JPH0466169B2 - - Google Patents

Info

Publication number
JPH0466169B2
JPH0466169B2 JP624887A JP624887A JPH0466169B2 JP H0466169 B2 JPH0466169 B2 JP H0466169B2 JP 624887 A JP624887 A JP 624887A JP 624887 A JP624887 A JP 624887A JP H0466169 B2 JPH0466169 B2 JP H0466169B2
Authority
JP
Japan
Prior art keywords
gate
runner
mold
heat
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP624887A
Other languages
Japanese (ja)
Other versions
JPS63176123A (en
Inventor
Shigeru Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanri KK
Original Assignee
Sanri KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanri KK filed Critical Sanri KK
Priority to JP624887A priority Critical patent/JPS63176123A/en
Publication of JPS63176123A publication Critical patent/JPS63176123A/en
Publication of JPH0466169B2 publication Critical patent/JPH0466169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、キヤビテイに通ずるゲート部の加
熱を金型内に設けた熱源を利用して高精度な成形
加工を行うようにしたランナーレス射出成形装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a runnerless injection method in which high-precision molding is performed using a heat source provided in a mold to heat a gate portion leading to a cavity. Regarding molding equipment.

〔従来の技術〕[Conventional technology]

従来、この種のホツトランナー方式と呼ばれる
ランナーレス射出成形装置は、ゲート部を加熱す
るものとして本発明者が開発した商標名スピアシ
ステムが知られている。このスピアシステムは、
ゲート部を内部または外部よりヒータにより局部
的に加熱することによりゲート部の溶融樹脂の固
化、溶融の切替操作によつて精密成形を行うこと
ができるもので原料樹脂の無駄なスプルーランナ
ーを無くしてランナー方式と同様な高精度成形が
可能なシステムとして国の内外で高く評価されて
いる。
BACKGROUND ART Conventionally, this kind of runnerless injection molding apparatus called a hot runner method has been known as the trademark Spear System developed by the present inventor as an apparatus that heats a gate portion. This spear system is
By locally heating the gate part with a heater from inside or outside, the molten resin in the gate part can be solidified, and precision molding can be performed by switching between melting and eliminating sprue runners that waste raw material resin. This system is highly praised both in Japan and overseas as a system that can perform high-precision molding similar to the runner method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このようなゲート部の加熱手段に対して、従来
のようなヒータに用いることは、高精度の加工
と、コスト高を避けることはできず、しかも射出
成形操作に関連してヒータの温度を制御する時
は、コントローラの附設が不可欠となり、経済的
問題を除いて高精度なランナーレス射出成形装置
を提供することは極めて困難であつた。
Using a conventional heater as a means of heating the gate part requires high-precision processing and high costs, and furthermore, it is difficult to control the temperature of the heater in connection with the injection molding operation. When doing so, it is essential to install a controller, and it has been extremely difficult to provide a highly accurate runnerless injection molding machine except for economical reasons.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は叙上の点に着目して成されたもの
で、従来一般に用いられている原料可塑化手段、
射出成形手段、金型構成などをそのまま利用し前
記金型内に設けられるカートリツジヒータなどの
加熱手段で加熱される金型が保有する熱エネルギ
ーを貯熱部にたくわえ、ゲート部に形成した加熱
空間に対してピストンなどの加圧手段によつて熱
流路を介して供給してゲート部を局部的に加熱す
ることによつて上記問題点を解決した。
This invention was made by paying attention to the points mentioned above, and includes a material plasticizing means commonly used in the past,
A heating method that utilizes the injection molding means, mold structure, etc. as is, stores the thermal energy held by the mold heated by a heating means such as a cartridge heater installed in the mold in a heat storage part, and forms the gate part. The above problem was solved by locally heating the gate portion by supplying heat to the space via a heat flow path using a pressurizing means such as a piston.

これにより高価なコントローラや、高精度、高
価なゲート部の加熱手段が省略でき、きわめて簡
単な構成によつて安価なランナーレス射出成形装
置を提供できるものである。
As a result, an expensive controller and a highly accurate and expensive heating means for the gate portion can be omitted, and an inexpensive runnerless injection molding apparatus can be provided with an extremely simple configuration.

〔作用〕[Effect]

原料可塑化手段によつて得られたランナー部に
供給される熱溶融された原料は、射出成形手段に
よつてゲート部を通りキヤビテイ内に必要量の溶
融樹脂を充填して成形加工される。
The hot melted raw material obtained by the raw material plasticizing means and supplied to the runner section is molded by injection molding means by filling a necessary amount of molten resin into the cavity through the gate section.

ところで、ゲート部には熱空間が形成され金型
の保有する熱エネルギーを貯熱部より加圧手段に
より熱流路を経て、瞬間にしかも効率良く供給さ
れるので、ゲート部内の原料樹脂は、ゲート部分
の温度状態に応じて固化、半固化、溶融の相変化
を呈し所謂ゲートの開閉という状態を感度よく操
作できる。
By the way, a thermal space is formed in the gate section, and the thermal energy held by the mold is instantly and efficiently supplied from the heat storage section through the heat flow path by pressurizing means, so that the raw resin in the gate section is It exhibits a phase change of solidification, semi-solidification, and melting depending on the temperature state of the part, and can be sensitively operated to open and close the so-called gate.

したがつて、射出成形の操作の都度ゲート部内
の原料樹脂の温度制御を加圧手段の適切な制御に
よつて有効に行うことができ、これによりキヤビ
テイ内への原料樹脂の射出成形操作を確実にしか
もゲート部よりの不自然な鼻たれ現象を防いで高
精度の射出成形を行うことができる。
Therefore, the temperature of the raw resin inside the gate part can be effectively controlled each time an injection molding operation is performed by appropriately controlling the pressurizing means, thereby ensuring that the raw resin is injected into the cavity. Moreover, it is possible to perform highly accurate injection molding by preventing the unnatural nose dripping phenomenon from the gate part.

なを、ゲート部の加熱空間で熱交換された流体
は、金型相互のエアギヤツプなど通つて支障なく
外部に排出される。
Furthermore, the fluid heat exchanged in the heating space of the gate part passes through the air gap between the molds and is discharged to the outside without any problem.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面と共に説明す
る。
Examples of the present invention will be described below with reference to the drawings.

1は、原料の熱可塑化手段、2は溶融樹脂の射
出成形手段、3は金型、ことに固定金型4に形成
される湯道、5は二以上の射出流路を形成するマ
ニホールドで、必要数のカートリツジヒータのよ
うな加熱手段6が必要個処に設けられている。
1 is a means for thermoplasticizing raw materials, 2 is an injection molding means for molten resin, 3 is a mold, especially a runner formed in a fixed mold 4, and 5 is a manifold forming two or more injection channels. , a necessary number of heating means 6 such as cartridge heaters are provided at necessary locations.

7はマニホールド5とキヤビテイ8に通ずる中
間金型9間に配設されるランナー加熱手段で、管
環状の支持ホルダー10内に収容配設される。
A runner heating means 7 is disposed between the manifold 5 and the intermediate mold 9 communicating with the cavity 8, and is housed in an annular support holder 10.

ところで、このランナー加熱手段7は格別特定
する必要はないが、ヒータとか高周波電磁誘導コ
イルのように自己発熱型のものと熱伝導流体を充
填したヒートパイプなどの熱依存型とを選択して
用いることができる。自己発熱型ではコントロー
ラを必要とする場合があるが熱依存型ではコント
ローラは全く不用である。8aは可動金型。
Incidentally, the runner heating means 7 does not need to be particularly specified, but it is possible to select and use a self-heating type such as a heater or a high-frequency electromagnetic induction coil, or a heat-dependent type such as a heat pipe filled with a heat transfer fluid. be able to. Self-heating types may require a controller, but heat-dependent types do not require a controller at all. 8a is a movable mold.

この実施例では熱依存型のヒートパイプを用い
ており、全体が二重パイプの管環状に形成され、
所謂湯道3の一部として所望径R1の直線上の孔
に相当するランナー部11が形成されている。
In this example, a heat-dependent heat pipe is used, and the whole is formed into a pipe ring shape of a double pipe.
A runner portion 11 corresponding to a straight hole with a desired diameter R 1 is formed as a part of the so-called runner 3 .

12は、前記ランナー加熱手段7と連接されキ
ヤビテイ8と連通するゲート部を示しこのゲート
部の外周に加熱空間Hが形成され、さらにその基
部には、環状鍔13を有し、ヒートパイプの先端
段部14と係合しており、狭小テーパー部15か
ら前記径R1よりも小さい径R2のゲート孔16を
経て、さらにテーパー部17を経てキヤビテイ8
のゲート16aを開孔している。そして前記ラン
ナー部11とゲート部12とが同一軸線上、すな
わち同一直線上に配設されている。なを、このゲ
ート部12は熱伝導の良い銅また、銅・ベリウム
などの金属その他の材料で形成するのが好まし
い。
Reference numeral 12 denotes a gate section connected to the runner heating means 7 and communicating with the cavity 8. A heating space H is formed around the outer periphery of this gate section, and an annular collar 13 is provided at the base of the gate section, and the tip of the heat pipe is connected to the gate section 12. It is engaged with the step part 14, and passes from the narrow taper part 15 through the gate hole 16 having a diameter R2 smaller than the diameter R1 , and further through the taper part 17 to the cavity 8.
The gate 16a is opened. The runner section 11 and the gate section 12 are arranged on the same axis, that is, on the same straight line. It is preferable that the gate portion 12 be formed of copper, a metal such as copper, beryum, or other material having good thermal conductivity.

18は、前記ランナー加熱手段7とゲート部1
2を支持する前記支持ホルダー10の外周に配設
されて、前記加熱空間Hも形成できる外周固定体
で、中間金型9の位置決めリング19により硬固
に支持されている。
18 is the runner heating means 7 and the gate part 1
It is an outer peripheral fixing body that is disposed on the outer periphery of the support holder 10 that supports the mold 2 and can also form the heating space H, and is firmly supported by the positioning ring 19 of the intermediate mold 9.

20は之等位置決めリング19、外周固定体1
8などと中間金型9との間に形成されるエアギヤ
ツプを示す。
20 are the positioning ring 19 and the outer peripheral fixing body 1.
8 and the intermediate mold 9 are shown.

21は金型、ことにマニホールド5に設けた貯
熱部で、中空状のシリンダー構造を備えピストン
22を摺動自在に配設して例えばエアシリンダな
どの制御手段23により加熱空気の加圧手段24
を形成している。25はこの貯熱部21より前記
ゲート部12の加熱空間Hに通ずる加熱空気の通
路すなわち熱流路でマニホールド5の通路25a
と支持ホルダー10と外周固定体18に穿つた通
路25bとによつて構成され、加熱空間Hの排出
側の通路26は、外周固定体18を経てエアギヤ
ツプ20と通じている。27は可動金型。
Reference numeral 21 denotes a heat storage section provided in the mold, particularly the manifold 5, which has a hollow cylinder structure, has a piston 22 slidably disposed thereon, and is pressurized with heated air by means of a control means 23 such as an air cylinder. 24
is formed. Reference numeral 25 denotes a passage for heated air, that is, a heat flow passage, leading from the heat storage section 21 to the heating space H of the gate section 12, and is a passage 25a of the manifold 5.
A passage 26 on the discharge side of the heating space H communicates with the air gap 20 via the outer fixed body 18. 27 is a movable mold.

叙上の構成に基づいて、作用を説明する。 The action will be explained based on the above structure.

まず、原料の熱可塑化手段1によつて用いる原
料を溶融して射出成形可能とすると共に金型こと
に固定金型4のマニホールド5に配設した多数の
ヒータ6の熱エネルギーを、これと衝接する支持
ホルダー10に伝達し、この支持ホルダー10の
熱伝導を受けてヒートパイプで構成されるランナ
ー加熱手段7を必要な温度に加熱させて置く。
First, the raw material to be used is melted by the raw material thermoplasticization means 1 to enable injection molding, and the thermal energy of a large number of heaters 6 disposed in the manifold 5 of the fixed mold 4 is applied to the mold. The heat is transmitted to the support holder 10 that collides with the heat, and the runner heating means 7 constituted by a heat pipe is heated to a required temperature by receiving heat conduction from the support holder 10.

そして伴せて、このランナー加熱手段7と接触
している別部材のゲート部12に対しても必要な
熱エネンルギーが供給される。
At the same time, the necessary thermal energy is also supplied to the gate portion 12, which is a separate member and is in contact with the runner heating means 7.

一方、マニホールド5には貯熱部21が形成さ
れシリンダー状の中空室が形成されているので、
該部21の空気は、マニホールド5のヒータ6で
加熱されて温度は上昇している。
On the other hand, since the heat storage part 21 is formed in the manifold 5 and a cylindrical hollow chamber is formed,
The air in this section 21 is heated by the heater 6 of the manifold 5, and its temperature is rising.

このような状態において、射出成形手段2によ
つて、溶融原料樹脂を射出させると金型4内の湯
道3内の溶融樹脂は、ランナー部11,ゲート部
12を経て所望量の溶融樹脂がキヤビテイ8内に
充填される。
In such a state, when the molten raw material resin is injected by the injection molding means 2, the molten resin in the runner 3 in the mold 4 passes through the runner part 11 and the gate part 12, and a desired amount of molten resin is released. The cavity 8 is filled.

この射出成形操作の際、加圧手段24が働き、
貯熱部21内の加熱空気がエアシリンダーなどの
制御手段23によつてピストン22がストローク
運動を呈すると、そのストローク量に応じた加熱
空気が熱流路25を通つてゲート部12の加熱空
間Hに達し該空気Hを加熱しゲート部12内の原
料樹脂を加熱溶融する。
During this injection molding operation, the pressure means 24 works,
When the piston 22 exhibits a stroke motion of the heated air in the heat storage section 21 by the control means 23 such as an air cylinder, the heated air according to the stroke amount passes through the heat flow path 25 and enters the heating space H of the gate section 12. The air H is heated to heat and melt the raw resin in the gate portion 12.

加熱空気の流量、加熱時間、加熱温度などによ
つてゲート部12に作用する熱影響を可変調節で
き固化、半固化、溶融などの相変化を自在に行う
ことができる。
The thermal influence acting on the gate portion 12 can be variably adjusted by adjusting the flow rate of heated air, heating time, heating temperature, etc., and phase changes such as solidification, semi-solidification, and melting can be freely performed.

そして、加圧手段24の作動時、加熱空気の流
通過程は、ゲート部12の加熱空間Hで熱交換さ
れ乍ら低温の空気となつて排出側の流路26を経
てエアギヤツプ20より金型4の外部に排気され
る。
Then, when the pressurizing means 24 is activated, the heated air is circulated through the heating space H of the gate section 12 while exchanging heat, becomes low-temperature air, passes through the flow path 26 on the discharge side, and leaves the mold 4 from the air gap 20. is exhausted to the outside.

この加圧手段24は、それ自体ヒータなどの発
熱機能を附与しても挿支えないが、通常、マニホ
ールド5の保熱エネルギーで十分間に合せること
かできる。そして一度加熱空気を吐出させたら、
一旦復動させ、射出成形操作と連動させて再度同
一ストローク前進運動を行わせて反覆操作を行わ
せることができる。
Although this pressurizing means 24 itself cannot be supported even if it is provided with a heat generating function such as a heater, the heat retention energy of the manifold 5 is usually sufficient. Once the heated air is discharged,
It is possible to repeat the operation by once making a backward movement and then making the same stroke forward movement again in conjunction with the injection molding operation.

その際、当然の事乍ら、キヤビテイ8内の成形
品を取り出すための型開閉操作を行うことは勿論
である。
At that time, it goes without saying that a mold opening/closing operation is performed to take out the molded product in the cavity 8.

この型開操作においてゲート部12を加熱させ
ないで置くことによりゲート孔16a部の原料樹
脂を固化させて所謂ゲートを閉塞状態に保持でき
るので鼻たれ現象を防止できる。
By leaving the gate portion 12 without heating during this mold opening operation, the raw resin in the gate hole 16a portion can be solidified and the so-called gate can be kept in a closed state, thereby preventing the nasal drip phenomenon.

また、湯道3のランナー部11およびゲート部
12は、一直線上に形成してあり、抵抗部分がな
いので射出圧を著しく小さくでき、しかもエアギ
ヤツプ20が形成してあるため温度の逸散や熱エ
ネルギーの損失が防がれる。
In addition, the runner part 11 and gate part 12 of the runner 3 are formed in a straight line, and there is no resistance part, so the injection pressure can be significantly reduced. Furthermore, since the air gap 20 is formed, the temperature can be dissipated easily. Energy loss is prevented.

その上、ランナー部11とゲート部12とが別
部材で互いに熱伝導が有効に保たれるように接続
してあるためゲート部12の加熱空間Hに作用す
る熱エネルギーは必要以上に大きくする必要がな
く、金型4のヒータ6の余熱利用で間に合うとい
う利点をも有する。
Moreover, since the runner part 11 and the gate part 12 are separate members and are connected to each other so as to maintain effective heat conduction, the thermal energy acting on the heating space H of the gate part 12 needs to be larger than necessary. It also has the advantage that the remaining heat of the heater 6 of the mold 4 can be used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ゲート部というきわめて挟
少な個処の加熱手段に、金型の加熱手段の熱を利
用し、金型部内に設けた貯熱部の熱エネルギーを
加圧手段によつて、熱流路を介してゲートの加熱
空間に圧送して局部的に加熱するようにしたもの
であるから、応答性よくゲート部の加熱操作を行
うことができ、ゲート部内の原料樹脂を加圧手段
による加熱空気の圧送状態に応じて固化、半固
化、溶融などの諸状態に相変化させて無駄のない
高精度のランナーレス射出成形を行うことができ
る。
According to this invention, the heat of the heating means of the mold is used as the heating means of a very small part called the gate part, and the thermal energy of the heat storage part provided in the mold part is used by the pressurizing means. Since the heat is pumped into the heating space of the gate through a heat flow path to locally heat it, the heating operation of the gate can be performed with good response, and the raw resin in the gate can be heated by pressurizing means. By changing the phase to various states such as solidified, semi-solidified, and molten depending on the pumping state of the heated air, highly accurate runnerless injection molding with no waste can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るランナーレス射出成形
装置の一実施例を示す要部の横断平面図、第2図
は同上の正面より見た説明図である。 1……原料の熱可塑化手段、2……射出成形手
段、3……湯道、4……金型、5……マニホール
ド、6……ヒータなどの加熱手段、7……ランナ
ー加熱手段、10……支持ホルダー、11……ラ
ンナー部、12……ゲート部、20……エアギヤ
ツプ、21……貯熱部、24……加圧手段、25
……熱流路、H……加熱空間。
FIG. 1 is a cross-sectional plan view of essential parts showing an embodiment of a runnerless injection molding apparatus according to the present invention, and FIG. 2 is an explanatory view of the same as seen from the front. 1... Means for thermoplasticizing raw materials, 2... Means for injection molding, 3... Runway, 4... Mold, 5... Manifold, 6... Heating means such as a heater, 7... Runner heating means, DESCRIPTION OF SYMBOLS 10... Support holder, 11... Runner part, 12... Gate part, 20... Air gap, 21... Heat storage part, 24... Pressurizing means, 25
...Heat flow path, H...Heating space.

Claims (1)

【特許請求の範囲】 1 熱可塑化された原料をピストンなどの射出手
段で金型内に設けた湯道を通してランナー部、ゲ
ート部を経て所望のキヤビテイ内に射出成形でき
るようにしたランナーレス射出成形装置であつ
て、前記ゲート部には加熱空間を形成し、金型内
に設けた加熱手段によつて得られる熱エネルギー
を、貯熱部よりピストンなどの加圧手段を用い熱
流路を介して前記加熱空間に移送してゲート部を
局部的に加熱できるようにして成ることを特徴と
するランナーレス射出成形装置。 2 金型内の熱エネルギーの貯熱部は、シリンダ
ー状に穿ち、この貯熱部内に間欠的に前後動する
ピストンを加圧手段として組み込み、ゲート部の
加熱空間と通ずる熱流路は、ランナー部の外周に
配設される支持ホルダー内に穿設して成ることを
特徴とする特許請求の範囲第1項記載のランナー
レス射出成形装置。
[Scope of Claims] 1. Runnerless injection in which thermoplasticized raw material can be injected into a desired cavity via a runner section and a gate section through a runner provided in a mold using an injection means such as a piston. In the molding apparatus, a heating space is formed in the gate part, and thermal energy obtained by a heating means provided in the mold is transferred from a heat storage part through a heat flow path using a pressurizing means such as a piston. A runnerless injection molding apparatus characterized in that the runnerless injection molding apparatus is configured such that the gate portion can be locally heated by transferring the runner to the heating space. 2 The heat storage part for thermal energy in the mold is bored into a cylindrical shape, and a piston that moves back and forth intermittently is installed in this heat storage part as a pressurizing means, and the heat flow path communicating with the heating space of the gate part is connected to the runner part. The runnerless injection molding apparatus according to claim 1, wherein the runnerless injection molding apparatus is formed by being bored in a support holder disposed on the outer periphery of the runner.
JP624887A 1987-01-16 1987-01-16 Runnerless injection molding equipment Granted JPS63176123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP624887A JPS63176123A (en) 1987-01-16 1987-01-16 Runnerless injection molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP624887A JPS63176123A (en) 1987-01-16 1987-01-16 Runnerless injection molding equipment

Publications (2)

Publication Number Publication Date
JPS63176123A JPS63176123A (en) 1988-07-20
JPH0466169B2 true JPH0466169B2 (en) 1992-10-22

Family

ID=11633189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP624887A Granted JPS63176123A (en) 1987-01-16 1987-01-16 Runnerless injection molding equipment

Country Status (1)

Country Link
JP (1) JPS63176123A (en)

Also Published As

Publication number Publication date
JPS63176123A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
US4687613A (en) Injection molding process for synthetic resin and its apparatus
JP2612795B2 (en) Runnerless injection molding equipment
JPS597575B2 (en) Synthetic resin injection molding method and equipment
JPH0433616B2 (en)
JPH06166063A (en) Plastic molding device
KR20090099207A (en) Wax cylinder of a wax injector
JPH0466169B2 (en)
JPS5926462B2 (en) Thermoplastic resin molding equipment
JP2023133753A (en) Injection nozzle, injection apparatus, and injection molding machine
JPH0549015B2 (en)
JP6056887B2 (en) Injection molding apparatus and injection molding method
JP3454774B2 (en) Metal injection mold
JP2016112863A (en) Injection molding machine
JP6094607B2 (en) Injection molding apparatus and injection molding method
JPH02116529A (en) Injection molding machine
JPH035112A (en) Intermittent heating method and its device in runnerless injection molding machine
JPS63296912A (en) Injection molding device
JPH0136413B2 (en)
JPH049144Y2 (en)
JPH06106574A (en) Nozzle for injection molding machine
JP2003011197A (en) Mold device for molding
JPS63176122A (en) Runnerless injection molding equipment
JPH0639879A (en) Sprueless disc mold
JPH0333087B2 (en)
JPH0316895B2 (en)