JP2010173916A - Method of manufacturing silicon carbide from silicon waste - Google Patents

Method of manufacturing silicon carbide from silicon waste Download PDF

Info

Publication number
JP2010173916A
JP2010173916A JP2009020598A JP2009020598A JP2010173916A JP 2010173916 A JP2010173916 A JP 2010173916A JP 2009020598 A JP2009020598 A JP 2009020598A JP 2009020598 A JP2009020598 A JP 2009020598A JP 2010173916 A JP2010173916 A JP 2010173916A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
powder
mixed
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009020598A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Tsutomu Takahashi
務 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009020598A priority Critical patent/JP2010173916A/en
Publication of JP2010173916A publication Critical patent/JP2010173916A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of economically manufacturing silicon carbide of suitable property for industrial use with a cutting waste of silicon or the like as a raw material which generates in large quantity in the manufacturing process of silicon wafer etc. <P>SOLUTION: This method of manufacturing silicon carbide is a method of manufacturing silicon carbide in which silicon waste is mixed with carbon powder equivalent to or more than an amount of the silicon waste and the mixed powder is heated in a non-oxidative atmosphere at 1,000-1,400°C for 6-24 hours to react the silicon waste with the carbon powder to manufacture silicon carbide, and after cooling it is acid-washed to remove impurities, then dried, and favorably, the silicon cutting waste generated in the manufacturing process of silicon wafer is used, and the silicon cutting waste is mixed with the carbon powder after defatting treatment or dewatering treatment, then the product is acid-lixiviated after heat treatment, and impurities are removed by washing with water or alcohol. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコン屑を原料として炭化珪素を製造する方法に関する。より詳しくは、本発明は、シリコンウエハーの製造工程において生じる多量のシリコン切削屑等を原料として、工業材料に適する品質の炭化珪素を経済的に製造する方法に関する。   The present invention relates to a method for producing silicon carbide using silicon scrap as a raw material. More specifically, the present invention relates to a method for economically producing silicon carbide having a quality suitable for industrial materials, using as a raw material a large amount of silicon cutting waste or the like generated in the production process of a silicon wafer.

半導体材料として使用されるシリコンウエハーの製造工程では、単結晶シリコン棒からウエハーを切り出すときにウエハーの枚数分とほぼ同量のシリコン切削屑が発生する。シリコンウエハーが薄くなり、ウエハーの枚数が多くなるのに伴い、シリコン切削屑も増加している。シリコンウエハーに用いられる単結晶シリコンは極めて高純度であるので、多量に発生するシリコン切削屑を回収して有効に再利用することができれば、産業上の利点が大きい。   In the manufacturing process of a silicon wafer used as a semiconductor material, when the wafer is cut out from a single crystal silicon rod, silicon cutting waste is generated in an amount substantially equal to the number of wafers. As silicon wafers become thinner and the number of wafers increases, silicon scraps also increase. Since single crystal silicon used for a silicon wafer is extremely high in purity, there is a great industrial advantage if a large amount of generated silicon cutting waste can be recovered and reused effectively.

このシリコン切削屑には鉄等が混在しているので、再利用するにはこれらの不純物を経済的に除去する必要がある。具体的には、シリコンウエハーを製造するには、一般に、ワイヤーソーを用いて高純度の単結晶シリコン棒を薄くスライスする。このワイヤーソーには高硬度の炭化珪素粉末が付着されており、この炭化珪素粉末が砥石の役割を果たしてシリコン棒を切削し、薄板状のウエハーが切り出される。このため、シリコン切削屑には炭化珪素粉とワイヤーに起因する鉄粉が混在している。このため、シリコン切削屑を再利用するにはこれらの不純物を除去する必要があるが、炭化珪素は珪素と性質が似ているので、シリコン切削屑から炭化珪素を経済的に除去するのは難しいと云う問題がある。   Since this silicon cutting scrap contains iron and the like, it is necessary to economically remove these impurities for reuse. Specifically, in order to manufacture a silicon wafer, a high-purity single crystal silicon rod is generally sliced thinly using a wire saw. A high hardness silicon carbide powder is adhered to the wire saw, and the silicon carbide powder serves as a grindstone to cut the silicon rod, thereby cutting out a thin wafer. For this reason, silicon carbide powder and iron powder resulting from the wire are mixed in the silicon cutting waste. For this reason, it is necessary to remove these impurities in order to reuse the silicon cutting scrap, but since silicon carbide has similar properties to silicon, it is difficult to economically remove silicon carbide from the silicon cutting scrap. There is a problem.

一方、炭化珪素は従来から研磨材や耐火材として広く利用されておら、近年は高純度化および高緻密化によってエンジニアセラミックス原料としての用途が高まっている。この炭化珪素の工業的に確立された製造方法としては、アチソン法とシリカの直接還元法が知られている。   On the other hand, silicon carbide has been widely used as a polishing material and a refractory material, and in recent years, its use as a raw material for engineer ceramics has increased due to high purity and high densification. As industrially established methods for producing silicon carbide, the Atchison method and the direct reduction method of silica are known.

アチソン法は、ケイ石にコークスを混合して2000℃前後に加熱し、焼結させてα型炭化珪素を製造する。シリカの直接還元法は、シリカ粉末に炭素粉末を混合し、これをペレット化し、2000℃前後に加熱して焼結させてβ型炭化珪素を製造する。   In the Atchison method, coke is mixed with silica, heated to around 2000 ° C., and sintered to produce α-type silicon carbide. In the direct reduction method of silica, carbon powder is mixed with silica powder, pelletized, heated to around 2000 ° C. and sintered to produce β-type silicon carbide.

アチソン法およびシリカ直接還元法は何れも安価なケイ石やシリカ、コークスを用いて炭化珪素を製造できる利点を有しているが、ケイ石やシリカ(SiO2)を出発原料とするため高温の加熱処理を必要とする。また、不純物が混入しやすいため高純度の半導体材料には適しないなどの問題がある。具体的には、アチソン法で製造される炭化珪素粉末はバルク状であるため粉砕する必要があり、この粉砕工程において不純物の混入を招きやすく、また炭化珪素粉末の粒径の制御が難しい。 Both the Atchison method and the direct silica reduction method have the advantage that silicon carbide can be produced using inexpensive silica, silica, and coke. However, since silica and silica (SiO 2 ) are used as starting materials, Requires heat treatment. Further, since impurities are easily mixed, there is a problem that it is not suitable for a high-purity semiconductor material. Specifically, since the silicon carbide powder produced by the Atchison method is bulky, it must be pulverized. In this pulverization step, impurities are likely to be mixed, and the particle size of the silicon carbide powder is difficult to control.

一方、金属シリコン(Si)を原料とし、炭素と反応させて炭化珪素を製造する直接合成方法も検討されているが(特開2002−316812号公報参照)、製造される炭化珪素粉末は粒径が粗く、また原料の金属シリコンは高価であり、かつ微粉砕するコストも要するため、工業生産に適しないと云う問題がある。   On the other hand, a direct synthesis method for producing silicon carbide by reacting carbon with metal silicon (Si) as a raw material has been studied (see Japanese Patent Application Laid-Open No. 2002-316812). However, since the raw material silicon metal is expensive and requires fine pulverization, there is a problem that it is not suitable for industrial production.

また、金属シリコンを原料として炭化珪素を製造する方法として、混練容器内周面および混連棒外周面に気相反応によって高純度の炭化珪素膜を形成し、この混練容器にシリコン粉末と炭素粉末を入れ、50℃〜100℃の温度下、5〜10パスカルの加圧下で混合することによって炭化珪素粉末を製造する方法が知られている(特開2000−44223号公報参照)。しかし、この方法は予め混練容器を製造するので工程が煩雑であり、しかも大量生産できないなどの問題がある。なお、炭化珪素の一般的な製造方法が、「セラミック」、22号(1987年発行)、46頁〜50頁に記載されている。   Further, as a method for producing silicon carbide using metal silicon as a raw material, a high-purity silicon carbide film is formed by a gas phase reaction on the inner peripheral surface of the kneading vessel and the outer peripheral surface of the mixing rod, and silicon powder and carbon powder are formed in the kneading vessel. And a method of producing silicon carbide powder by mixing under a pressure of 5 to 10 Pascal at a temperature of 50 ° C. to 100 ° C. is known (see Japanese Patent Application Laid-Open No. 2000-44223). However, this method has a problem that the kneading container is manufactured in advance, so that the process is complicated and mass production cannot be performed. A general method for producing silicon carbide is described in “Ceramic”, No. 22 (published in 1987), pages 46-50.

特開2002−316812号公報JP 2002-316812 A 特開2000−44223号公報JP 2000-44223 A

セラミック、22号(1987年発行)、46頁〜50頁Ceramic, No.22 (issued in 1987), p.46-50

本発明は、シリコンウエハーの製造工程において発生するシリコン切削屑等を有効に利用すると共に従来の炭化珪素の製造方法における上記問題を解決した炭化珪素の製造方法を提供する。すなわち、本発明は、シリコンウエハーの製造工程において発生するシリコン切削屑等を有効に利用することができ、かつシリコン粉(Si)を原料に用いるので1000℃〜1400℃程度の加熱処理でよく、2000℃前後の高温処理を必要とせず、しかも、鉄等の不純物を効率よく除去することができ、工業的に利用することができる品位の炭化珪素を経済的に製造することができる製造方法を提供する。   The present invention provides a method for producing silicon carbide that effectively utilizes silicon chips generated in the production process of a silicon wafer and solves the above-mentioned problems in conventional methods for producing silicon carbide. That is, the present invention can effectively use silicon cutting waste generated in the manufacturing process of a silicon wafer, and since silicon powder (Si) is used as a raw material, heat treatment at about 1000 ° C. to 1400 ° C. is sufficient. A production method that does not require high-temperature treatment at around 2000 ° C., can efficiently remove impurities such as iron, and can economically produce high-quality silicon carbide that can be used industrially. provide.

本発明は以下の技術構成によって上記課題を解決した炭化珪素の製造方法である。
〔1〕シリコン屑に対してカーボン粉を当量以上混合し、この混合粉を、非酸化性雰囲気下、1000℃〜1400℃で、6時間〜24時間加熱してシリコン屑とカーボン粉を反応させて炭化珪素を製造し、冷却後、酸洗浄して不純物を除去し、乾燥することを特徴とする炭化珪素の製造方法。
〔2〕シリコン屑がシリコンウエハーの切断工程において生じたシリコンスラッジである上記[1]に記載する炭化珪素の製造方法。
〔3〕シリコン屑を脱脂処理ないし脱水処理した後にカーボン粉と混合し、該混合粉をペレット化して加熱処理する上記[1]または上記[2]の何れかに記載する炭化珪素の製造方法。
〔4〕シリコン屑に対してカーボン粉を当量以上混合した混合粉をペレット化し、密閉中、不活性ガスまたは還元性ガスまたは真空中で加熱する上記[1]〜上記[3]の何れかに記載する炭化珪素の製造方法。
〔5〕加熱処理後に生成物を酸浸出した後に、水またはアルコールで洗浄して不純物を除去する上記[1]〜上記[4]の何れかに記載する炭化珪素の製造方法。
The present invention is a method for producing silicon carbide that solves the above-described problems by the following technical configuration.
[1] Carbon dust is mixed with silicon scrap in an equivalent amount or more, and this mixed powder is heated at 1000 ° C. to 1400 ° C. for 6 hours to 24 hours in a non-oxidizing atmosphere to react silicon scrap with carbon powder. A method for producing silicon carbide, comprising: producing silicon carbide, cooling, removing acid by washing with an acid, and drying.
[2] The method for producing silicon carbide as described in [1] above, wherein the silicon scrap is silicon sludge generated in the cutting process of the silicon wafer.
[3] The method for producing silicon carbide according to [1] or [2] above, wherein the silicon waste is degreased or dehydrated and then mixed with carbon powder, and the mixed powder is pelletized and heat-treated.
[4] Any one of the above [1] to [3], wherein the mixed powder obtained by mixing carbon powder with an equivalent amount or more with silicon waste is pelletized and heated in an inert gas, a reducing gas or a vacuum during sealing. A method for producing silicon carbide as described.
[5] The method for producing silicon carbide as described in any one of [1] to [4] above, wherein after leaching the product after the heat treatment, the impurities are removed by washing with water or alcohol.

本発明の製造方法は、シリコンウエハーの製造工程において生じたシリコン切削屑などを原料とするので、炭化珪素を安価に製造することができる。これらのシリコン切削屑は金属シリコンを回収しようとすると有効なリサイクル手段がなく、現在は廃棄物処理されているが、本発明の製造方法はシリコン切削屑を炭化珪素にして回収するので、シリコン切削屑に混在している炭化珪素粉末を除去する必要がなく、廃棄物処理されているシリコン切削屑を有効に再利用することができる。   Since the manufacturing method of this invention uses the silicon | silicone cutting waste etc. which occurred in the manufacturing process of a silicon wafer as a raw material, it can manufacture silicon carbide at low cost. These silicon cutting scraps have no effective recycling means when trying to recover metal silicon, and are currently disposed of as waste. However, the manufacturing method of the present invention recovers silicon cutting scraps as silicon carbide. It is not necessary to remove the silicon carbide powder mixed in the scrap, and the silicon cutting scrap that has been treated as a waste can be effectively reused.

また、本発明の製造方法は、金属シリコンであるシリコン切削屑を原料とするので、シリカ(SiO2)を原料として用いる方法よりも低い反応温度、約1000℃〜1400℃で炭化珪素を製造することができ、経済的に有利である。 The manufacturing method of the present invention, since the silicon swarf is metal silicon as a raw material, silica (SiO 2) to produce a low reaction temperature, silicon carbide at about 1000 ° C. to 1400 ° C. than the method using as a raw material Can be economically advantageous.

さらに、本発明の製造方法では、加熱処理によって生成される炭化珪素は軽く解砕して粉末になるので、従来の製造方法のような粉砕工程を必要としない。一般に、シリコン切削屑の平均粒径は概ね0.5〜20μmであり、これを加熱処理して炭素粉末と反応させて生じる炭化珪素は、反応温度が約1000℃〜1400℃であるので、粉末の焼結状態が緩く、軽く解砕するだけで原料のシリコン切削屑と同程度の粉末になる。従って、反応後に粉砕工程を必要とせず、粉砕装置から鉄などの不純物が混入する問題がなく、純度の高い炭化珪素を得ることができる。   Furthermore, in the manufacturing method of the present invention, silicon carbide produced by the heat treatment is lightly crushed into powder, so that a pulverization step as in the conventional manufacturing method is not required. Generally, the average particle diameter of silicon cutting scraps is approximately 0.5 to 20 μm, and silicon carbide produced by reacting this with heat and carbon powder has a reaction temperature of about 1000 ° C. to 1400 ° C. The sintered state of the powder is loose, and it becomes a powder similar to the raw silicon cutting scraps just by lightly crushing. Therefore, a pulverization step is not required after the reaction, and there is no problem that impurities such as iron are mixed from the pulverizer, and high-purity silicon carbide can be obtained.

本発明に係る製造方法の概略を示す工程図Process drawing which shows the outline of the manufacturing method which concerns on this invention

以下、本発明を実施形態に基づいて具体的に説明する。本発明の製造方法の概略を図1に示す。図示するように、本発明の製造方法は、シリコン屑に対してカーボン粉を当量以上混合し、この混合粉を、好ましくはペレット化し、非酸化性雰囲気下、1000℃〜140℃で、6時間〜24時間加熱してシリコン屑とカーボン粉を反応させて炭化珪素を製造し、冷却後、酸洗浄して不純物を除去し、乾燥することを特徴とする炭化珪素の製造方法である。   Hereinafter, the present invention will be specifically described based on embodiments. An outline of the production method of the present invention is shown in FIG. As shown in the figure, in the production method of the present invention, carbon powder is mixed in an equivalent amount or more with respect to silicon scraps, and this mixed powder is preferably pelletized, and in a non-oxidizing atmosphere at 1000 ° C. to 140 ° C. for 6 hours. It is a method for producing silicon carbide, characterized in that silicon carbide is produced by reacting silicon scrap and carbon powder by heating for -24 hours, and after cooling, acid cleaning is performed to remove impurities and drying.

原料のシリコン屑はシリコンウエハーの切断工程において生じたシリコン切削屑(シリコンスラッジと云う)、加工済みスラリーなどを用いることができる。シリコンスラッジは脱水処理および脱脂処理し、また磁気選別によって鉄を除去して用いると良い。脱脂処理は酸洗浄、アルカリ洗浄、アルコール洗浄すれば良い。洗浄処理後、乾燥しカーボン粉と混合する。   As the raw silicon scrap, silicon cutting scrap (called silicon sludge) generated in the cutting process of the silicon wafer, processed slurry, or the like can be used. Silicon sludge is preferably used after dehydration and degreasing and removing iron by magnetic sorting. The degreasing treatment may be performed by acid cleaning, alkali cleaning, or alcohol cleaning. After washing, dry and mix with carbon powder.

カーボン粉は、高純度の炭化珪素を製造するには純炭素粉を用い、耐火材や研磨剤、エンジニアセラミックなどに用いる炭化珪素を製造するにはコークス粉などを用いることができる。   As the carbon powder, pure carbon powder can be used for producing high-purity silicon carbide, and coke powder or the like can be used for producing silicon carbide used for refractory materials, abrasives, engineer ceramics, and the like.

シリコン屑に対してカーボン粉を当量以上混合する。具体的には、脱脂乾燥したシリコンスラッジ1kgに対して、カーボン粉0.4kg〜0.8kgを混合するのが良い。カーボン粉が当量より少ないと未反応のシリコン屑が多くなる。カーボン粉が多過ぎると未反応のカーボン量が増えるので無駄にになる。   Carbon powder is mixed in an equivalent amount or more with respect to silicon waste. Specifically, 0.4 kg to 0.8 kg of carbon powder is preferably mixed with 1 kg of degreased and dried silicon sludge. When the carbon powder is less than the equivalent, unreacted silicon scrap increases. Too much carbon powder is wasted because the amount of unreacted carbon increases.

シリコン屑とカーボン粉の混合粉をペレット化して加熱炉に入れ、非酸化性雰囲気下で加熱処理する。加熱炉内を非酸化性雰囲気にするには、炉を密閉遮断するか、不活性ガスまたは還元ガスを炉内に導入すればよく、また真空雰囲気にしても良い。   The mixed powder of silicon scrap and carbon powder is pelletized, put into a heating furnace, and heat-treated in a non-oxidizing atmosphere. In order to make the inside of the heating furnace a non-oxidizing atmosphere, the furnace may be hermetically shut off, or an inert gas or a reducing gas may be introduced into the furnace, or a vacuum atmosphere may be used.

加熱処理温度は1000℃〜1400℃が適当であり、6時間〜24時間加熱する。この加熱処理によってシリコン屑とカーボン粉が反応して炭化珪素が製造される。製造された炭化珪素粉末は焼結状態が緩く、軽く解砕するだけで原料のシリコン切削屑と同程度の粉末になる。   The heat treatment temperature is suitably 1000 ° C. to 1400 ° C., and the heating is performed for 6 hours to 24 hours. By this heat treatment, silicon scrap and carbon powder react to produce silicon carbide. The produced silicon carbide powder has a loose sintered state, and becomes a powder equivalent to the raw silicon cutting scraps only by light pulverization.

解砕した炭化珪素粉末をフッ酸等に浸漬して酸浸出し、あるいはフッ酸等を用いて酸洗浄し、炭化珪素粉末中に残留する鉄等を溶解して除去する。炭化珪素はフッ酸等には溶解しないので、鉄等が選択的に溶解して除去される。次いで、水またはアルコールで洗浄してフッ酸等を洗い流した後に乾燥して、鉄等の不純物を除去した微細な高品質の炭化珪素粉末を得ることができる。   The crushed silicon carbide powder is immersed in hydrofluoric acid or the like, and acid leaching is performed, or acid cleaning is performed using hydrofluoric acid or the like, and iron or the like remaining in the silicon carbide powder is dissolved and removed. Since silicon carbide does not dissolve in hydrofluoric acid or the like, iron or the like is selectively dissolved and removed. Subsequently, it is washed with water or alcohol to wash away hydrofluoric acid and the like and then dried to obtain a fine high-quality silicon carbide powder from which impurities such as iron are removed.

以下、本発明の実施例を示す。
〔実施例1〕
シリコンウエハーの切断工程において生じたシリコンスラッジ(平均粒径7〜8μm)をアルコール洗浄して脱脂した後に乾燥し、さらに磁気選別処理して鉄を除いたものを原料として用いた。このシリコンスラッジ500gにカーボンブラック115gを混合し、ペレットにした。この混合粉ペレットを反応炉に装入して炉内を窒素ガス雰囲気に調整し、1380℃の温度で6時間加熱した。加熱後、徐冷し、生成物を軽く解砕した後にフッ酸に1時間浸漬した後に引き上げて濾過し、水洗し乾燥して合成炭化珪素粉(平均粒径10μm〜15μm)を得た。この結果を表1に示した。なお、生成物についてX線回折によって炭化珪素(SiC)であることを確認した。
Examples of the present invention will be described below.
[Example 1]
Silicon sludge (average particle size: 7 to 8 μm) generated in the silicon wafer cutting step was washed with alcohol, degreased, dried, and magnetically sorted to remove iron and used as a raw material. 115 g of carbon black was mixed with 500 g of this silicon sludge to form pellets. The mixed powder pellets were charged into a reaction furnace, the inside of the furnace was adjusted to a nitrogen gas atmosphere, and heated at a temperature of 1380 ° C. for 6 hours. After heating, the product was gradually cooled, and the product was lightly crushed and then immersed in hydrofluoric acid for 1 hour, then pulled up, filtered, washed with water and dried to obtain a synthetic silicon carbide powder (average particle size 10 μm to 15 μm). The results are shown in Table 1. The product was confirmed to be silicon carbide (SiC) by X-ray diffraction.

Figure 2010173916
Figure 2010173916

〔実施例2〜5〕
実施例1と同じシリコンスラッジおよびカーボン粉を用い、表2に示す製造条件に従い、実施例1と同様の製造工程によって炭化珪素粉末を製造した。この結果を表2に示す。
[Examples 2 to 5]
Using the same silicon sludge and carbon powder as in Example 1, silicon carbide powder was produced by the same production process as in Example 1 according to the production conditions shown in Table 2. The results are shown in Table 2.

Figure 2010173916
Figure 2010173916

Claims (5)

シリコン屑に対してカーボン粉を当量以上混合し、この混合粉を、非酸化性雰囲気下、1000℃〜1400℃で、6時間〜24時間加熱してシリコン屑とカーボン粉を反応させて炭化珪素を製造し、冷却後、酸洗浄して不純物を除去し、乾燥することを特徴とする炭化珪素の製造方法。 Carbon carbide is mixed with silicon scrap in an equivalent amount or more, and the mixed powder is heated at 1000 ° C. to 1400 ° C. for 6 hours to 24 hours in a non-oxidizing atmosphere to react silicon scrap with carbon powder to form silicon carbide. A method for producing silicon carbide, comprising: after cooling, washing with acid to remove impurities and drying. シリコン屑がシリコンウエハーの切断工程において生じたシリコンスラッジである請求項1に記載する炭化珪素の製造方法。 The method for producing silicon carbide according to claim 1, wherein the silicon scrap is silicon sludge generated in a cutting process of a silicon wafer. シリコン屑を脱脂処理ないし脱水処理した後にカーボン粉と混合し、該混合粉をペレット化して加熱処理する請求項1または請求項2の何れかに記載する炭化珪素の製造方法。 3. The method for producing silicon carbide according to claim 1, wherein the silicon waste is degreased or dehydrated and then mixed with carbon powder, and the mixed powder is pelletized and heat-treated. シリコン屑に対してカーボン粉を当量以上混合した混合粉をペレット化し、密閉中、不活性ガスまたは還元性ガスまたは真空中で加熱する請求項1〜請求項3の何れかに記載する炭化珪素の製造方法。 The silicon carbide according to any one of claims 1 to 3, wherein a mixed powder obtained by mixing carbon powder with an equivalent amount of silicon scrap is pelletized and heated in an inert gas, a reducing gas or a vacuum during sealing. Production method. 加熱処理後に生成物を酸浸出した後に、水またはアルコールで洗浄して不純物を除去する請求項1〜請求項4の何れかに記載する炭化珪素の製造方法。 The method for producing silicon carbide according to any one of claims 1 to 4, wherein impurities are removed by washing with water or alcohol after acid leaching of the product after the heat treatment.
JP2009020598A 2009-01-30 2009-01-30 Method of manufacturing silicon carbide from silicon waste Withdrawn JP2010173916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020598A JP2010173916A (en) 2009-01-30 2009-01-30 Method of manufacturing silicon carbide from silicon waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020598A JP2010173916A (en) 2009-01-30 2009-01-30 Method of manufacturing silicon carbide from silicon waste

Publications (1)

Publication Number Publication Date
JP2010173916A true JP2010173916A (en) 2010-08-12

Family

ID=42705242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020598A Withdrawn JP2010173916A (en) 2009-01-30 2009-01-30 Method of manufacturing silicon carbide from silicon waste

Country Status (1)

Country Link
JP (1) JP2010173916A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746936A (en) * 2012-08-08 2012-10-24 铁生年 Recycling purification method for carborundum powder in silicon slice cutting waste liquid
KR101349137B1 (en) * 2013-02-21 2014-01-16 조선내화 주식회사 A method for fabrication of refractory material by recycling of silicone sludge and refractory material produced therefrom
JP2015224142A (en) * 2014-05-26 2015-12-14 公立大学法人大阪府立大学 Silicon carbide fine powder, and method for producing the same
CN105293498A (en) * 2015-10-30 2016-02-03 北京科技大学 Method for preparing silicon carbide powder from polycrystalline silicon cutting wastes
CN105439569A (en) * 2014-09-24 2016-03-30 上海宝钢工业技术服务有限公司 Environmental-protection stemming for blast furnace and preparation method thereof
KR101682554B1 (en) * 2015-06-17 2016-12-05 부산대학교 산학협력단 Briquette method of waste SiC from silicon wafer sludge and additive for casting thereby
CN107587187A (en) * 2017-08-04 2018-01-16 海南大学 A kind of method that SiC Nanometer Whiskers are prepared using crystalline silicon cutting waste mortar
CN107651691A (en) * 2017-11-01 2018-02-02 东北大学 A kind of method that crystalline silicon cutting waste material prepares high-quality silicon carbide
CN107651690A (en) * 2017-11-01 2018-02-02 东北大学 A kind of method that diamond wire cutting waste material prepares high-quality silicon carbide
CN109748281A (en) * 2019-03-20 2019-05-14 东北大学 A method of high-quality silicon carbide is prepared using discarded silicon powder
CN112158845A (en) * 2020-10-13 2021-01-01 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for recovering silicon carbide powder source in PVT (physical vapor transport) method
JP2023512094A (en) * 2020-01-31 2023-03-23 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for separating impurities from silicon carbide and temperature-treated and purified silicon carbide powder
KR20230079669A (en) * 2021-11-29 2023-06-07 주식회사 케이텍 A method for manufacturing Silicon Carbide Powder with High Purity

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746936A (en) * 2012-08-08 2012-10-24 铁生年 Recycling purification method for carborundum powder in silicon slice cutting waste liquid
KR101349137B1 (en) * 2013-02-21 2014-01-16 조선내화 주식회사 A method for fabrication of refractory material by recycling of silicone sludge and refractory material produced therefrom
JP2015224142A (en) * 2014-05-26 2015-12-14 公立大学法人大阪府立大学 Silicon carbide fine powder, and method for producing the same
CN105439569A (en) * 2014-09-24 2016-03-30 上海宝钢工业技术服务有限公司 Environmental-protection stemming for blast furnace and preparation method thereof
CN105439569B (en) * 2014-09-24 2020-11-20 上海宝钢工业技术服务有限公司 Environment-friendly stemming for blast furnace and preparation method thereof
KR101682554B1 (en) * 2015-06-17 2016-12-05 부산대학교 산학협력단 Briquette method of waste SiC from silicon wafer sludge and additive for casting thereby
CN105293498A (en) * 2015-10-30 2016-02-03 北京科技大学 Method for preparing silicon carbide powder from polycrystalline silicon cutting wastes
CN107587187A (en) * 2017-08-04 2018-01-16 海南大学 A kind of method that SiC Nanometer Whiskers are prepared using crystalline silicon cutting waste mortar
CN107651690A (en) * 2017-11-01 2018-02-02 东北大学 A kind of method that diamond wire cutting waste material prepares high-quality silicon carbide
CN107651690B (en) * 2017-11-01 2019-09-27 东北大学 A kind of method of diamond wire cutting waste material preparation high-quality silicon carbide
CN107651691A (en) * 2017-11-01 2018-02-02 东北大学 A kind of method that crystalline silicon cutting waste material prepares high-quality silicon carbide
CN109748281A (en) * 2019-03-20 2019-05-14 东北大学 A method of high-quality silicon carbide is prepared using discarded silicon powder
JP2023512094A (en) * 2020-01-31 2023-03-23 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for separating impurities from silicon carbide and temperature-treated and purified silicon carbide powder
CN112158845A (en) * 2020-10-13 2021-01-01 哈尔滨科友半导体产业装备与技术研究院有限公司 Method for recovering silicon carbide powder source in PVT (physical vapor transport) method
KR20230079669A (en) * 2021-11-29 2023-06-07 주식회사 케이텍 A method for manufacturing Silicon Carbide Powder with High Purity
KR102664079B1 (en) 2021-11-29 2024-05-08 주식회사 케이텍 A method for manufacturing Silicon Carbide Powder with High Purity

Similar Documents

Publication Publication Date Title
JP2010173916A (en) Method of manufacturing silicon carbide from silicon waste
JP6077193B1 (en) Method for producing silicon fine powder and method for producing silicon nitride fine powder
CN102320638A (en) Preparation method of low-sodium fine grain alumina
JP6742183B2 (en) Method for producing silicon carbide single crystal ingot
TW201008873A (en) Method for purification and compaction of feedstock for photovoltaic applications
KR101079311B1 (en) Recycle of Silicon Sludge and Manufacturing Method of Sintered SiC Body Using the same
JP2014047105A (en) Method for producing silicon carbide powder
CN105793002A (en) Method for recycling powdery silicon carbide waste products
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
CN103553002A (en) Method for preparation of high purity alpha phase silicon nitride powder from recovered silicon chip cut sawdust
CN108441640B (en) A kind of method that waste diamond abrasive material resource comprehensive utilization utilizes
KR20200044596A (en) Recycling method of SiC by-product from the deposition process into the source of single crystal
US20130277201A1 (en) Method for Separating and Recovering Silicon from Silicon Sludge
JPS61205668A (en) Manufacture of sintered active silicon carbide and/or boron carbide powder
CN113880136A (en) Zirconium tetrachloride and/or silicon tetrachloride, preparation method and preparation device thereof
JP2009149480A (en) Silicon regenerating method
KR20180022004A (en) Briquettes and method for manufacturing the same
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JPS6325216A (en) Manufacture of boron oxide
TW202026240A (en) Treatment method for recycling waste silicon sludge capable of generating high-purity silicon dioxide powder from the waste silicon sludge
CN113184854B (en) Method for recycling solar-grade silicon diamond wire cutting waste
KR102236257B1 (en) PREPARATION METHOD OF HIGH PURITY SiC POWDER
KR102218607B1 (en) Method of silicon carbide powder
JP2006256894A (en) Raw material for silicon carbide sintered compact and silicon carbide sintered compact obtained using the same
KR101448281B1 (en) Silcon mould for alluminium alloy and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403