JPS6313950B2 - - Google Patents

Info

Publication number
JPS6313950B2
JPS6313950B2 JP4166085A JP4166085A JPS6313950B2 JP S6313950 B2 JPS6313950 B2 JP S6313950B2 JP 4166085 A JP4166085 A JP 4166085A JP 4166085 A JP4166085 A JP 4166085A JP S6313950 B2 JPS6313950 B2 JP S6313950B2
Authority
JP
Japan
Prior art keywords
feldspar
hydrochloric acid
pottery stone
acid solution
pottery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4166085A
Other languages
Japanese (ja)
Other versions
JPS61201617A (en
Inventor
Kunio Kimura
Hiroshi Tateyama
Kazuhiko Jinnai
Osamu Ishibashi
Kinue Tsunematsu
Satoshi Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4166085A priority Critical patent/JPS61201617A/en
Publication of JPS61201617A publication Critical patent/JPS61201617A/en
Publication of JPS6313950B2 publication Critical patent/JPS6313950B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は陶石中に含有される長石をカオリン鉱
物に変化せしめ、又はそれと共に陶土中の各種鉄
鉱石等の不純物は除去し耐火度が大なる陶石を得
る方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention converts feldspar contained in pottery stone into kaolin mineral, or at the same time removes impurities such as various iron ores in pottery clay, thereby increasing the refractoriness. It is about how to obtain great pottery stone.

陶磁器原料となる陶石の中でも低品位の陶石に
は長石、菱鉄鉱、褐鉄鉱、方解石等が含まれてお
り、長石や方解石を含む陶土は耐火度が低くその
まゝでは利用出来ない。又菱鉄鉱や褐鉄鉱を含む
ものは着色の問題があり、出来る限りこれら鉄鉱
石の含有が少ないものが望ましい。
Among the pottery stones used as raw materials for ceramics, low-grade pottery stones contain feldspar, siderite, limonite, calcite, etc., and pottery clay containing feldspar and calcite has a low fire resistance and cannot be used as is. Also, those containing siderite or limonite have the problem of coloring, so it is desirable to have as little iron ore as possible.

〈従来の技術〉 上記観点から陶石の精製は各種方法がなされて
おり、例えば特公昭47−49425号公報で示される
酸処理による方法や、特公昭52−40915号公報で
示される磁気分離による方法がある。しかるにこ
の両者ともに陶石中の長石の除去は全く出来ない
上に前者たる酸処理法では高濃度の酸を用いる為
に鉄鉱石や方解石は分解除去出来る反面陶石中に
含まれている有用鉱物たるセリサイトやカオリン
鉱物の分解も生起するという欠点があり、又後者
たる磁気分解法では褐鉄鉱は帯磁率が小な為に十
分な除去はなされず、方解石は全く分離除去出来
ないという欠点があつた。
<Prior art> From the above point of view, various methods have been used to purify pottery stone, such as the acid treatment method disclosed in Japanese Patent Publication No. 47-49425, and the magnetic separation method disclosed in Japanese Patent Publication No. 52-40915. There is a way. However, both of these methods cannot remove the feldspar in the pottery stone at all, and the former acid treatment method uses a highly concentrated acid, so iron ore and calcite can be decomposed and removed, but on the other hand, the useful minerals contained in the pottery stone cannot be removed. It has the disadvantage that decomposition of sericite and kaolin minerals also occurs, and in the latter method, magnetic decomposition, limonite cannot be removed sufficiently because its magnetic susceptibility is small, and calcite cannot be separated and removed at all. Ta.

〈発明が解決しようとする問題点〉 本発明では陶石の有用成分たるセリサイト、カ
オリン等の粘土鉱物を減少せしめる事なく、長石
をカオリン鉱物に変化させ、その他の鉄鉱石や方
解石等の不純物は分離除去しようとするものであ
る。
<Problems to be Solved by the Invention> The present invention converts feldspar into kaolin minerals without reducing clay minerals such as sericite and kaolin, which are useful components of pottery stone, and eliminates impurities such as other iron ore and calcite. is what we are trying to separate and remove.

〈問題点を解決する為の手段〉 本発明では上述の目的達成の為に次の様な手段
を採用する。
<Means for solving the problems> The present invention employs the following means to achieve the above-mentioned object.

即ち、長石を含む陶石に対して、該陶石の重量
の少なくとも50重量%の0.1〜1%希塩酸溶液を
加え、密閉容器中150℃以上の温度で1昼夜以上
加熱処理を行い長石をカオリン鉱物に変化させる
事を特徴とする陶石の熱水処理よる精製法、並び
に各種の不純物を含む陶石に対し、該陶石の重量
の少なくとも50重量%の1〜2%希塩酸溶液を加
え、密閉容器中150℃の温度で1昼夜加熱処理し、
菱鉄鉱、褐鉄鉱、方解石等を分解せしめ、次いで
濾過後上記希塩酸溶液と同量の0.1〜1%希塩酸
溶液を加え、密閉容器中150℃の温度で1昼夜以
上加熱処理を行い長石をカオリン鉱物に変化させ
ることを特徴とする陶石の熱水処理による精製法
である。
That is, to potter's stone containing feldspar, a 0.1-1% dilute hydrochloric acid solution of at least 50% by weight of the potter's stone is added, and heat treatment is performed in a closed container at a temperature of 150°C or higher for more than one day and night to convert the feldspar into kaolin. A method for purifying potter's stone by hot water treatment, which is characterized by converting it into minerals, and adding a 1-2% dilute hydrochloric acid solution to potter's stone containing various impurities, at least 50% by weight of the potter's stone, Heat treated in a closed container at a temperature of 150℃ for one day and night.
Siderite, limonite, calcite, etc. are decomposed, and then after filtration, 0.1 to 1% diluted hydrochloric acid solution is added in the same amount as the above diluted hydrochloric acid solution, and heat treatment is performed in a closed container at a temperature of 150°C for more than one day and night to turn feldspar into kaolin mineral. This is a refining method using hot water treatment for pottery stone, which is characterized by its transformation.

〈実施例及び作用〉 以下に実施例を示し乍ら本発明を詳述する。<Examples and effects> The present invention will be described in detail below with reference to Examples.

実施例 1 長石を含む熊本県天草町産の陶石(石英39.3、
長石16.4、カオリン4.0、セリサイト他40.3各重量
%)に、0.5%塩酸溶液を陶石の10倍量加え、テ
フロンコーテイングステンレス鋼製容器中に密閉
し、180℃で10日間保持し、次いで冷却、濾過、
水洗、乾燥後、X線回折法により各鉱物の定量を
行つた。その結果、石英39.3、長石4.1、カオリ
ン10.1、セリサイト他46.5各重量%であり、上記
原料と比較した場合長石が大幅に減少し、カオリ
ンが大幅に増加している事が確かめられた。
Example 1 Pottery stone from Amakusa Town, Kumamoto Prefecture containing feldspar (quartz 39.3,
16.4% feldspar, 4.0% kaolin, 40.3% by weight each of sericite, etc.) was added with 0.5% hydrochloric acid solution in an amount 10 times the amount of chinastone, sealed in a Teflon-coated stainless steel container, kept at 180℃ for 10 days, and then cooled. ,filtration,
After washing with water and drying, each mineral was quantified by X-ray diffraction. The results were 39.3% by weight of quartz, 4.1% by weight of feldspar, 10.1% by weight of kaolin, and 46.5% by weight of sericite, and it was confirmed that feldspar was significantly reduced and kaolin was significantly increased when compared with the above raw materials.

実施例 2 実施例1と同じ陶石を用いたが、実施の前に化
学分析により該陶石中のFe2O3量を測定すると
0.76重量%であつた。この陶石に対し2%塩酸溶
液を2倍量加え、テフロンコーテイングステンレ
ス鋼製容器中に密閉し、180℃で1昼夜保持後開
放し、濾過水洗後その一部を採り、実施例1と同
様に各鉱物の定量を行つた結果、石英39.3、長石
12.0、カオリン3.9、セリサイト他44.8各重量%で
セリサイト他中のFe2O3は0.35重量%で当初の
0.76重量%から半減している事が判つた。
Example 2 The same pottery stone as in Example 1 was used, but before implementation, the amount of Fe 2 O 3 in the pottery stone was measured by chemical analysis.
It was 0.76% by weight. Add twice the amount of 2% hydrochloric acid solution to this pottery stone, seal it in a Teflon-coated stainless steel container, hold it at 180°C for one day and then open it, filter it, wash it with water, and take a part of it. As a result of quantifying each mineral, quartz was 39.3, feldspar was
12.0, kaolin 3.9, sericite and others 44.8% by weight, and Fe 2 O 3 in sericite and others was 0.35% by weight, compared to the initial
It was found that the content was reduced by half from 0.76% by weight.

次いで上記残部の試料を引き続き、上記と同じ
容器中に移し0.5%塩酸溶液を10倍量加え、密閉
後180℃で5日間保持した後、実施例1と同様に
して各鉱物の定量を行つた結果、石英39.3、長石
5.2、カオリン9.8、セリサイト他49.7各重量%で、
セリサイト他中のFe2O3は0.35重量%であつた。
Next, the remaining sample was transferred to the same container as above, 10 times the volume of 0.5% hydrochloric acid solution was added, and after sealing and holding at 180°C for 5 days, each mineral was quantified in the same manner as in Example 1. Result, quartz 39.3, feldspar
5.2, kaolin 9.8, sericite and others 49.7% by weight,
Fe 2 O 3 in the sericite was 0.35% by weight.

この結果0.5%塩酸溶液ではFe2O3は全く溶解さ
れていない事、長石は大幅に減少し、カオリンが
大幅に増加している事が判る。
The results show that Fe 2 O 3 is not dissolved at all in the 0.5% hydrochloric acid solution, feldspar is significantly reduced, and kaolin is significantly increased.

次いで上記実施例1と同様の操作に於いて、陶
石に加える塩酸濃度、その添加量並びに処理時間
等を各種変化させた場合についての各種データを
第1図〜第3図に示す。即ち塩酸濃度を0.1,
0.5,1,2各%の場合、塩酸添加量の変化に伴
う鉱物含有割合の変化を第1図に又塩酸添加量と
耐火度との関係を第2図に、更に処理時間と鉱物
含有割合との関係を第3図にそれぞれグラフにて
示す。
Next, in the same operation as in Example 1, various data are shown in FIGS. 1 to 3 when the concentration of hydrochloric acid added to the pottery stone, the amount added, the treatment time, etc. were varied. That is, the hydrochloric acid concentration is 0.1,
In the case of 0.5, 1, and 2% each, Figure 1 shows the change in the mineral content ratio with changes in the amount of hydrochloric acid added, and Figure 2 shows the relationship between the amount of hydrochloric acid added and the refractory degree, and the relationship between the treatment time and the mineral content ratio. The relationships between the two are shown in graphs in Figure 3.

以上の実施例の結果から陶石中に含有される長
石をカオリン鉱物に変化させる処理に際し、用い
る塩酸濃度は0.1%以上はなければ効果はないが、
0.5%と低い方が効果があり、1%以上となれば
長石の変化もある反面カオリン鉱物そのものが減
少するので0.1〜1%が好ましいという事が判る。
From the results of the above examples, when processing to convert feldspar contained in pottery stone into kaolin mineral, there is no effect unless the hydrochloric acid concentration used is 0.1% or more.
It can be seen that a lower content of 0.5% is more effective, and if it exceeds 1%, there is a change in feldspar, but on the other hand, the kaolin mineral itself decreases, so 0.1 to 1% is preferable.

又保持温度は、密閉容器内の圧力が少なくとも
5Kg/mm2以上になる必要があるところから150℃
以上を要する。
Also, the holding temperature is 150℃ because the pressure inside the sealed container needs to be at least 5Kg/mm2 or higher.
The above is required.

次に陶石中の菱鉄鉱、褐鉄鉱、方解石等の不純
物を除去する場合には塩酸濃度は1%以上なけれ
ばそれらを溶解し得ないが、2%を越えるとカオ
リン鉱物の減少がある為に1〜2%とすべきであ
る。
Next, when removing impurities such as siderite, limonite, and calcite from the pottery stone, the hydrochloric acid concentration must be at least 1% to dissolve them, but if it exceeds 2%, kaolin minerals will decrease. It should be 1-2%.

〈発明の効果〉 以上述べて来た如く、本発明方法によれば陶石
中に含まれる長石をカオリン鉱物に変化させる事
が出来る為に、全体として長石含有率を減少し、
粘土含有率を高め耐火度を向上せしめるものであ
り、又鉄鉱石や方解石等の不純物もカオリン鉱物
が減少しない様な条件で除去する事が出来るので
長石や鉄鉱石等の不純物を含む陶石を良質の陶石
となす方法として優れたものである。
<Effects of the Invention> As described above, according to the method of the present invention, since the feldspar contained in pottery stone can be changed into kaolin mineral, the feldspar content can be reduced as a whole,
It increases the clay content and improves the fire resistance, and impurities such as iron ore and calcite can be removed under conditions that do not reduce kaolin minerals, so it can be used to remove pottery stone containing impurities such as feldspar and iron ore. This is an excellent method for making high-quality pottery stone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に於ける塩酸添加量と鉱物
含有割合との関係を示すグラフ、第2図は同処理
時間と耐火度との関係を示すグラフ、第3図は同
処理時間と鉱物含有割合を示すグラフ。
Figure 1 is a graph showing the relationship between the amount of hydrochloric acid added and mineral content in the method of the present invention, Figure 2 is a graph showing the relationship between treatment time and refractory degree, and Figure 3 is a graph showing the relationship between treatment time and mineral content. A graph showing the content ratio.

Claims (1)

【特許請求の範囲】 1 長石を含む陶石に対して、該陶石の重量の少
なくとも50重量%の0.1〜1%希塩酸溶液を加え、
密閉容器中150℃以上の温度で1昼夜以上加熱処
理を行い長石をカオリン鉱物に変化させることを
特徴とする陶石の熱水処理による精製法。 2 各種の不純物を含む陶石に対し、該陶石の重
量の少なくとも50重量%の1〜2%希塩酸溶液を
加え、密閉容器中150℃の温度で1昼夜加熱処理
し、菱鉄鉱、褐鉄鉱、方解石等を分解せしめ、次
いで濾過後上記希塩酸溶液と同量の0.1〜1%希
塩酸溶液を加え、密閉容器中150℃の温度で1昼
夜以上加熱処理を行い長石をカオリン鉱物に変化
させることを特徴とする陶石の熱水処理による精
製法。
[Claims] 1. Adding a 0.1 to 1% dilute hydrochloric acid solution of at least 50% by weight of the pottery stone to the pottery stone containing feldspar,
A method for refining pottery stone using hot water treatment, which is characterized by heat treatment in a closed container at a temperature of 150°C or more for more than one day and night to convert feldspar into kaolin mineral. 2 Add a 1-2% dilute hydrochloric acid solution of at least 50% by weight of the pottery stone to the pottery stone containing various impurities, and heat treat it in a closed container at a temperature of 150°C for one day and night to remove siderite, limonite, It is characterized by decomposing calcite, etc., then adding 0.1 to 1% diluted hydrochloric acid solution in the same amount as the above diluted hydrochloric acid solution after filtration, and heating treatment at a temperature of 150°C for more than one day and night in a closed container to convert feldspar into kaolin mineral. A refining method using hot water treatment for pottery stone.
JP4166085A 1985-03-01 1985-03-01 Purification method for pottery stone with hot water Granted JPS61201617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166085A JPS61201617A (en) 1985-03-01 1985-03-01 Purification method for pottery stone with hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166085A JPS61201617A (en) 1985-03-01 1985-03-01 Purification method for pottery stone with hot water

Publications (2)

Publication Number Publication Date
JPS61201617A JPS61201617A (en) 1986-09-06
JPS6313950B2 true JPS6313950B2 (en) 1988-03-28

Family

ID=12614531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166085A Granted JPS61201617A (en) 1985-03-01 1985-03-01 Purification method for pottery stone with hot water

Country Status (1)

Country Link
JP (1) JPS61201617A (en)

Also Published As

Publication number Publication date
JPS61201617A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
BR112016008867B1 (en) process for the recovery of valuable metals
JPH01126220A (en) Production of metallurgical grade alumina
US6592830B1 (en) Treating niobium and or tantalum containing raw materials
US4024087A (en) Method of preparing coagulant for purification of water from mechanical admixtures
US2584700A (en) Treatment of iron ore containing impurities, including nickel and chromium
JPH09512056A (en) Treatment of leachate to enhance titanium-containing materials
KR980700440A (en) METHOD FOR PRODUCING IRON FEEDSTOCK
JPS6313950B2 (en)
US2210892A (en) Process for recovering magnesium oxide
JPH046668B2 (en)
RU2202516C1 (en) Method of production of aluminum oxide
JPS6225435B2 (en)
SU747412A3 (en) Method of processing alumosilicate materials containing impurities of titanium, ferrum and potassium compounds to alumina
JPH09512057A (en) Leaching of titanium-containing materials
JPH02111627A (en) Treatment of red mud
US1897638A (en) Purifying art
JPS63286526A (en) Method for effectively utilizing red mud
JPS5950031A (en) Method for purifying iron oxide powder
US3006728A (en) Preparation of ceramic grade titanium dioxide
US1824807A (en) Removal of impurities from sand, clay, and the like materials
JPS62235221A (en) Production of high-purity iron oxide
RU2763715C1 (en) Method for processing titanium-magnetite ore waste
Tilley et al. Acid Processes for the Extraction of Alumina
JP2005162513A (en) Manufacturing method of zeoliting soil from soil derived from municipal waterworks, waste water treatment method and treatment method of used zeoliting soil
JP2622413B2 (en) How to recover zinc

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term