochloric acid and nitric acid. The reason for this is that hydrochloric acid is inexpensive and impurities have a high solubility in hydrochloric acid.

そして、酸洗浄に際しては、加熱済みの粉末に酸が添加
されて混濁液が調整され、その混濁液が所定時間放置さ
れる。この混濁液は50〜80℃の温度に加熱されると
、より好ましい、この放置時に、各種不純物が酸溶液中
に溶解する9次に、前記混濁液中の炭化珪素粉末がフィ
ルターによって濾別され、洗浄された後に乾燥されるこ
とにより、炭化珪素粉末の精製が終了する。精製された
炭化珪素粉末を焼結すれば、高純度かつ高強度で熱伝導
性に優れた焼結体が得られる。
In acid washing, an acid is added to the heated powder to prepare a turbid liquid, and the turbid liquid is left for a predetermined period of time. It is more preferable that this cloudy liquid is heated to a temperature of 50 to 80°C, and various impurities are dissolved in the acid solution during this standing period.Next, the silicon carbide powder in the cloudy liquid is filtered out by a filter. After washing and drying, the purification of the silicon carbide powder is completed. By sintering purified silicon carbide powder, a sintered body with high purity, high strength, and excellent thermal conductivity can be obtained.

次に、この発明の実施例及び比較例について説明する。Next, examples and comparative examples of the present invention will be described.

出発原料としては、インゴットから粉砕され、粉砕時に
混入する不純物を酸洗浄によって除去されたα型及びβ
型の炭化珪素粉末(以下、α型粉末、β型粉末とそれぞ
れ略称する)が使用された。α型粉末としては粒径の異
なる3種類のもの(C,Ca2O3,GC#2000.
GC#8000)が用意され、それぞれ表1に示す物性
を有すると共に、鉄,カルシュウム及びクロムからなる
多量の不純物を含んでいた。又、β型粉末としては、珪
砂をコークスで炭化させることによって合成したものと
、それを粉砕したものとが使用され、表1に示す物性を
有すると共に、前記α型粉末と同様の不純物を含んでい
た。尚、各不純物の濃度は発光分光分析によって測定し
たものである。
As starting materials, α-type and β-type raw materials are crushed from ingots and impurities mixed in during crushing are removed by acid washing.
type silicon carbide powder (hereinafter abbreviated as α-type powder and β-type powder, respectively) was used. There are three types of α-type powders with different particle sizes (C, Ca2O3, GC#2000.
GC#8000) were prepared, each having the physical properties shown in Table 1, and containing a large amount of impurities consisting of iron, calcium, and chromium. In addition, as the β-type powder, those synthesized by carbonizing silica sand with coke and those obtained by pulverizing the same are used, and they have the physical properties shown in Table 1 and do not contain the same impurities as the α-type powder. It was. Note that the concentration of each impurity was measured by emission spectrometry.

JLL− 阻 型 粒径  比表面積 不純物(pμm)(μ11
)   (rrr/g)  Fe   Ca   Cr
l α 300       560 200 182
 α  8.1  1.07  510 210 12
3 α  0.9  10.6  720 290 1
64 β  8.1  3.8  830 170  
95 β  0.5  16.1  920 260 
12得られた混濁液を常温常圧で24時間放置した。
JLL- Type Particle size Specific surface area Impurity (pμm) (μ11
) (rrr/g) Fe Ca Cr
l α 300 560 200 182
α 8.1 1.07 510 210 12
3 α 0.9 10.6 720 290 1
64 β 8.1 3.8 830 170
95 β 0.5 16.1 920 260
12 The obtained cloudy liquid was left to stand at room temperature and normal pressure for 24 hours.

次いで、前記混濁液をメンブランフィルタ−にかけて固
形分を濾別し、濾液のpHが7になるまで蒸留水によっ
て洗浄して乾燥させた。
Next, the turbid liquid was filtered to remove solids through a membrane filter, washed with distilled water until the pH of the filtrate reached 7, and dried.

尚、黒鉛製ルツボは0.2pμmの鉄と痕跡量のカルシ
ニウム及びクロムを含むのみであった。
The graphite crucible contained only 0.2 pμm of iron and trace amounts of calcium and chromium.

又、各側において使用した酸を表2に示す。Also shown in Table 2 are the acids used on each side.

又、各実施例及び比較例においては、下記の手順で実験
を行った。即ち、内径50111の黒鉛製ルツボに50
gの各種粉末試料を充填した。そして、この試料をタン
マン炉に挿入し、1200℃〜2000℃の範囲内の予
め選択した所定の温度で常圧加熱した9次に、加熱処理
済みの各種粉末試料に各種の酸溶液100ccを添加し
て攪拌混合し、表2 阻  酸の種類 AHC135χ試薬特級〔関東化学(株)製〕B   
)lNO3652同上 CHF  46χ 同上 D   HCI、 )INO3の1対1混合液(体積割
合)E  旺、 HNO3のl対!混合液(体積割合)
F   HCI、IPの1対1混合液(体積割合)〔実
施例1〜3〕 実施例1〜3では、予め選択された各粉末試料(表1中
のm3.Ik5)、をそれぞれタンマン炉内で常圧加熱
した0次に、表2に示す各種の酸から選択した酸による
洗浄処理を施し、蒸留水による洗浄を行った後、乾燥さ
せた。得られた粉末試料の不純物濃度を発光分光分析に
よって測定すると共に、加熱処理後の比表面積も測定し
た。その結果及び加熱条件を表3に示す。
Further, in each Example and Comparative Example, experiments were conducted according to the following procedure. That is, in a graphite crucible with an inner diameter of 50111
g of various powder samples were filled. Then, this sample was inserted into a Tammann furnace and heated at normal pressure at a pre-selected temperature within the range of 1200°C to 2000°C.Next, 100cc of various acid solutions were added to the various heat-treated powder samples. Table 2 Type of inhibitor AHC135χ reagent special grade [manufactured by Kanto Kagaku Co., Ltd.] B
) lNO3652 Same as above CHF 46χ Same as above D HCI, ) 1:1 mixture of INO3 (volume ratio) E volume, l of HNO3! Mixed liquid (volume ratio)
F 1:1 mixture of HCI and IP (volume ratio) [Examples 1 to 3] In Examples 1 to 3, each pre-selected powder sample (m3.Ik5 in Table 1) was placed in a Tamman furnace. After heating at normal pressure, the sample was washed with an acid selected from the various acids shown in Table 2, washed with distilled water, and then dried. The impurity concentration of the obtained powder sample was measured by emission spectrometry, and the specific surface area after heat treatment was also measured. Table 3 shows the results and heating conditions.

LL− 例 試料 加熱 酸 比表 不純物(ppw)評価逐 
 尚 条件   面積 Fe  Ca  Cr1315
00℃HCI   4.1 20 10<  1<  
◎(α)lhr 232000℃MCI  0.14 8 − − ◎(
α)Ihr 351600℃HCI −810<  1<  ◎(β
)lhr 尚、上記の表3において、「〈」の記号は「以下」を意
味し、試料漱の欄のギリシャ文字は結晶型を示す、評価
欄には高純度化の度合を、■、○△、×の4段階に区分
して示す、以下同様。
LL- Example Sample heating acid ratio impurity (ppw) evaluation
Conditions Area Fe Ca Cr1315
00℃HCI 4.1 20 10<1<
◎(α)lhr 232000℃MCI 0.14 8 - - ◎(
α) Ihr 351600℃HCI -810<1<◎(β
) lhr In Table 3 above, the symbol "<" means "less than", the Greek letters in the sample stock column indicate the crystal type, and the evaluation column indicates the degree of purification, ■, ○. It is divided into four stages of △ and ×, and the same applies hereafter.

上記の実験結果によれば、平均粒径が1μm以下の炭化
珪素粉末を、1500℃以上の温度で1時間以上にわた
って常圧で加熱後、酸洗浄を行えば、炭化珪素粉末の結
晶構造とは無関係に、各不純物の濃度が初期濃度に比べ
てその1/100〜10/100まで大幅に減少して、
炭化珪素粉末の高純度化が図られたことがわかる。
According to the above experimental results, if silicon carbide powder with an average particle size of 1 μm or less is heated at a temperature of 1500°C or higher for 1 hour or more under normal pressure and then washed with acid, the crystal structure of the silicon carbide powder can be changed. Regardless, the concentration of each impurity is significantly reduced to 1/100 to 10/100 of the initial concentration,
It can be seen that the silicon carbide powder has been highly purified.

〔比較例■、■〕[Comparative examples ■, ■]

β型炭化珪素粉末について表4に示す条件下で、比較実
験を行った。その結果を表4に合わせて示す。
A comparative experiment was conducted on β-type silicon carbide powder under the conditions shown in Table 4. The results are also shown in Table 4.

−Jしく− 例 試料 加熱 酸 比表 不純物(pμm)評価患 
患  条件   面積 Fe  Ca  Cr■ 4 
1400″t HCI  −7801608X(β)l
hr ■ 4 加熱 HCI  −8101609x(β)せ
ず この結果と前記実施例3の結果とを比較すると、β型炭
化珪素粉末については、1400℃で加熱した場合でも
、高純度化が困難であることがわかる。
-J-like- Example Sample Heating Acid Ratio Table Impurity (pμm) Evaluation
Disease condition Area Fe Ca Cr■ 4
1400″t HCI-7801608X(β)l
hr ■ 4 Without heating HCI -8101609x (β) Comparing this result with the results of Example 3, it is found that it is difficult to achieve high purity of β-type silicon carbide powder even when heated at 1400°C. I understand.

加熱しない場合、不純物濃度の減少量は極めて少ない。Without heating, the amount of decrease in impurity concentration is extremely small.

〔比較例■〜0〕 α型炭化珪素粉末に対し、加熱条件及び酸の種類に関す
る有為性を確認するため、下記の比較実験を行った。そ
の結果を表5に示す。
[Comparative Examples 1 to 0] The following comparative experiment was conducted on α-type silicon carbide powder in order to confirm the significance of heating conditions and types of acids. The results are shown in Table 5.

例 試料 Na  階 ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) (α) 1200℃   hr 1300℃ 0.17hr 1300℃ 0.5hr ! 加熱 酸 表面 不純物(pμm)評価条件   積 
 Fe  Ca  Cr加熱HCI  −660190
15X せず 同上)1cI + −69028016x)INO3 同上HP 97 30 2.1 △ 同上 同上 62 25 1  <   Δ ′ HP  +  − INO3 HCI+  − F HCI  10.6680 77 25 1.6 △ × uci  io、67i。
Example Sample Na floor ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) ■ 3 (α) (α) 1200℃ hr 1300℃ 0.17hr 1300℃ 0.5hr! Heating Acid Surface Impurity (pμm) Evaluation Conditions Product
Fe Ca Cr heating HCI-660190
15 .

× HCI  10゜1350 × −」j」創り− o  3 1300℃ )IC19,082−−△(α
)lhr [相]  3 1300℃ lIc1  8.5 80
 −  −  へ(α)3hr @   1 1600℃ HCI   −84513,
9△(α)lhr 02  同上11cI  −44282,00(α) 上記の実験結果によれば、α型炭化珪素粉末を加熱する
ことなく酸洗浄のみを行った場合(比較例■〜■)、そ
の洗浄液に弗酸が含まれていると、不純物が初期濃度の
10/100前後までは少なくなるが、それ以下にまで
減少させることは困難である。
× HCI 10゜1350
)lhr [Phase] 3 1300℃ lIc1 8.5 80
- - To (α)3hr @ 1 1600℃ HCI -84513,
9Δ(α)lhr 02 Same as above 11cI -44282,00(α) According to the above experimental results, when α-type silicon carbide powder is only acid-washed without heating (Comparative Examples ■ to ■), When the cleaning solution contains hydrofluoric acid, impurities are reduced to about 10/100 of the initial concentration, but it is difficult to reduce them to less than that.

又、α型炭化珪素粉末の加熱温度が1300℃の時(比
較例■〜@)、加熱時間を3時間まで延長しても、不純
物濃度は10/100程度まで減少させることができる
に過ぎない、加熱条件が1200℃。
Furthermore, when the heating temperature of α-type silicon carbide powder is 1300°C (Comparative Examples ■~@), even if the heating time is extended to 3 hours, the impurity concentration can only be reduced to about 10/100. , the heating condition was 1200°C.

1時間の場合(比較例■)の場合も同様である。The same applies to the case of 1 hour (Comparative Example ■).

炭化珪素粉末を1500℃で加熱した場合、粒径が8μ
m以上であると、不純物濃度を10/100程度まで低
下させることができる。
When silicon carbide powder is heated at 1500℃, the particle size is 8μ
m or more, the impurity concentration can be reduced to about 10/100.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1 予め粉砕された炭化珪素粉末を加熱して再結晶化し
た後、その炭化珪素粉末に残存する不純物を酸洗浄によ
って除去することを特徴とする炭化珪素粉末の精製方法
。 2 前記炭化珪素粉末の平均粒径は100μm以下であ
ることを特徴とする請求項1に記載の炭化珪素粉末の精
製方法。 3 前記加熱温度は非酸化性雰囲気下1500℃以上で
かつ2200℃未満であることを特徴とする請求項1又
は2に記載の炭化珪素粉末の精製方法。 4 前記不純物は鉄,カルシュウム及びクロム等のシリ
コン以外の金属を含み、酸はそれらを溶解する無機酸で
あることを特徴とする請求項1乃至3の何れか一項に記
載の炭化珪素粉末の精製方法。
[Scope of Claims] 1. A method for purifying silicon carbide powder, which comprises heating and recrystallizing pre-pulverized silicon carbide powder, and then removing impurities remaining in the silicon carbide powder by acid washing. 2. The method for refining silicon carbide powder according to claim 1, wherein the average particle size of the silicon carbide powder is 100 μm or less. 3. The method for refining silicon carbide powder according to claim 1 or 2, wherein the heating temperature is 1500°C or higher and lower than 2200°C in a non-oxidizing atmosphere. 4. The silicon carbide powder according to any one of claims 1 to 3, wherein the impurities include metals other than silicon, such as iron, calcium, and chromium, and the acid is an inorganic acid that dissolves them. Purification method.
JP1023042A 1989-01-31 1989-01-31 Purification method of silicon carbide powder Expired - Lifetime JP2798684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023042A JP2798684B2 (en) 1989-01-31 1989-01-31 Purification method of silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023042A JP2798684B2 (en) 1989-01-31 1989-01-31 Purification method of silicon carbide powder

Publications (2)

Publication Number Publication Date
JPH02204318A true JPH02204318A (en) 1990-08-14
JP2798684B2 JP2798684B2 (en) 1998-09-17

Family

ID=12099403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023042A Expired - Lifetime JP2798684B2 (en) 1989-01-31 1989-01-31 Purification method of silicon carbide powder

Country Status (1)

Country Link
JP (1) JP2798684B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111923A (en) * 1997-06-20 1999-01-19 Shinetsu Quartz Prod Co Ltd High purity silicon carbide powder and its production
KR20000006202A (en) * 1998-06-23 2000-01-25 시바타 마사하루 A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
JP2014122131A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Production method of high-purity silicon carbide powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619246A (en) * 1984-06-25 1986-01-16 松下電器産業株式会社 Insect control apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619246A (en) * 1984-06-25 1986-01-16 松下電器産業株式会社 Insect control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111923A (en) * 1997-06-20 1999-01-19 Shinetsu Quartz Prod Co Ltd High purity silicon carbide powder and its production
KR20000006202A (en) * 1998-06-23 2000-01-25 시바타 마사하루 A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
JP2000281328A (en) * 1999-03-30 2000-10-10 Toshiba Ceramics Co Ltd Purified silicon carbide powder for member of semiconductor device, its purification, sintered compact for member of semiconductor device obtained from the powder, and its production
JP2014122131A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Production method of high-purity silicon carbide powder

Also Published As

Publication number Publication date
JP2798684B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
CN110217796B (en) High-purity silicon carbide powder and preparation method thereof
JPS5814391B2 (en) Manufacturing method of ceramic material
JP2010173916A (en) Method of manufacturing silicon carbide from silicon waste
US4525336A (en) Process for removing impurities from silicon fragments
JP2018016498A (en) Method for manufacturing silicon carbide single crystal ingot
JPH02204318A (en) Method for refining silicon carbide powder
US5211801A (en) Method for manufacturing single-crystal silicon carbide
JPS6325216A (en) Manufacture of boron oxide
JP2660650B2 (en) Manufacturing method of α-type silicon carbide
JPS60195016A (en) Purification of metallic silicon
JP4006716B2 (en) High purity silicon carbide powder and method for producing the same
JPH072510A (en) Dephosphorization process for tetrachlorosilane
JPS61146797A (en) Continuous manufacture of silicon nitride and silicon carbide
JP3466754B2 (en) Purification method of magnesium oxide
JP4322122B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
JP4326345B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
JPH03213142A (en) Method for purifying particulate material
CN113265703B (en) Method for deiodinating metal arsenic crystal
JP3285621B2 (en) Method for producing silicon nitride powder
JP2665437B2 (en) Purification method of silicon metal
JPH0681011A (en) Production of alloy powder
JPS5950086B2 (en) Semiconductor jig
JPH0337195A (en) Production of single-crystalline silicon carbide
JPS6247437A (en) Manufacture of metallic chromium with very low nitrogen content
JPS60195099A (en) Production of silicon nitride whisker

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11